Finite p-groups whose absolute central automorphisms are inner^{*}

Sandeep Singh^{1,†}and Deepak Gumber¹

¹ School of Mathematics and Computer Applications, Thapar University, Patiala 147004, India

Received February 19, 2015; accepted May 13, 2015

Abstract. Nasrabadi and Farimani [Indag. Math. (N. S.) 26(2015), 137–141] have given necessary and sufficient conditions for a finite autonilpotent *p*-group of class 2 such that all absolute central automorphisms are inner. We generalize this result of Nasrabadi and Farimani to arbitrary finite *p*-groups.

AMS subject classifications: 20F28, 20F18

 ${\bf Key}$ words: Absolute central automorphism, nilpotent group

1. Introduction

Let G be a finitely generated group and let G' and Z(G) denote the commutator subgroup and the center of G, respectively. Let $\operatorname{Aut}(G)$ denote the full automorphism group and $\operatorname{Inn}(G)$ the inner automorphism group of G. For $g \in G$ and $\alpha \in \operatorname{Aut}(G)$, the element $[g, \alpha] = g^{-1}\alpha(g)$ is called the autocommutator of g and α . Inductively, define

$$[g, \alpha_1, \alpha_2, \dots, \alpha_n] = [[g, \alpha_1, \alpha_2, \dots, \alpha_{n-1}], \alpha_n]$$

where $\alpha_i \in \operatorname{Aut}(G)$. Hegarty [4] defined the absolute center L(G) of G as

$$L(G) = \{ g \in G \mid [g, \alpha] = 1, \text{ for all } \alpha \in \operatorname{Aut}(G) \}.$$

Let $L_1(G) = L(G)$, and for $n \ge 2$, define $L_n(G)$ inductively as

 $L_n(G) = \{g \in G \mid [g, \alpha_1, \alpha_2, \dots, \alpha_n] = 1 \text{ for all } \alpha_1, \alpha_2, \dots, \alpha_n \in \operatorname{Aut}(G) \}.$

The autocommutator subgroup G^* of G is defined as

$$G^* = \langle [g, \alpha] | g \in G, \alpha \in \operatorname{Aut}(G) \rangle.$$

It is easy to see that $L_n(G) \leq Z_n(G)$, the *n*th term of the upper central series of G, for all $n \geq 1$ and $G' \leq G^*$. An automorphism α of G is called an absolute central automorphism if it induces the identity automorphism on G/L(G); or equivalently, $g^{-1}\alpha(g) \in L(G)$ for all $g \in G$. Let $\operatorname{Aut}_l(G)$ denote the group of all absolute central

http://www.mathos.hr/mc

©2015 Department of Mathematics, University of Osijek

^{*}Supported partially by CSIR and partially by NBHM, DAE

[†]Corresponding author. *Email addresses:* sandeepinsan860gmail.com (S. Singh), dkgumber@yahoo.com (D. Gumber)

automorphisms of G. A group G is called autonilpotent of class at most n if $L_n(G) = G$ for some natural number n. Observe that if G is autonilpotent of class 2, then $G^* \leq L(G)$. Nasrabadi and Farimani [5, Main Theorem] proved that if G is a finite autonilpotent p-group of class 2, then $\operatorname{Aut}_l(G) = \operatorname{Inn}(G)$ if and only if L(G) = Z(G) and Z(G) is cyclic. In Propositions 1 and 2, we give necessary and sufficient conditions for a finitely generated group G with $G' \leq L(G)$ such that $\operatorname{Aut}_l(G) \simeq \operatorname{Inn}(G)$ and, as a consequence, obtain the necessary and sufficient conditions on a finite p-group G such that $\operatorname{Aut}_l(G) = \operatorname{Inn}(G)$.

By $\operatorname{Hom}(G, A)$ we denote the group of all homomorphisms of G into an abelian group A. The torsion rank and torsion-free rank of G are denoted as d(G) and $\rho(G)$, respectively. By $\exp(G)$ we denote the exponent of the torsion part of G, and by $\pi(G)$ the set of primes dividing the order of the torsion part of G. By X^n we denote the direct product of *n*-copies of a group X and by C_p a cyclic group of order p. The Sylow *p*-subgroup of the torsion part of G is denoted as G_p . All other unexplained notations, if any, are standard. The following well known results will be used very frequently without further reference.

Lemma 1. Let U, V and W be abelian groups. Then

- (i) $\operatorname{Hom}(U \times V, W) \simeq \operatorname{Hom}(U, W) \times \operatorname{Hom}(V, W),$
- (*ii*) Hom $(U, V \times W) \simeq$ Hom $(U, V) \times$ Hom(U, W),
- (iii) $\operatorname{Hom}(C_m, C_n) \simeq C_d$, where d is the g.c.d. of m and n,
- (iv) if U is torsion-free of rank m, then $\operatorname{Hom}(U, V) \simeq V^m$, and
- (v) if U is torsion and V is torsion-free, then Hom(U, V) = 1.

2. Main results

Let G be a finitely generated non-abelian group such that $G' \leq L(G)$. Suppose that $\pi(G/Z(G)) = \{p_1, p_2, \ldots, p_d, p'_1, p'_2, \ldots, p'_{d'}\}, \pi(G/L(G)) = \{p_1, p_2, \ldots, p_e\}$ and $\pi(L(G)) = \{q_1, q_2, \ldots, q_f\}$. Let X, Y, Z be respective torsion parts and a, b, c respective torsion-free ranks of G/Z(G), G/L(G) and L(G). Let $X_{p_i} \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}, X_{p'_i} \simeq \prod_{j=1}^{l'_i} C_{p_i^{\alpha'_{ij}}}, Y_{p_i} \simeq \prod_{j=1}^{m_i} C_{p_i^{\beta_{ij}}}$ and $Z_{q_i} \simeq \prod_{j=1}^{n_i} C_{q_i^{\gamma_{ij}}},$ where for each $i, l_i, l'_i, m_i, n_i, \alpha_{ij} \ge \alpha_{i(j+1)}, \alpha'_{ij} \ge \alpha'_{i(j+1)}, \beta_{ij} \ge \beta_{i(j+1)}$ and $\gamma_{ij} \ge \gamma_{i(j+1)}$ are positive integers denoting the Sylow subgroups of X, Y and Z, respectively. Then

$$\begin{aligned} G/Z(G) &\simeq X \times \mathbb{Z}^a \simeq \prod_{i=1}^d X_{p_i} \times \prod_{i=1}^{d'} X_{p'_i} \times \mathbb{Z}^a \simeq \prod_{i=1}^d \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}} \times \prod_{i=1}^{d'} \prod_{j=1}^{l'_i} C_{{p'_i}^{\alpha'_{ij}}} \times \mathbb{Z}^a, \\ G/L(G) &\simeq Y \times \mathbb{Z}^b \simeq \prod_{i=1}^e Y_{p_i} \times \mathbb{Z}^b \simeq \prod_{i=1}^e \prod_{j=1}^{m_i} C_{p_i^{\beta_{ij}}} \times \mathbb{Z}^b \end{aligned}$$

and

$$L(G) \simeq Z \times \mathbb{Z}^c \simeq \prod_{i=1}^f Z_{q_i} \times \mathbb{Z}^c \simeq \prod_{i=1}^f \prod_{j=1}^{n_i} C_{q_i^{\gamma_{ij}}} \times \mathbb{Z}^c$$

Since G/Z(G) is a quotient group of G/L(G), it follows from [2, Section 25] that $d(X) + a \leq d(Y) + b$, $a \leq b$, $d \leq e$, $l_i \leq m_i$ and $\alpha_{ij} \leq \beta_{ij}$ for all $i, 1 \leq i \leq d$ and for all $j, 1 \leq j \leq l_i$.

The following lemma is a little but useful modification of arguments of Alperin [1, Lemma 3] and Fournelle [3, Section 2].

Lemma 2. Let G be any group and Y a central subgroup of G contained in a normal subgroup X of G. Then the group of all automorphisms of G that induce the identity on both X and G/Y is isomorphic to Hom(G/X, Y).

Proposition 1. Let G be a finitely generated non-abelian torsion or torsion-free group such that $G' \leq L(G)$. Then $\operatorname{Aut}_l(G) \simeq \operatorname{Inn}(G)$ if and only if one of the following conditions holds:

- (i) G is torsion-free, L(G) is infinite cyclic and $\rho(G/L(G)) = \rho(G/Z(G))$.
- (ii) G is finite, $L(G) \simeq C_{\prod_{i=1}^{d} p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^{f} Z_{q_i}, q_i \neq p_i \text{ for } d+1 \leq i \leq f,$ and for $1 \leq i \leq d$, either $(G/L(G))_{p_i} = (G/Z(G))_{p_i}$ or $d((G/L(G))_{p_i}) = d((G/Z(G))_{p_i}), \alpha_{ij} = \gamma_{i1} \text{ for } 1 \leq j \leq r_i \text{ and } \alpha_{ij} = \beta_{ij} \text{ for } r_i + 1 \leq j \leq l_i,$ where r_i is the largest integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$.

Proof. Since L(G) is a central subgroup fixed by all automorphisms, therefore $\operatorname{Aut}_l(G) \simeq \operatorname{Hom}(G/L(G), L(G))$ by Lemma 2. It is not very hard to see that if any of the two conditions is satisfied, then $\operatorname{Aut}_l(G) \simeq \operatorname{Inn}(G)$.

Conversely, suppose that $\operatorname{Aut}_l(G) \simeq \operatorname{Inn}(G)$. Then $\operatorname{Hom}(G/L(G), L(G)) \simeq G/Z(G)$ and thus

$$\operatorname{Hom}(Y \times \mathbb{Z}^b, Z \times \mathbb{Z}^c) \simeq X \times \mathbb{Z}^a.$$
(1)

First, assume that G is torsion-free. Then L(G) is torsion-free and G/Z(G) is also torsion-free by Lemma 1(i) & (v) and equation (1). As $\operatorname{Hom}(Y \times \mathbb{Z}^b, \mathbb{Z}^c) \simeq \mathbb{Z}^a$ by (1), we have bc = a. Since $a \leq b$, c = 1 and a = b. It follows that L(G) is infinite cyclic and $\rho(G/L(G)) = \rho(G/Z(G))$.

Next, assume that G is torsion. Then G is finite, because both L(G) and G/L(G), being torsion and abelian, are finite. Thus $\operatorname{Hom}(Y, Z) \simeq X$ by (1). Since $d(X_{p_i}) \leq d(Y_{p_i})$, $q_i = p_i$ and $n_i = 1$ for $1 \leq i \leq d$ and $q_i \neq p_i$ for i > d. Thus $L(G) \simeq \prod_{i=1}^{d} C_{p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^{f} Z_{q_i}$ and therefore

$$\begin{split} \operatorname{Hom}(Y,Z) &\simeq \operatorname{Hom}(\prod_{i=1}^{e} \prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{ij}}}, \prod_{i=1}^{d} C_{p_{i}^{\gamma_{i1}}} \times \prod_{i=d+1}^{f} \prod_{j=1}^{n_{i}} C_{q_{i}^{\gamma_{ij}}}) \\ &\simeq \operatorname{Hom}(\prod_{i=1}^{d} \prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{ij}}}, \prod_{i=1}^{d} C_{p_{i}^{\gamma_{i1}}}) \\ &\simeq \prod_{i=1}^{d} \operatorname{Hom}(\prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{ij}}}, C_{p_{i}^{\gamma_{i1}}}). \end{split}$$

Since $X \simeq \prod_{i=1}^{d} \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}$, thus it follows that for $1 \le i \le d$,

$$\operatorname{Hom}(\prod_{j=1}^{m_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}},$$

and hence $l_i = m_i$. We thus have

$$\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}$$
(2)

for $1 \leq i \leq d$. Two cases now arise here. Either $\exp(Y_{p_i}) \leq \exp(Z_{p_i})$ or $\exp(Y_{p_i}) > \exp(Z_{p_i})$. If $\exp(Y_{p_i}) \leq \exp(Z_{p_i})$, then $\beta_{ij} \leq \gamma_{i1}$ for each j and thus

$$\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}.$$

It therefore follows from (2) that $\alpha_{ij} = \beta_{ij}$ for each j, and thus $(G/Z(G))_{p_i} = (G/L(G))_{p_i}$. And, if $\exp(Y_{p_i}) > \exp(Z_{p_i})$, then there exists the largest integer r_i between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ and $\beta_{ij} \le \gamma_{i1}$ for each $j, r_i + 1 \le j \le l_i$. Then $\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{r_i} C_{p_i^{\gamma_{i1}}} \times \prod_{j=r_i+1}^{l_i} C_{p_i^{\beta_{ij}}}$ and hence, by (2), $\alpha_{ij} = \gamma_{i1}$ for $1 \le j \le r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \le j \le l_i$.

Proposition 2. Let G be a finitely generated non-abelian infinite mixed group such that $G' \leq L(G)$. Then $\operatorname{Aut}_{l}(G) \simeq \operatorname{Inn}(G)$ if and only if one of the following conditions holds:

- (i) L(G) is infinite cyclic, G/Z(G) is torsion-free and $\rho(G/Z(G)) = \rho(G/L(G))$.
- (ii) L(G) is finite cyclic and (a) G/L(G) is mixed and $G/Z(G) \simeq \operatorname{Hom}(Y, Z) \times Z^b$ or (b) G/L(G) is torsion-free and $G/Z(G) \simeq Z^b$.
- (iii) $L(G) \simeq C_{\prod_{i=1}^{d} p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^{f} Z_{q_i} \times \mathbb{Z}^c$ (c is either 1 or arbitrary), $q_i \neq p_i$ for $d+1 \leq i \leq f$, both G/Z(G) and G/L(G) are finite, and for $1 \leq i \leq d$, either $(G/L(G))_{p_i} = (G/Z(G))_{p_i}$ or $d((G/L(G))_{p_i}) = d((G/Z(G))_{p_i})$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$.

Proof. It is easy to see that if any of the three conditions holds, then $\operatorname{Aut}_l(G) \simeq \operatorname{Inn}(G)$. For the converse part, we proceed according to the structure of L(G). First, suppose that L(G) is torsion-free. Then G/Z(G) is torsion-free and G/L(G) is either mixed or torsion-free by Lemma 1(v) and equation (1). In both cases, it is easy to see from (1) that c = 1 and a = b. Thus L(G) is infinite cyclic and $\rho(G/Z(G)) = \rho(G/L(G))$.

Next, suppose that L(G) is torsion. If G/L(G) is torsion, then G is finite, which is not so. If G/L(G) is mixed, then $\operatorname{Hom}(Y \times \mathbb{Z}^b, Z) \simeq X \times \mathbb{Z}^a$ by (1) and hence a = 0. It follows that $d(X) \leq d(Y) + b$. On the other hand, from (1), we have that

128

 $d(X) = d(\operatorname{Hom}(Y,Z)) + bd(Z)$. Hence d(Z) = 1. Thus L(G) is finite cyclic and $G/Z(G) \simeq \operatorname{Hom}(Y,Z) \times Z^b$. Finally, if G/L(G) is torsion-free, then, by equation (1), $\operatorname{Hom}(\mathbb{Z}^b, Z) \simeq X \times \mathbb{Z}^a$ and thus a = 0 and $X \simeq Z^b$. Since $d(X) + a \leq d(Y) + b$, $d(X) \leq b$ and hence Z = L(G) is cyclic.

Finally, we suppose that L(G) is a mixed group. First, assume that G/L(G) is torsion-free. Then $\operatorname{Hom}(\mathbb{Z}^b, Z \times \mathbb{Z}^c) \simeq X \times \mathbb{Z}^a$ by (1) and hence b c = a, implying that a = b and c = 1. As $d(X) + a \leq b$, d(X) = 0 and hence d(Z) = 0. Thus L(G) is infinite cyclic, G/Z(G) is torsion-free and $\rho(G/Z(G)) = \rho(G/L(G))$. Next, we assume that G/L(G) is a mixed group. Then $\operatorname{Hom}(Y, Z) \times Z^b \simeq X$ and $\mathbb{Z}^{bc} \simeq \mathbb{Z}^a$, again implying that a = b and c = 1. Thus $d(X) \leq d(Y)$ and hence a = b = 0. Therefore (1) reduces to $\operatorname{Hom}(Y, Z) \simeq X$. Now, by proceeding as in Proposition 1(ii), we can prove that $L(G) \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^f Z_{q_i} \times \mathbb{Z}$, and for $1 \leq i \leq d$, either $(G/L(G))_{p_i} = (G/Z(G))_{p_i}$ or $d((G/L(G))_{p_i}) = d((G/Z(G))_{p_i})$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$. Finally assume that G/L(G) is torsion. Then $\operatorname{Hom}(Y, Z \times \mathbb{Z}^c) \simeq X \times \mathbb{Z}^a$ implying a = 0, c arbitrary and $\operatorname{Hom}(Y, Z) \simeq X$. Again, proceeding as in Proposition 1(ii), we can prove that $L(G) \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^f Z_{q_i} \times \mathbb{Z}^c$, and for $1 \leq i \leq d$, either $(G/L(G))_{p_i} = (G/Z(G))_{p_i}$ or $d((G/L(G))_{p_i}) = d((G/Z(G))_{p_i})$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest integer between 1 for $1 \leq i \leq d$, either $(G/L(G))_{p_i} = (G/Z(G))_{p_i}$ or $d((G/L(G))_{p_i}) = d((G/Z(G))_{p_i})$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$.

Let G be a finite p-group such that $G' \leq L(G)$. Let $G/Z(G) \simeq \prod_{i=1}^{r} C_{p^{\alpha_i}}$, $G/L(G) \simeq \prod_{i=1}^{s} C_{p^{\beta_j}}$ and $L(G) \simeq \prod_{i=1}^{t} C_{p^{\gamma_i}}$, where $\alpha_i \geq \alpha_{i+1}$, $\beta_i \geq \beta_{i+1}$ and $\gamma_i \geq \gamma_{i+1}$ are positive integers. Since G/Z(G) is a quotient group of G/L(G), $r \leq s$ and $\alpha_i \leq \beta_i$ for $1 \leq i \leq r$.

Corollary 1. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}_l(G) = \operatorname{Inn}(G)$ if and only if $G' \leq L(G)$, L(G) is cyclic and either L(G) = Z(G) or d(G/L(G)) = d(G/Z(G)), $\alpha_i = \gamma_1$ for $1 \leq i \leq k$ and $\alpha_i = \beta_i$ for $k + 1 \leq i \leq r$, where k is the largest integer such that $\beta_k > \gamma_1$.

Proof. Observe that if $\operatorname{Aut}_l(G) = \operatorname{Inn}(G)$, then for any commutator $[a, b] \in G'$, $[a, b] = a^{-1}I_b(a) \in L(G)$, where I_b is the inner automorphism of G induced by b, and thus $G' \leq L(G)$. The result now follows from Proposition 1(ii).

Acknowledgement

Authors are very thankful to the referee for patiently reading the manuscript, for his/her valuable suggestions and for pointing out the crucial mistakes.

References

- J. L. ALPERIN, Groups with finitely many automorphisms, Pacific J. Math. 12(1962), 1-5.
- [2] R. D. CARMICHEAL, Groups of Finite Order, Dover Publications, New York, 1965.
- [3] T. A. FOURNELLE, Torsion in semicomplete nilpotent groups, Math. Proc. Cambridge Philos. Soc. 94(1983), 191–202.

S. SINGH AND D. GUMBER

- [4] P. B. HEGARTY, The absolute center of a group, J. Algebra 169(1994), 929–935.
 [5] M. M. NASRABADI, Z. K. FARIMANI, Absolute central automorphisms that are inner, Indag. Math. (N. S.) **26**(2015), 137–141.

130