Tricyclic biregular graphs whose energy exceeds the number of vertices

Snježana Majstorović, Ivan Gutman, Antoaneta Klobučar
Tricyclic biregular graphs whose energy exceeds the number of vertices

Snježana Majstorović¹, Ivan Gutman² and Antoaneta Klobučar³

Abstract. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The energy $E(G)$ of the graph G is the sum of the absolute values of the eigenvalues of G. A graph is said to be (a,b)-biregular if its vertex degrees assume exactly two different values: a and b. A connected graph with n vertices and m edges is tricyclic if $m = n + 2$. The inequality $E(G) \geq n$ is studied for connected tricyclic biregular graphs, and conditions for its validity are established.

Key words: Energy (of graph), biregular graph, tricyclic graph

AMS subject classifications: 05C50, 05C90

Received January 29, 2009 Accepted
1 Introduction

In this paper we are concerned with simple graphs, that is graphs without multiple and directed edges, and without loops. Let \(G \) be such a graph, and let \(n \) and \(m \) be, respectively, the number of its vertices and edges. The eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) of the adjacency matrix of \(G \) are called the eigenvalues of \(G \) and form the spectrum of \(G \) [2]. A spectrum-based graph invariant that recently attracted much attention of mathematicians is the energy, defined as

\[E = E(G) = \sum_{i=1}^{n} |\lambda_i| . \]

Details of the theory of graph energy can be found in the reviews [3, 7], the recent papers [1, 4, 5, 6, 8, 10, 11, 14], and the references cited therein.

One of the problems in the theory of graph energy is the characterization of graphs whose energy exceeds the number of vertices, i.e., of graphs satisfying the inequality

\[E(G) \geq n . \]

The first results along these line were communicated in [9] and a systematic study was initiated in [4]. In particular, it was shown that (1) is satisfied by (i) regular graphs [9], (ii) graphs whose all eigenvalues are non-zero [4], and (iii) graphs having large number of edges, \(m \geq n^2/4 \) [4]. In view of these results, it was purposeful to examine the validity of (1) for biregular graphs (whose definition is given in the subsequent section), especially those possessing small number of edges. Acyclic, unicyclic, and bicyclic biregular graphs satisfying (1) were studied in [1, 5, 10]. In the present paper we extend these researches to the (much more complicated) case of tricyclic biregular graphs.

Graphs violating the condition (1), that is graphs whose energy is less than the number of vertices, are referred to as hypoenergetic graphs [8]. Some results on hypoenergetic graphs were recently obtained for trees [6, 11] as well as unicyclic and bicyclic graphs [14].

2 Preliminaries

All graphs considered in this paper are assumed to be connected.

Let \(a \) and \(b \) be integers, \(1 \leq a < b \). A graph \(G \) is said to be \((a, b)\)-biregular if its vertices assume exactly two different values: \(a \) and \(b \).
Let \(n \) be the number of vertices in a graph \(G \) and \(m \) be the number of its edges. The (connected) graph \(G \) is tricyclic if \(m = n + 2 \).

In this paper we are interested in (connected) biregular tricyclic graphs whose energy exceeds the number of vertices, i.e., which obey the inequality (1).

It is known [12, 13] that the energy of any graph satisfies the inequality

\[
E(G) \geq \sqrt{\frac{(M_2)^3}{M_4}}
\]

(2)

where \(M_2 \) and \(M_4 \) are the second and fourth spectral moments, respectively [2]. These moments can be easily calculated from simple structural details of the underlying graph:

\[
M_2 = 2m
\]

\[
M_4 = 2 \sum_{i=1}^{n} (d_i)^2 - 2m + 8q
\]

where \(q \) is the number of quadrangles, and \(d_i \) the degree of the \(i \)-th vertex, \(i = 1, \ldots, n \).

From (2) it is evident that whenever the condition (3)

\[
\sqrt{\frac{(M_2)^3}{M_4}} \geq n
\]

(3)

is satisfied, then also the inequality (1) will be satisfied. In what follows we establish necessary and sufficient conditions under which (3) holds for tricyclic biregular graphs. By this we establish sufficient (but not necessary) conditions for the validity of inequality (1).

We begin with the equalities

\[
n_a + n_b = n
\]

(4)

and

\[
a \cdot n_a + b \cdot n_b = 2m
\]

(5)

where \(n_a \) and \(n_b \) are, respectively, the numbers of vertices of \(G \) of degree \(a \) and \(b \). Bearing in mind that for any tricyclic graph \(m = n + 2 \), we obtain

\[
n_a = \frac{n(b - 2) - 4}{b - a} ; \quad n_b = \frac{n(2 - a) + 4}{b - a}
\]

Next, we have

\[
\sum_{i=1}^{n} (d_i)^2 = a^2 \cdot n_a + b^2 \cdot n_b = (4 + 2n)(b + a) - abn
\]
By this, we arrive at expressions for the second and fourth spectral moments:

\[M_2 = 2(n + 2) \]
\[M_4 = 2(2a + 2b - 1)(n + 2) - 2abn + 8q \]

by means of which inequality (3) becomes

\[\sqrt{\frac{4(n + 2)^3}{(2a + 2b - 1)(n + 2) - abn + 4q}} \geq n. \] (6)

There are 15 different classes of biregular tricyclic graphs. Each of these is illustrated in Fig. 1 and under each diagram all possible values for \(a, b, \) and \(q \) are given. Dotted lines and circles indicates that we can put on them arbitrary number of vertices. If \(a = 2 \) these are vertices of degree 2. If \(a = 1 \) we can attach entire \((1, b)\)-biregular trees.

Fig. 1 comes about here

3 Main results

Considering that \(a \in \{1, 2\} \), we divided all classes of tricyclic \((a, b)\)-biregular graphs into two groups and examined each group separately.

Theorem 1. Let \(G \) be a connected tricyclic \((1, b)\)-biregular graph with \(n \) vertices. Then, inequality (3) holds if and only if either \(b = 3 \) and \(q = 0, 1, 2 \), or \(b = 3 \), \(q = 3 \), and \(n \leq 24 \).

Consequently, (1) holds if either \(b = 3 \) and \(q = 0, 1, 2 \), or \(b = 3 \), \(q = 3 \), and \(n \leq 24 \).

Theorem 2. For every connected tricyclic \((1, b)\)-biregular graph with \(b \geq 4 \), inequality (3) is not satisfied.

Theorem 3. For every connected tricyclic \((2, 3)\)-biregular graph inequality (3) holds. Consequently, for every connected tricyclic \((2, 3)\)-biregular graph inequality (1) holds.

Theorem 4. Let \(G \) be a connected tricyclic \((2, 4)\)-biregular graph. Then inequality (3) holds if and only if \(q \neq 6 \). Consequently, (1) holds if \(q \neq 6 \).

Theorem 5. Let \(G \) be a connected tricyclic \((2, 6)\)-biregular graph. Then inequality (3) holds if and only if \(q \neq 3 \). Consequently, inequality (1) holds if \(q \neq 3 \).
4 Proofs

Proof of Theorem 1. We need to consider each class except XIII and \(q \in \{0, 1, 2, 3\} \).

Let \(a = 1 \). Then inequality (6) becomes

\[
\sqrt{\frac{4(n + 2)^3}{n(b + 1) + 2(1 + 2b + 2q)}} \geq n
\]

and from this we obtain

\[
b \leq \frac{3n^3 + n^2(22 - 4q) + 48n + 32}{n^2(n + 4)}.
\]

(7)

For \(q = 0, 1, 2, \) and 3 we have

\[
b \leq \frac{3n^3 + 22n^2 + 48n + 32}{n^2(n + 4)}
\]

(9)

\[
b \leq \frac{3n^3 + 18n^2 + 48n + 32}{n^2(n + 4)}
\]

(10)

\[
b \leq \frac{3n^3 + 14n^2 + 48n + 32}{n^2(n + 4)}
\]

(11)

\[
b \leq \frac{3n^3 + 10n^2 + 48n + 32}{n^2(n + 4)}
\]

(12)

respectively.

If we examine the right-hand sides of inequalities (9), (10), and (11) as functions in the variable \(x \in \mathbb{R} \) and calculate its first derivative, we conclude that for every \(x \geq 1 \) these monotonically decrease and their lower bound is 3. The only exception is the right-hand side of (12), because the function

\[
f(x) = \frac{3x^3 + 10x^2 + 48x + 32}{x^2(x + 4)}, \quad x \geq 1, \quad x \in \mathbb{R}
\]

has a stationary point \(x = 50.8797 \) at which it reaches its minimal value 2.98097.

For \(x \in (1, 50.8797) \), the function \(f \) monotonically decreases, for \(x \in (50.8797, +\infty) \) it monotonically increases, and its upper bound is 3. Since \(b \) is never smaller than 3, we are interested only in first interval. There, the function \(f \) has values greater or equal to 3 if \(x \in [1, 24] \).

We start with graphs for which \(b > 2 \). These pertain to the classes I, V, X, XI, and XV. With the condition \(b > 2 \) expressions on the right-hand sides of (9)–(12) must be at
least 3. This is for Eqs. (9)–(11) this is true for every $n \in \mathbb{N}$, whereas for (12) we have the condition $n \leq 24$. With these conditions for n, we conclude that one possible value for b is 3. Now, we will see that b cannot have any other value.

For example, if we take into consideration class I, then the smallest such graph with $q = 0$ has 14 vertices. With $n = 14$ the value of the expression on the right-hand side of (9) is equal to 3.75 and it decreases with increasing n. Therefore it must be $b = 3$.

If $q = 1$ the smallest graph has 16 vertices and from (10) we get $b \leq 3.45$ and again $b = 3$.

For $q = 2$ we have $n = 18$ and from (11) we obtain $b \leq 3.21$, implying $b = 3$.

If $q = 3$ we have $n = 20$ and from (12) we get $b \leq 3.02$. Here $n \leq 24$ so (12) holds for $n = 20, 22, 24$.

In a similar way, classes V, X, and XV are analyzed: For class V and $q = 0, 1, 2$ we have $n \geq 14, 10, 12$, respectively, and the inequalities (9), (10), and (11) are satisfied only for $b = 3$. For $q = 3$ we have $n \geq 16$ and we conclude that inequality (12) holds only for $b = 3$ and $n = 16, 18, 20, 22, 24$.

In the same way we conclude that for class X the corresponding inequalities hold only for $b = 3$. Specially, for $q = 3$ there is a limited number of graphs for which (12) holds. These are the ones with 12, 14, 16, 18, 20, 22, and 24 vertices.

For class XV we get $b = 3$ as well, and for $q = 3$ it must be $n \in \{22, 44\}$.

For class XI we know that $b = 3$, so the inequalities (9)–(11) are true for every n. For $q = 3$ the smallest graph has 6 vertices, and thus (12) is true for $n = 6, 8, 10, 12, 14, 16, 18, 20, 22$, and 24 vertices.

By taking into account the smallest possible number of vertices, we conclude that for graphs with $b > 3$ inequalities (9)–(12) are not satisfied.

Proof of Theorem 2.

The proof follows from Theorem 1 and from the information on the smallest number of vertices in such graphs.

For $b \geq 4, 5, 6$ (classes II, III, IV, VI, VII, VIII, IX, XII, and XIV), inequalities (9)–(12) are not satisfied. The smallest such graphs with different values for q are depicted in Fig. 2. The graphs (2), (3), and (4) are unique.

Fig. 2 comes about here
In Fig. 3 are shown examples of tricyclic (1, 3)-biregular graphs with \(q = 3 \) and minimum number of vertices. Graphs (1), (2), (3), (4), and (5) belong to classes I, V, X, XI, and XV, respectively. For these graphs inequality (3) holds because they have \(n \leq 24 \) vertices.

Proof of Theorem 3.

For \(a = 2 \) and \(b = 3 \) the respective graphs belong to classes I, V, X, XI, and XV. Then the inequality (6) becomes

\[
\sqrt[3]{\frac{4(n + 2)^3}{3n + 18 + 4q}} \geq n
\]

and we obtain the inequality

\[
n^3 + (6 - 4q)n^2 + 48n + 32 \geq 0 .
\]

Possible values for \(q \) are 0, 1, 2, 3, 4, and 5. With each of these values the upper inequality holds for arbitrary \(n \in \mathbb{N} \).

Proof of Theorem 4.

Graphs with \(a = 2 \) and \(b = 4 \) pertain to classes VII and XIII, and the number of quadrangles \(q \) can be 0, 1, 2, 3, and 6. From (6) we obtain

\[
\sqrt[3]{\frac{4(n + 2)^3}{3n + 22 + 4q}} \geq n
\]

and thus

\[
n^3 + (2 - 4q)n^2 + 48n + 32 \geq 0 .
\]

For \(q = 0, 1, 2, 3, \) and 6, the latter inequality becomes:

\[
n^3 + 2n^2 + 48n + 32 \geq 0 \quad (13)
\]

\[
n^3 - 2n^2 + 48n + 32 \geq 0 \quad (14)
\]

\[
n^3 - 6n^2 + 48n + 32 \geq 0 \quad (15)
\]

\[
n^3 - 10n^2 + 48n + 32 \geq 0 \quad (16)
\]

\[
n^3 - 22n^2 + 48n + 32 \geq 0 , \quad (17)
\]

respectively.
Inequalities (13)–(16) hold for arbitrary \(n \in \mathbb{N} \), while (17) holds only for \(n \leq 3 \) and \(n \geq 20 \). Bearing in mind that the tricyclic \((2,4)\)-biregular graph with \(q = 6 \) is unique and has 6 vertices, see Fig. 4, it is the only example of such graph for which inequality (3) is not fulfilled.

\[\text{Fig. 4 comes about here} \]

Proof of Theorem 5.

If \(a = 2 \) and \(b = 6 \), then the graph belongs to class XIV. From (6) we obtain

\[\sqrt[3]{\frac{4(n+2)^3}{3n+30+4q}} \geq n \]

and

\[n^3 - (6 + 4q)n^2 + 48n + 32 \geq 0 \]

For \(q = 0, 1, 2, 3 \) the latter inequality becomes

\[n^3 - 6n^2 + 48n + 32 \geq 0 \quad (18) \]

\[n^3 - 10n^2 + 48n + 32 \geq 0 \quad (19) \]

\[n^3 - 14n^2 + 48n + 32 \geq 0 \quad (20) \]

\[n^3 - 18n^2 + 48n + 32 \geq 0 \quad (21) \]

respectively.

Again, we have the exception (21) which holds only for \(n \leq 4 \) and \(n \geq 15 \). Since there exists a unique tricyclic \((2,6)\)-biregular graph and it has 10 vertices, see Fig. 5, it is the only example of such graph for which inequality (3) is not fulfilled. See Fig. 5.

\[\text{Fig. 5 comes about here} \]

References

Fig. 1. Classes of tricyclic graphs.
Fig. 2. Tricyclic (1, 4)-biregular graphs with minimum number of vertices. The graphs (1) belong to classes XII and VII, respectively. Graph (2) belongs to class VII, (3) and (4) belongs to class XII.
Fig. 3. Tricyclic $(1,3)$-biregular graphs with $q = 3$ and minimum number of vertices. Graphs (1), (2), (3), (4), and (5) belong to classes I, V, X, XI, and XV, respectively.
Fig. 4. The unique tricyclic (2, 4)-biregular graph possessing six quadrangles.

Fig. 5. The unique tricyclic (2, 6)-biregular graph with three quadrangles.