Abstract. We consider a radio network consisting of \(n \) stations represented as the complete graph on a set of \(n \) points in the Euclidean plane with edge weights \(\omega(p, q) = |pq|^\delta + C_p \), for some constant \(\delta > 1 \) and nonnegative offset costs \(C_p \). Our goal is to find paths of minimal energy cost between any pair of points that do not use more than some given number \(k \) of hops. We present an exact algorithm for the important case when \(\delta = 2 \), which requires \(O(kn \log n) \) time per query pair \((p, q)\). For the case of an unrestricted number of hops we describe a family of algorithms with query time \(O(n^{(1+\alpha)}) \), where \(\alpha > 0 \) can be chosen arbitrarily. If we relax the exactness requirement, we can find an approximate \((1+\epsilon)\) solution in constant time by querying a data structure which has linear size and which can be built in \(O(n \log n) \) time. One tool we employ might be of independent interest: For any pair of points \((p, q)\) we can report in constant time the cluster pair \((A,B)\) representing \((p, q)\) in a well-separated pair decomposition of \(P \).