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Abstract

In this paper, we consider the problem of cluster separability in a minimum

distance partition based on the squared Euclidean distance. We give a char-

acterization of a well-separated partition and provide an operational criterion

that gives the possibility to measure the quality of cluster separability in a

partition. Especially, the analysis of cluster separability in a partition is

illustrated by implementation of the k-means algorithm.
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1. Introduction1

Clustering or grouping a set of data points into conceptually meaningful2

clusters is a well-studied problem in recent literature [2, 3, 9, 11, 19, 21, 23,3

28], and it has practical importance in a wide variety of applications such as4

computer vision, signal-image-video analysis, multimedia, networks, biology,5

medicine, geology, psychology, business, politics and other social sciences.6

Let I = {1, . . . ,m} and J = {1, . . . , k}. A partition of the set A = {ai ∈7

Rn : i ∈ I} into k disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that8

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj| ≥ 1, ∀r, s, j ∈ J, (1)

will be denoted by Π = {π1, . . . , πk} and the set of all such partitions by9

P(A, k). The elements π1, . . . , πk of the partition Π are called clusters in Rn.10

Any function d : Rn × Rn → R+, R+ := [0,+∞⟩, with the following11

property12

(∀(x, y) ∈ Rn × Rn) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y,

is called a distance-like function (see, e.g., [11, 28]). Let d : Rn × Rn → R+,13

be a distance-like function. Then for each cluster πj ∈ Π its center cj is14

defined by15

cj = c(πj) := argmin
x∈conv πj

∑
ai∈πj

d(x, ai), (2)

where conv πj denotes the convex hull of the cluster πj. It is said that the16

partition Π⋆ ∈ P(A, k) is a globally optimal k-partition if17

Π⋆ = argmin
Π∈P(A,k)

F(Π), F(Π) =
k∑

j=1

∑
ai∈πj

d(cj, ai), (3)

where F : P(A, k) → R+ is the objective function.18

Conversely, for a given set of different points z1, . . . , zk ∈ Rn, by apply-19

ing the minimum distance principle (see, e.g., [11, 25]), one can define the20

partition Π = {π(z1), . . . , π(zk)},21

π(zj) = {a ∈ A : d(zj, a) ≤ d(zs, a), ∀s = 1, . . . , k}, j ∈ J, (4)
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where a tie-breaker rule is needed in case of equality.22

Therefore, the problem of finding an optimal partition of the set A can23

be reduced to the following optimization problem:24

argmin
z1,...,zk∈Rn

F (z1, . . . , zk), F (z1, . . . , zk) =
m∑
i=1

min
1≤j≤k

d(zj, ai). (5)

Optimization problems (3) and (5) are equivalent [25]. Global optimization25

problem (5) can also be found in the literature as a center-based clustering26

problem [9, 13, 28]. If the squared Euclidean distance d : Rn × Rn → R+,27

d(x, y) = ∥x − y∥2 is used, the function F from (5) becomes a standard28

k−means objective function. The objective function F : Rkn → R+ defined29

by (5) can have a large number of independent variables (the number of30

clusters in the partition multiplied by the dimension of data points: k ·n), it31

does not have to be either convex or differentiable and usually it has several32

local minima. Hence, this becomes a complex global optimization problem.33

Furthermore, suppose that A ⊂ Rn = {(x1, . . . , xn) : xi ∈ R} is a given34

set. By using the squared Euclidean distance d : Rn × Rn → R+, d(x, y) =35

∥x − y∥2 = ⟨x − y, x − y⟩, where ⟨·, ·⟩ is the standard inner product, we36

analyze internal separability of some partition Π of the set of data points A,37

i.e., we consider the following problem:38

Let A ⊂ Rn be a set, d the squared Euclidean distance and39

z1, . . . , zk ∈ Rn a set of mutually different points (assignment40

points) that determine the partition Π = {π(z1), . . . , π(zk)}, where41

π(zj) are given by (4). The question is: How can the assignment42

points be changed such that the partition Π remains unchanged?43

Especially, an open ball B(δ) = {u ∈ Rn : ∥u∥ < δ} of radius δ > 0 is44

searched for, such that for an arbitrary set of assignment points {ζ1, . . . , ζk ∈45

Rn : ζj ∈ zj + B(δ)} the clusters π(ζj) and π(zj) are equal for all j ∈ J .46

The ball B(δ) is said to be a separability ball of the partition Π and the47

corresponding balls48

zj +B(δ) := {zj + u : u ∈ B(δ)}, j ∈ J,

will be called separability balls associated with assignment points z1, . . . , zk.49
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Note that in this way separability balls for all clusters have the same50

radius δ. The problem could also be formulated such that separability balls51

are searched for each cluster separately.52

There is a rich literature considering similar problems. Some of them will53

be discussed in detail in the next section, after the term cluster separability54

in a partition is defined and a characterization of a well-separated partition55

is given. The problem is first considered for the one-dimensional case, and56

then in detail for the n-dimensional case. In Section 3, cluster separability57

in a partition is illustrated by the implementation of the k-means algorithm.58

Finally, some conclusions are given in Section 4.59

2. Cluster separability in a partition60

Let 1 ≤ k ≤ m, I = {1, . . . ,m}, J = {1, . . . , k}, and let A = {ai ∈61

Rn : i ∈ I} be a given data set in Rn. By using the squared Euclidean62

distance, for a given set of assignment points z1, . . . , zk ∈ Rn, according to63

the minimum distance principle, there is a partition Π = {π(z1), . . . , π(zk)}64

made up of clusters65

π(zj) = {a ∈ A : ∥zj − a∥ ≤ ∥zs − a∥, s ∈ J}, j ∈ J. (6)

Note that each cluster π(zj) depends on the neighboring clusters, and66

notation π(zj) implies that cluster π(zj) is associated to the center zj. It is67

well-known (see, e.g., [11]) that it may happen that some of the clusters are68

empty sets or that some elements a ∈ A appear on the border of two or more69

clusters π(z1), . . . , π(zk) determined by assignment points z1, . . . , zk (see e.g.,70

[22]). In the latter case, such an element is associated only to one of the71

clusters whose boundary it lies on. Also, note that equation (6) expresses72

that fact that the cluster π(zj) is the intersection of the Voronoi cell (see,73

e.g. [1, 15]) {x ∈ Rn : ∥x− zj∥ ≤ ∥x− zs∥ ∀s ̸= j} with the dataset A.74

Example 1. [25] Let n = k = 2. All data points a ∈ A ⊂ R2 lying on the75

perpendicular bisector of the line segment z1z2,76

σ[z1, z2] = {a ∈ R2 : ⟨z2 − z1, a− 1
2
(z1 + z2)⟩ = 0},
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passing through the midpoint of that line segment are placed equidistant from77

the points z1 and z2. If a data point lies on the border between the two78

clusters, it can be associated either to the first or to the second cluster.79

First, we define the term well-separated partition of two clusters in Rn
80

(see Fig. 1), and after that the definition is generalized for partitions with81

1 ≤ k ≤ m clusters.82

Figure 1: The minimum distance principle

Definition 1. Let A ⊂ Rn be a data set and z1, z2 ∈ Rn two different83

assignment points. It is said that the partition Π = {π(z1), π(z2)} consisting84

of two clusters and defined according to the minimum distance principle (4)85

is a well-separated partition if π(z1), π(z2) ̸= ∅, and if for all a ∈ A the86

following holds87

⟨z2 − z1, a− p⟩ ≠ 0, p = 1
2
(z1 + z2). (7)

Geometrically, inequality (7) means that there is no data point a ∈ A88

which lies on the bisecting hyperplane. In addition, the following holds:89

{a ∈ A : ⟨z2 − z1, a− p⟩ < 0} = π(z1) (Fig. 1a), (8)

{a ∈ A : ⟨z2 − z1, a− p⟩ > 0} = π(z2) (Fig. 1b). (9)

Note that according to Definition 1, any a ∈ A belongs to the cluster π(z1)90

if the distance from a to the assignment point z1 is less than the distance to91

the assignment point z2. This will occur if ∠(z2−z1, a−p) is an obtuse angle92

(Fig. 1a). The point a ∈ A belongs to the cluster π(z2) if ∠(z2 − z1, a− p) is93

an acute angle (Fig. 1b). If for some ai0 ∈ A, ⟨z2 − z1, ai0 − p⟩ = 0 (ai0 lies94

on the border between clusters π(z1) and π(z2)), it is said that the partition95

Π = {π(z1), π(z2)} is not well separated.96

The following definition is a natural generalization of Definition 1.97
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Definition 2. Let A ⊂ Rn be a data set and z1, . . . , zk ∈ Rn mutually dif-98

ferent assignment points. It is said that the partition Π = {π(z1), . . . , π(zk)}99

consisting of k clusters and defined according to the minimum distance prin-100

ciple is a well-separated partition if π(zj) ̸= ∅, j ∈ J , and if for each pair101

1 ≤ j < s ≤ k and for all a ∈ π(zj) ∪ π(zs) the following holds102

⟨zj − zs, a− p(zj, zs)⟩ ̸= 0, where p(zj, zs) =
1
2
(zj + zs).

Geometrically, this inequality means that for each pair of indices 1 ≤103

j < s ≤ k no data point a ∈ π(zj) ∪ π(zs) lies on the bisecting hyperplane104

between zj and zs. Thereby105

{a ∈ A : ⟨zj − zs, a− p(zj, zs)⟩ < 0, ∀s ∈ J \ {j}} = π(zj), j ∈ J.

In [27], the term stable partition is defined as a partition unchanged by106

an iteration of k-means and its properties are given. Particularly, it has been107

shown that if Π = {π1, . . . , πk} is a stable partition; then for all a ∈ A there108

is a unique nearest assignment point. From this statement it consequently109

follows that every stable partition is necessarily a well-separated partition in110

accordance with Definition 1 and Definition 2. Obviously, the converse is not111

true, i.e., there exists a well-separated partition that is not stable.112

Similarly, in the literature (see, e.g., [4, 5, 8, 12, 14, 16, 24]), cluster113

stability in a partition is usually considered as a property of cluster elements,114

that small perturbations in the data do not significantly influence to which115

cluster the data belong. Thereby, stability of the partition is usually related116

to an optimal number of clusters therein. For example, [5] considers stability117

of a partition with respect to perturbations of the data points, and measures118

of stability of a cluster are defined as Loevinger’s measures. This property119

of a partition is used to determine a partition with the most appropriate120

number of clusters. A similar problem is considered in [17]: Does a small121

change of the sites, e.g., of their position or shape, yield a small change in the122

corresponding Voronoi cells ? In [8], the Jaccard coefficient, as a similarity123

measure between sets, is used as the measure of cluster stability, but it is124

also possible to use some other criteria, like the Rand index, the Hamming125

distance, the minimal matching distance, and the Variation of Information126

distance (see, e.g., [14]).127
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2.1. One-dimensional data points128

First, we analyze the separability of clusters in a partition for a one-129

dimensional data set, since in this case the analysis is simpler, and in addition,130

a better estimate for the radius of the separability ball can be obtained.131

Let A = {ai ∈ R : i ∈ I} be a data set and z1 < · · · < zk the assignment132

points. Assume that, based on the minimum distance principle, according to133

Definition 2, a well-separated partition Π = {π(z1), . . . , π(zk)} of the set A134

is defined by means of the points zj, j ∈ J , where135

π(zj) = {a ∈ A : |zj − a| ≤ |zs − a|, s ∈ J}, j ∈ J. (10)

We should find a separability ball B(δ) = {u ∈ R : |u| < δ}, such that136

π(ζj) = π(zj) for all j = 1, . . . , k and all ζj = zj + B(δ). The set zj + B(δ)137

is called a separability ball associated with the assignment points zj.138

Let us first give the following auxiliary lemma.139

Lemma 1. Let z1, z2 ∈ R, z1 < z2 and δ > 0. Then |p(z1, z2)− p(ζ1, ζ2)| < δ140

for all ζ1, ζ2 ∈ R, such that max{|z1 − ζ1|, |z2 − ζ2|} < δ.141

Proof. The function p : R2 → R defined by p(x1, x2) =
1
2
(x1 + x2) satisfies

|p(z1, z2)− p(ζ1, ζ2)| = 1
2
|(z1 − ζ1) + (z2 − ζ2)|

≤ max{|z1 − ζ1|, |z2 − ζ2|} < δ.

142

The following theorem shows how the radius of the separability ball in a143

well-separated partition can be determined.144

Theorem 1. Let A ⊂ R be a data set and z1 < · · · < zk a set of assignment145

points which, according to the minimum distance principle, determine a well-146

separated partition Π = {π(z1), . . . , π(zk)} of the set A, and let147

0 < δ = min
1≤j<s≤k

min
a∈π(zj)∪π(zs)

{
|p(zj, zs)− a|, 1

2
(zs − zj)

}
. (11)

Then B(δ) = {u ∈ R : |u| < δ} is a separability ball of the partition Π148

and separability balls associated with assignment points are mutually disjoint.149
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Particularly, if ζj ∈ zj + B(δ), j ∈ J , then the perturbed partition Π̂ =150

{π(ζ1), . . . , π(ζk)} defined according to the minimum distance principle is151

well-separated.152

Proof. Let ζj ∈ zj + B(δ), j ∈ J . Note first the following equivalences for153

a ∈ A154

a ∈ π(z1) ⇔ a < p(z1, z2), (12)

a ∈ π(zj) ⇔ p(zj−1, zj) < a < p(zj, zj+1), j = 2, . . . , k − 1, (13)

a ∈ π(zk) ⇔ a > p(zk−1, zk). (14)

Also note that according to (11) and Lemma 1, for j ∈ {1, . . . , k − 1} the

following holds

|p(zj, zj+1)− a| > δ, ∀ a ∈ A, (15)

|p(zj, zj+1)− p(ζj, ζj+1)| < δ, (16)

and consequently

p(zj, zj+1) + δ < a < p(zj, zj+1)− δ, (17)

p(zj, zj+1)− δ < p(ζj, ζj+1) < p(zj, zj+1) + δ. (18)

First, let us note that (11) implies ζi ̸= ζj, 1 ≤ i < j ≤ k, and let us show155

a ̸= p(ζj, ζj+1) =
1
2
(ζj + ζj+1), for all a ∈ A and j = 1, . . . , k − 1. (19)

Indeed, the existence of a point ai0 ∈ A, such that ai0 = p(ζj, ζj+1), for some156

index j ∈ J , would contradict (15) because of (16).157

Next, we show that158

π(zj) = π(ζj), j = 1, . . . , k. (20)

First, let us show that π(zj) ⊆ π(ζj), j = 1, . . . , k. Specially, if a ∈ π(z1), by159

using (17) and (18) we obtain160

a
(17)
< p(z1, z2)− δ

(18)
< p(ζ1, ζ2),
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i.e., a ∈ π(ζ1), where161

π(ζ1) = {a ∈ A : a < p(ζ1, ζ2)}.

Similarly, one can prove that if a ∈ π(zk), then a ∈ π(ζk), where162

π(ζk) = {a ∈ A : a > p(ζk−1, ζk)}.

Let j ∈ {2, . . . , k − 1}. For a ∈ π(zj), using (17) and (18) we obtain

a
(17)
> p(zj−1, zj) + δ

(18)
> p(ζj−1, ζj), and

a
(17)
< p(zj, zj+1)− δ

(18)
< p(ζj, ζj+1).

Hence, p(ζj−1, ζj) < a < p(ζj, ζj+1), i.e., a ∈ π(ζj), where163

π(ζj) = {a ∈ A : p(ζj−1, ζj) < a < p(ζj, ζj+1)}.

Therefore,164

π(zj) ⊆ π(ζj), j ∈ J. (21)

Let us show the opposite inclusion: π(ζj) ⊆ π(zj), j ∈ J . Let j ∈ J be165

arbitrary and suppose that a ∈ A belongs to π(ζj). If a ∈ π(zj), we are done.166

Suppose a ∈ π(zs) for some index s ∈ J \ {j}. Because of (21), a belongs167

to π(ζs). Therefore, a ∈ π(ζj) ∩ π(ζs). This means that |a − ζj| = |a − ζs|,168

i.e., a = 1
2
(ζj + ζs). Since A ⊆ R, numbers s and j are consecutive which169

contradicts the previously proven claim (19). Thus, claim (20) has also been170

proved.171

Let us now show that the partition Π̂ = {π(ζ1), . . . , π(ζk)} is a well-172

separated partition according to Definition 2. This is easy to see by using173

(19) and the implication174

∅ /∈ Π = {π(z1), . . . , π(zk)} ⇒ ∅ /∈ Π̂ = {π(ζ1), . . . , π(ζk)},

which follows from (21).175

Finally, according to Definition 2, B(δ) is a separability ball of the par-176

tition Π, where in accordance with (11), separability balls zj + B(δ), j ∈ J ,177

associated with assignment points z1, . . . , zk, are mutually disjoint.178
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Remark 1. Let A ⊂ R be a set of data points and z1 < · · · < zk a set of179

assignment points. If there exists 1 ≤ j0 < s0 ≤ k and ai0 ∈ π(zj0) ∪ π(zs0),180

such that ai0 = 1
2
(zj0 + zs0), then a separability ball B(δ), δ > 0, does181

not exist, and the partition Π = {π(z1), . . . , π(zk)} is not a well-separated182

partition of the set A.183

2.2. n-Dimensional data points184

Let a set of data points A = {ai ∈ Rn : i ∈ I} be given. First, we185

consider a special case k = 2. Assume that for two different assignment186

points z1, z2 ∈ Rn, based upon the minimum distance principle in accordance187

with Definition 1, a well-separated partition Π = {π(z1), π(z2)} of the set A188

is defined, where p = 1
2
(z1 + z2).189

Proposition 1. Let A ⊂ Rn be a set of data points and z1, z2 ∈ Rn two dif-190

ferent assignment points, which according to the minimum distance principle191

define a well-separated partition Π = {π(z1), π(z2)} of the set A, and let192

0 < δ = min
a∈A

δa, δa = −µ
(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa|, (22)

where193

ϕa := ⟨z2 − z1, a− p⟩, µ(a)
1 := ∥a− z1∥, µ(a)

2 := ∥a− z2∥, p := 1
2
(z1 + z2).

Then the ball B(δ) = {u ∈ Rn : ∥u∥ < δ} is a separability ball of the partition194

Π and separability balls z1 + B(δ), z2 + B(δ) associated with assignment195

points z1, z2, are disjoint. In particular, if ζj ∈ zj + B(δ), j = 1, 2, then196

the perturbed partition Π̂ = {π(ζ1), π(ζ2)}, defined according to the minimum197

distance principle, is well-separated.198

Proof. For u1, u2 ∈ Rn, denote ζj = zj+uj, j = 1, 2. Note that in accordance199

with Definition 1, π(z1), π(z2) ̸= ∅ and200

a ∈ π(z1) ⇔ ϕa < 0 and a ∈ π(z2) ⇔ ϕa > 0.

First, let us show that if a ∈ π(z1) (a ∈ π(z2)), then a ∈ π(ζ1) (a ∈ π(ζ2)),201

for all ζ1 ∈ z1 +B(δa) (ζ2 ∈ z2 +B(δa)).202
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z1

z2
p

ai

aj

z1 +B(δ) z2 +B(δ)

Figure 2: Separability balls associated with assignment points

a) If a ∈ π(z1), by the Cauchy-Schwartz-Buniakovsky (CSB) inequality,203

for all uj ∈ B(δa), j = 1, 2, and ζj = zj + uj ∈ zj +B(δa), j = 1, 2, the204

following is obtained:205

⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ = ⟨z2 − z1 + u2 − u1, a− p− 1

2
(u1 + u2)⟩

= −|ϕa|+ ⟨u1, z1 − a⟩+ ⟨u2, a− z2⟩ − 1
2
∥u2∥2 + 1

2
∥u1∥2

≤ −|ϕa|+ ∥u1∥∥z1 − a∥+ ∥u2∥∥z2 − a∥ − 1
2
∥u2∥2 + 1

2
∥u1∥2

= −|ϕa|+ µ
(a)
1 ∥u1∥+ µ

(a)
2 ∥u2∥ − 1

2
∥u2∥2 + 1

2
∥u1∥2

≤ −|ϕa|+ µ
(a)
1 ∥u1∥+ µ

(a)
2 ∥u2∥+ 1

2
∥u1∥2

< −|ϕa|+ µ
(a)
1 δa + µ

(a)
2 δa +

1
2
δ2a

(22)
= 0.

Finally,206

⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ < 0, (23)

for all ζj ∈ zj +B(δa), j = 1, 2. So, if a ∈ π(z1), then a ∈ π(ζ1), for all207

ζ1 ∈ z1 +B(δa).208

b) If a ∈ π(z2), by the CSB inequality, for all uj ∈ B(δa), j = 1, 2, and209
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for ζj = zj + uj ∈ zj +B(δa), j = 1, 2, the following is obtained210

⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ = ⟨z2 − z1 + u2 − u1, a− p− 1

2
(u1 + u2)⟩

= |ϕa| − ⟨u1, a− z1⟩ − ⟨u2, a− z2⟩ − 1
2
∥u2∥2 + 1

2
∥u1∥2

≥ |ϕa| − ∥u1∥∥z1 − a∥ − ∥u2∥∥z2 − a∥ − 1
2
∥u2∥2 + 1

2
∥u1∥2

= |ϕa| − µ
(a)
1 ∥u1∥ − µ

(a)
2 ∥u2∥ − 1

2
∥u2∥2 + 1

2
∥u1∥2

≥ |ϕa| − µ
(a)
1 ∥u1∥ − µ

(a)
2 ∥u2∥ − 1

2
∥u2∥2

> |ϕa| − µ
(a)
1 δa − µ

(a)
2 δa − 1

2
δ2a

(22)
= 0.

Finally,211

⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ > 0, (24)

for ζj ∈ zj + B(δa), j = 1, 2. So, if a ∈ π(z2), then a ∈ π(ζ2), for all212

ζ2 ∈ z2 +B(δa).213

Since214 ∩
a∈A

B(δa) =
∩
a∈A

{u ∈ Rn : ∥u∥ < δa} = {u ∈ Rn : ∥u∥ < δ} = B(δ),

where δ = min
a∈A

δa, for all ζj ∈ zj +B(δ), j = 1, 2, we have215

⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ ̸= 0, ∀a ∈ A. (25)

Let us show that216

π(zj) = π(ζj), j = 1, 2. (26)

Let j ∈ {1, 2} and a ∈ π(zj). Because of B(δ) ⊆ B(δa), using (23) (resp.217

(24)), it follows that a ∈ π(ζj), and therefore218

π(zj) ⊆ π(ζj), j = 1, 2. (27)

Let us show the opposite inclusion: π(ζj) ⊆ π(zj), j = 1, 2. Suppose219

a ∈ π(ζ1). If a ∈ π(z1), we are done. Suppose a ∈ π(z2). Because of220

(27), a belongs to π(ζ2), and therefore, a ∈ π(ζ1) ∩ π(ζ2). This means that221

∥a− ζ1∥ = ∥a− ζ2∥, i.e., ⟨ζ2 − ζ1, a− 1
2
(ζ1 + ζ2)⟩ = 0, which contradicts (25).222
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Analogously, one proves that if a ∈ π(ζ2) then a ∈ π(z2). Thus, claim (26)223

has also been proved.224

In order to prove that the separability balls associated with the assign-225

ment points are disjoint, it suffices to show that δ < 1
2
∥z2 − z1∥. Since226

Π is a well-separated partition, ϕa ̸= 0, and since z1 ̸= z2, it follows that227

µ
(a)
1 + µ

(a)
2 ̸= 0. Therefore,228

−µ
(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa| < |ϕa|

µ
(a)
1 +µ

(a)
2

. (28)

Namely, by multiplying the inequality−µ
(a)
1 −µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa| >229

0 by
(
µ
(a)
1 + µ

(a)
2

)
> 0 it follows230

−
(
µ
(a)
1 + µ

(a)
2

)2
+
(
µ
(a)
1 + µ

(a)
2

)√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa|

which is equivalent to231

2(µ
(a)
1 + µ

(a)
2 )2 < (µ

(a)
1 + µ

(a)
2 )2 + (µ

(a)
1 + µ

(a)
2 )

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa|,

i.e.,232

2(µ
(a)
1 +µ

(a)
2 )2

(µ
(a)
1 +µ

(a)
2 )2+(µ

(a)
1 +µ

(a)
2 )

√(
µ
(a)
1 +µ

(a)
2

)2
+2|ϕa|

< 1 ⇒
−µ

(a)
1 −µ

(a)
2 +

√(
µ
(a)
1 +µ

(a)
2

)2
+2|ϕa|

|ϕa|
µ
(a)
1 +µ

(a)
2

< 1,

from which immediately follows (28).233

By the CSB-inequality we obtain

|ϕa| = |⟨z2 − z1, a− p⟩| ≤ ∥z2 − z1∥∥a− p∥

< 1
2
∥z2 − z1∥(∥z1 − a∥+ ∥z2 − a∥) = 1

2
∥z2 − z1∥(µ(a)

1 + µ
(a)
2 ),

i.e.,234

|ϕa|
µ
(a)
1 +µ

(a)
2

< 1
2
∥z2 − z1∥, ∀a ∈ A.

By using (28) we get235

−µ
(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa| ≤ |ϕa|

µ
(a)
1 +µ

(a)
2

< 1
2
∥z2 − z1∥, ∀a ∈ A,
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i.e.236

δ = min
a∈A

(
−µ

(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa|

)
< 1

2
∥z2 − z1∥.

Let us also show that Π̂ = {π(ζ1), π(ζ2)} is a well-separated partition accord-237

ing to Definition 1. This follows from (25) and the following implication238

∅ /∈ Π = {π(z1), π(z2)} ⇒ ∅ /∈ Π̂ = {π(ζ1), π(ζ2)},

which follows from (27).239

240

Remark 2. As mentioned at the beginning of Section 2.1, the estimate of

the radius of the separability ball in the one-dimensional case (11) can be

obtained much more precisely than in the n-dimensional case (22). Namely,

by using (28) and the CSB-inequality we get

δa = −µ
(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa| < |ϕa|

µ
(a)
1 +µ

(a)
2

= |⟨z2−z1,a−p⟩|
∥z1−a∥+∥z2−a∥

≤ ∥z2−z1∥∥a−p∥
∥z1−a∥+∥z2−a∥ ≤ (∥z2−a∥+∥z1−a∥)∥a−p∥

∥z1−a∥+∥z2−a∥ = ∥a− p∥.

Similarly,

δa = −µ
(a)
1 − µ

(a)
2 +

√(
µ
(a)
1 + µ

(a)
2

)2
+ 2|ϕa| < |ϕa|

µ
(a)
1 +µ

(a)
2

= |⟨z2−z1,a−p⟩|
∥z1−a∥+∥z2−a∥

≤ 1
2
∥z2−z1∥(∥a−z1∥+∥a−z2∥)

∥z1−a∥+∥z2−a∥ = 1
2
∥z2 − z1∥.

Hence241

min
a∈A

δa ≤ min
(
min
a

∥a− p∥, 1
2
∥z1 − z2∥

)
,

and particularly in the one-dimensional case242

min
a∈A

δa ≤ min

(
min
a∈A

|p(z1, z2)− a|, 1
2
(z2 − z1)

)
.

The following theorem generalizes Proposition 1 for m > k ≥ 2 different243

assignment points.244
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Theorem 2. Let A ⊂ Rn be a data set, z1, . . . , zk ∈ Rn a set of mutually245

different assignment points which, according to the minimum distance prin-246

ciple, determine a well-separated partition Π = {π(z1), . . . , π(zk)} of the set247

A, and let248

0 < δ = min
j,s∈{1,...,k}, j ̸=s

{
min

a∈π(zj)∪π(zs)
δjsa

}
,

where249

δjsa = −µ
(a)
j − µ(a)

s +

√(
µ
(a)
j + µ

(a)
s

)2
+ 2|ϕa|, (29)

and250

ϕa := ⟨zs − zj, a− p⟩, µ(a)
j := ∥a− zj∥, µ(a)

s := ∥a− zs∥, p := 1
2
(zj + zs).

Then B(δ) = {u ∈ R : |u| < δ} is a separability ball of the partition Π and251

separability balls zj + B(δ) associated with assignment points zj, j ∈ J , are252

mutually disjoint. In particular, if ζj ∈ zj + B(δ), j ∈ J , then the perturbed253

partition Π̂ = {π(ζ1), . . . , π(ζk)} defined according to the minimum distance254

principle is well-separated.255

Proof. For each two distinct indices j, s ∈ J , let Ajs := {a ∈ A : a ∈256

π(zj) ∪ π(zs)}. Consider the partition Πjs := {π(zj), π(zs)} of the set Ajs257

which consists of two clusters. Since Π is well–separated with respect to the258

data set A, it follows that Πjs is well–separated with respect to the data set259

Ajs. Let260

δjs := min
a∈π(zj)∪π(zs)

δjsa ,

where δjsa is defined by (29). From Proposition 1 it follows that δjs > 0261

and the ball B(δjs) is a separability ball of the partition Πjs. In addition,262

separability balls associated with zj and zs are disjoint. In particular, for all263

ζj ∈ zj +B(δjs) and all ζs ∈ zs +B(δjs) we have264

{a ∈ Ajs : ∥a− zj∥ < ∥a− zs∥} = {a ∈ Ajs : ∥a− ζj∥ < ∥a− ζs∥}. (30)

Note that in accordance with Proposition 1, the perturbed partition Π̂js =265

{π(ζj), π(ζs)} of the set Ajs is well–separated.266

15



Let267

0 < δ = min{δjs : j, s ∈ J, j ̸= s} = min
j,s∈J, j ̸=s

{
min

a∈π(zj)∪π(zs)
δjsa

}
.

Choose an arbitrary j ∈ J and a ∈ π(zj). One has to show that a ∈ π(ζj)268

for arbitrary ζj ∈ zj +B(δ).269

We want to show that a ∈ π(ζj). Indeed, let s ̸= j be an arbitrary270

index. By the definition of Ajs and since a ∈ π(zj), we have a ∈ Ajs and271

∥a−zj∥ ≤ ∥a−zs∥. But the partition Π is well-separated, hence the equality272

in the previous inequality cannot hold, i.e., ∥a − zj∥ < ∥a − zs∥. By (30),273

this implies that ∥a− ζj∥ < ∥a− ζs∥. Since s ̸= j was an arbitrary index, we274

have275

a ∈ {x ∈ A : ∥x− ζj∥ < ∥x− ζs∥ ∀s ̸= j} = π(ζj).

Thus π(zj) ⊆ π(ζj). This is true for all indices j ∈ J since j was arbitrary.276

It remains to show that π(ζj) ⊆ π(zj) for all j ∈ J . Inclusions π(zj) ⊆277

π(ζj) for all j ∈ J imply the inclusion A =
∪k

j=1 π(zj) ⊆
∪k

j=1 π(ζj). There-278

fore, given an index j ∈ J and a data point a ∈ π(ζj), since we have a ∈ A,279

it follows that a ∈ π(zs) for some index s. If s = j, then a ∈ π(zj), proving280

the statement. Otherwise, a ∈ π(zs) and by the inclusion π(zs) ⊆ π(ζs) it281

follows that a ∈ π(ζs). Thus a ∈ π(ζj) ∩ π(ζs), where j ̸= s. This implies282

that ∥a− ζj∥ = ∥a− ζs∥, contradicting the previously proven statement that283

the perturbed partition Π̂js is well-separated.284

Remark 3. The previous analysis was conducted for the case of spherical285

clustering by using the squared Euclidean distance. Similarly, the clustering286

problem could be considered by using the Mahalanobis distance-like function287

[6], but using other distance-like functions that are not generated by some288

scalar product would require entirely different techniques. Let us mention289

that some of these techniques may be in the spirit of [17, 18].290

3. A possible application291

Knowing the separability ball for some partition of the set A gives an292

insight into the internal structure of the partition and the measure of separa-293

bility and compactness of clusters therein. Theoretical properties of cluster294
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separability open up more possibilities for application in cluster analysis.295

One possibility may be to try to create a new validity index for searching for296

a partition with the most appropriate number of clusters. Let us mention297

that a candidate for such an index has already been developed. Roughly298

speaking, it is a slight variation of the separability radius, multiplied by a299

certain scaling factor which takes into account the objective function and the300

number of data points in slightly modified clusters. Experiments show that301

this index has promising potential.302

Furthermore, it was shown that the radius of the separability ball is in303

correlation with the objective function value while applying the k−means304

algorithm. In order to illustrate that, in this section we consider the behavior305

of the radius of the cluster separability ball while applying the k−means306

algorithm.307

Let A ⊂ Rn be the set which should be partitioned into 1 ≤ k ≤ m308

nonempty disjoint clusters by using the squared Euclidean distance. The309

k-means algorithm (see, e.g., [11, 28, 29]) is the most popular algorithm for310

searching for a locally optimal partition and it can be described by two steps311

which are iteratively repeated.312

Step 1 For each set of mutually different assignment points z1, . . . , zk ∈ Rn,313

the set A should be divided into k disjoint clusters π1, . . . , πk by using314

the minimum distance principle315

πj = {a ∈ A : ∥zj − a∥ ≤ ∥zs − a∥, ∀s ∈ J}, j ∈ J. (31)

Step 2 Given a partition Π = {π1, . . . , πk} of the set A, one can define the316

corresponding centroids by317

cj = argmin
x∈conv πj

∑
ai∈πj

∥x− ai∥2 = 1
|πj |

∑
ai∈πj

ai, j = 1, . . . , k. (32)

By using a good initial approximation, this method can provide an ac-318

ceptable solution [26, 30]. In each step of the k-means algorithm, the value319

of the objective function does not increase. One of the problems with the320

k−means algorithm is that empty clusters can be obtained if no points are al-321

located to a cluster during the assignment step. In such situation re-running322

the algorithm with a new initial approximation is usually recommended.323
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In case of the squared Euclidean distance the dual objective function324

G(Π) =
k∑

j=1

|πj| ∥c− cj∥2, (33)

can also be considered [7, 25], where cj are centroids of clusters and c is the325

centroid of the whole set of data points A, for which c =
∑k

j=1
|πj |
m
cj, holds.326

One can show that [7, 25]327

argmin
Π∈P(A,k)

F(Π) = argmax
Π∈P(A,k)

G(Π),

and that in each step of the k-means algorithm the value of the dual objective328

function does not decrease.329

Since on the interval [0,∞⟩ the function fα(x) = −x +
√
α + x2, α > 0,330

decreases, fα(x) ≤ fα(0) =
√
α, and lim

x→+∞
fα(x) = 0, the radius δ of the331

separability ball can be estimated as332

δ = min
j,s∈{1,...,k}

j ̸=s

{
min

a∈π(zj)∪π(zs)
δjsa

}
≤ min

j,s∈{1,...,k}
j ̸=s

√
2|⟨cs − cj, a− p⟩|,

where333

δjsa = −µ
(a)
j − µ(a)

s +

√(
µ
(a)
j + µ

(a)
s

)2
+ 2|ϕa|,

and334

ϕa = ⟨zs − zj, a− p⟩, µ(a)
j = ∥a− zj∥, µ(a)

s = ∥a− zs∥, p = 1
2
(zj + zs).

Note that for k = 2 there holds335

δ ≤
√
2∥c2 − c1∥min

a∈A
κa, κa =

|⟨c2−c1,a−p⟩|
∥c2−c1∥, (34)

and it can be associated with the dual objective function G (see Example 2).336

In the following simple example, we consider partitioning of the set A ⊂337

R2 into two clusters π1, π2, and analyze the behavior of separability balls338

during the k-means algorithm.339
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(a) Iteration 1
δ = 10−6 (d = 10.0)

(b) Iteration 2
δ = .02 (d = 15.2)

(c) Iteration 3
δ = .72 (d = 23.2)

(d) Iteration 4
δ = .85 (d = 25.0)

Figure 3: The movement of the distance d = ∥c2 − c1∥2 between the centroids and

the radius of the separability ball δ in each iteration of the k-means algorithm

Example 2. Two points C1 = (4, 4), C2 = (8, 7) were chosen in the square340

[0, 10]2, and in the neighborhood of each point 50 random points were gener-341

ated by using Gaussian distributions. In this way, we obtained the original342

partition Π = {π1, π2} and the set of data points A = π1 ∪ π2 with m = 100343

data points.344

The k-means algorithm starts with two different assignment points z1 =

(2, 3), z2 = (5, 4), and by using the minimum distance principle the clus-

ters π1(c1), π2(c2) with centroids c1, c2 are obtained. In this case, the dual

objective function is

G(π1, π2) = |π1|∥c− c1∥2 + |π2|∥c− c2∥2

= |π1|
∥∥∥ |π2|

m
c2 − |π2|

m
c1

∥∥∥2 + |π2|
∥∥∥ |π1|

m
c1 − |π1|

m
c2

∥∥∥2
= |π1||π2|

m
∥c2 − c1∥2 = 1

2
H(|π1|, |π2|)∥c2 − c1∥2, (35)

where m = |π1| + |π2| and c = |π1|
m
c1 +

|π2|
m
c2, is the centroid of the whole345

set A (see [11]). H(|π1|, |π2|) is the harmonic mean of the numbers of data346

points in clusters π1 and π2. Using (35) in (34), we obtain347

δ ≤
√
2
√
2 4

√
G(π1,π2)

H(|π1|,|π2|) min
a∈A

κa. (36)

Note that formula (36) describes the connection between the radius of348

the separability ball δ and the value of the dual objective function. As can349
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be seen in Fig. 3, the distance d = ∥c2 − c1∥2 between the centroids, and the350

radius of the separability ball δ at the end of the k-means algorithm increase.351

Namely, then the value of the dual objective function increases, too.352

4. Conclusions353

It can be expected that the assessment of the separability ball size of354

the partition can be a very useful tool in cluster analysis. Knowing the355

separability ball for some partition of the set A gives us an insight into356

the internal structure of the partition and the measure of separability and357

compactness of clusters therein (how well separated and how homogeneous358

the clusters are).359

Further research could be directed toward to the applications of cluster360

separability. For example, construction of a new validity index for searching361

for a partition with the most appropriate number of clusters can be consid-362

ered. For more details about this, see the beginning of Section 3.363
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