Grubišić, Luka; Truhar, Ninoslav; Miodragović, Suzana

The rotation of eigenspaces of perturbed matrix pairs II

Linear and multilinear algebra (2013), accepted for publications

Abstract. This paper studies the perturbation theory for spectral projections of Hermitian matrix pairs (H, M), where H is non-singular Hermitian matrix which can be factorized as $H = G J G^*$, $J = \text{diag}(\pm 1)$, and M is positive definite. The class of allowed perturbations is so restricted that the corresponding perturbed pair $(\wtd H, \wtd M) = (H + \delta H, M + \delta M)$ must have the form $\wtd H = \wtd G J \wtd G^*$, $J = \text{diag}(\pm 1)$ and $\wtd M$ is positive definite. The main contribution of the paper is a $\sin \Theta$ theorem which generalizes the main result from the first part of the paper to this more general setting. Our estimate, in its most general form, depends on a uniform norm bound on a set of all J-unitary matrices which diagonalize G^*G. The second main contribution is a new sharp uniform estimate of a norm of a all J-unitary matrix which diagonalize G^*G such that $H = G^*JG$ is a quasi-definite matrix. The case of a quasi-definite pair is therefore the case where our bounds are most competitive. We present numerical experiments to corroborate the theory.