Sabo, Kristian

Center-based l_1-clustering method

Abstract. In this paper, we consider the l_1-clustering problem for a data-points set $\mathcal{A} = \{a^i \in \mathbb{R}^n : i = 1, \ldots, m\}$ which should be partitioned into k disjoint nonempty subsets π_1, \ldots, π_k, $1 \leq k \leq m$. In that case, the objective function does not have to be either convex or differentiable and generally it may have many local or global minima. Therefore, it becomes a complex global optimization problem. A method for searching for a locally optimal solution is proposed in the paper, convergence of the corresponding iterative process is proved and a corresponding algorithm is also given. The method is illustrated by and compared with some other clustering methods, especially with the l_2-clustering method, which is also known in literature as a smooth k-means method, on a few typical situations, such as the presence of outliers among the data and clustering of incomplete data. Numerical experiments show in this case that the proposed l_1-clustering algorithm is faster and gives significantly better results than the l_2-clustering algorithm.