Finite p-groups whose absolute central automorphisms are inner*

Sandeep Singh $^{1, \dagger}{ }^{\dagger}$ and Deepak Gumber ${ }^{1}$
${ }^{1}$ School of Mathematics and Computer Applications, Thapar University, Patiala 147004, India

Received February 19, 2015; accepted May 13, 2015

Abstract

Nasrabadi and Farimani [Indag. Math. (N. S.) 26(2015), 137-141] have given necessary and sufficient conditions for a finite autonilpotent p-group of class 2 such that all absolute central automorphisms are inner. We generalize this result of Nasrabadi and Farimani to arbitrary finite p-groups. AMS subject classifications: 20F28, 20F18

Key words: Absolute central automorphism, nilpotent group

1. Introduction

Let G be a finitely generated group and let G^{\prime} and $Z(G)$ denote the commutator subgroup and the center of G, respectively. Let $\operatorname{Aut}(G)$ denote the full automorphism group and $\operatorname{Inn}(G)$ the inner automorphism group of G. For $g \in G$ and $\alpha \in \operatorname{Aut}(G)$, the element $[g, \alpha]=g^{-1} \alpha(g)$ is called the autocommutator of g and α. Inductively, define

$$
\left[g, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]=\left[\left[g, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right], \alpha_{n}\right],
$$

where $\alpha_{i} \in \operatorname{Aut}(G)$. Hegarty [4] defined the absolute center $L(G)$ of G as

$$
L(G)=\{g \in G \mid[g, \alpha]=1, \text { for all } \alpha \in \operatorname{Aut}(G)\}
$$

Let $L_{1}(G)=L(G)$, and for $n \geq 2$, define $L_{n}(G)$ inductively as

$$
L_{n}(G)=\left\{g \in G \mid\left[g, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]=1 \text { for all } \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}(G)\right\}
$$

The autocommutator subgroup G^{*} of G is defined as

$$
G^{*}=\langle[g, \alpha] \mid g \in G, \alpha \in \operatorname{Aut}(G)\rangle .
$$

It is easy to see that $L_{n}(G) \leq Z_{n}(G)$, the nth term of the upper central series of G, for all $n \geq 1$ and $G^{\prime} \leq G^{*}$. An automorphism α of G is called an absolute central automorphism if it induces the identity automorphism on $G / L(G)$; or equivalently, $g^{-1} \alpha(g) \in L(G)$ for all $g \in G$. Let $\operatorname{Aut}_{l}(G)$ denote the group of all absolute central

[^0]automorphisms of G. A group G is called autonilpotent of class at most n if $L_{n}(G)=$ G for some natural number n. Observe that if G is autonilpotent of class 2, then $G^{*} \leq L(G)$. Nasrabadi and Farimani [5, Main Theorem] proved that if G is a finite autonilpotent p-group of class 2, then $\operatorname{Aut}_{l}(G)=\operatorname{Inn}(G)$ if and only if $L(G)=$ $Z(G)$ and $Z(G)$ is cyclic. In Propositions 1 and 2, we give necessary and sufficient conditions for a finitely generated group G with $G^{\prime} \leq L(G)$ such that $\operatorname{Aut}_{l}(G) \simeq$ $\operatorname{Inn}(G)$ and, as a consequence, obtain the necessary and sufficient conditions on a finite p-group G such that $\operatorname{Aut}_{l}(G)=\operatorname{Inn}(G)$.

By $\operatorname{Hom}(G, A)$ we denote the group of all homomorphisms of G into an abelian group A. The torsion rank and torsion-free rank of G are denoted as $d(G)$ and $\rho(G)$, respectively. By $\exp (G)$ we denote the exponent of the torsion part of G, and by $\pi(G)$ the set of primes dividing the order of the torsion part of G. By X^{n} we denote the direct product of n-copies of a group X and by C_{p} a cyclic group of order p. The Sylow p-subgroup of the torsion part of G is denoted as G_{p}. All other unexplained notations, if any, are standard. The following well known results will be used very frequently without further reference.

Lemma 1. Let U, V and W be abelian groups. Then
(i) $\operatorname{Hom}(U \times V, W) \simeq \operatorname{Hom}(U, W) \times \operatorname{Hom}(V, W)$,
(ii) $\operatorname{Hom}(U, V \times W) \simeq \operatorname{Hom}(U, V) \times \operatorname{Hom}(U, W)$,
(iii) $\operatorname{Hom}\left(C_{m}, C_{n}\right) \simeq C_{d}$, where d is the g.c.d. of m and n,
(iv) if U is torsion-free of rank m, then $\operatorname{Hom}(U, V) \simeq V^{m}$, and
(v) if U is torsion and V is torsion-free, then $\operatorname{Hom}(U, V)=1$.

2. Main results

Let G be a finitely generated non-abelian group such that $G^{\prime} \leq L(G)$. Suppose that $\pi(G / Z(G))=\left\{p_{1}, p_{2}, \ldots, p_{d}, p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{d^{\prime}}^{\prime}\right\}, \pi(G / L(G))=\left\{p_{1}, p_{2}, \ldots, p_{e}\right\}$ and $\pi(L(G))=\left\{q_{1}, q_{2}, \ldots, q_{f}\right\}$. Let X, Y, Z be respective torsion parts and a, b, c respective torsion-free ranks of $G / Z(G), G / L(G)$ and $L(G)$. Let $X_{p_{i}} \simeq \prod_{j=1}^{l_{i}} C_{p_{i} \alpha_{i j}}$, $X_{p_{i}^{\prime}} \simeq \prod_{j=1}^{l_{i}^{\prime}} C_{p_{i}^{\prime} \alpha_{i j}^{\prime}}, Y_{p_{i}} \simeq \prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{i j}}} \quad$ and $\quad Z_{q_{i}} \simeq \prod_{j=1}^{n_{i}} C_{q_{i}^{\gamma_{i j}}}$, where for each i, $l_{i}, l_{i}^{\prime}, m_{i}, n_{i}, \alpha_{i j} \geq \alpha_{i(j+1)}, \alpha_{i j}^{\prime} \geq \alpha_{i(j+1)}^{\prime}, \beta_{i j} \geq \beta_{i(j+1)}$ and $\gamma_{i j} \geq \gamma_{i(j+1)}$ are positive integers denoting the Sylow subgroups of X, Y and Z, respectively. Then
$G / Z(G) \simeq X \times \mathbb{Z}^{a} \simeq \prod_{i=1}^{d} X_{p_{i}} \times \prod_{i=1}^{d^{\prime}} X_{p_{i}^{\prime}} \times \mathbb{Z}^{a} \simeq \prod_{i=1}^{d} \prod_{j=1}^{l_{i}} C_{p_{i}^{\alpha_{i j}}} \times \prod_{i=1}^{d^{\prime}} \prod_{j=1}^{l_{i}^{\prime}} C_{p_{i}^{\prime} \alpha_{i j}^{\prime}} \times \mathbb{Z}^{a}$, $G / L(G) \simeq Y \times \mathbb{Z}^{b} \simeq \prod_{i=1}^{e} Y_{p_{i}} \times \mathbb{Z}^{b} \simeq \prod_{i=1}^{e} \prod_{j=1}^{m_{i}} C_{p_{i}} \times \mathbb{Z}^{b}$
and

$$
L(G) \simeq Z \times \mathbb{Z}^{c} \simeq \prod_{i=1}^{f} Z_{q_{i}} \times \mathbb{Z}^{c} \simeq \prod_{i=1}^{f} \prod_{j=1}^{n_{i}} C_{q_{i}}^{\gamma_{i j}} \times \mathbb{Z}^{c}
$$

Since $G / Z(G)$ is a quotient group of $G / L(G)$, it follows from [2, Section 25] that $d(X)+a \leq d(Y)+b, a \leq b, d \leq e, l_{i} \leq m_{i}$ and $\alpha_{i j} \leq \beta_{i j}$ for all $i, 1 \leq i \leq d$ and for all $j, 1 \leq j \leq l_{i}$.

The following lemma is a little but useful modification of arguments of Alperin [1, Lemma 3] and Fournelle [3, Section 2].

Lemma 2. Let G be any group and Y a central subgroup of G contained in a normal subgroup X of G. Then the group of all automorphisms of G that induce the identity on both X and G / Y is isomorphic to $\operatorname{Hom}(G / X, Y)$.

Proposition 1. Let G be a finitely generated non-abelian torsion or torsion-free group such that $G^{\prime} \leq L(G)$. Then $\operatorname{Aut}_{l}(G) \simeq \operatorname{Inn}(G)$ if and only if one of the following conditions holds:
(i) G is torsion-free, $L(G)$ is infinite cyclic and $\rho(G / L(G))=\rho(G / Z(G))$.
 and for $1 \leq i \leq d$, either $(G / L(G))_{p_{i}}=(G / Z(G))_{p_{i}}$ or $d\left((G / L(G))_{p_{i}}\right)=$ $d\left((G / Z(G))_{p_{i}}\right), \alpha_{i j}=\gamma_{i 1}$ for $1 \leq j \leq r_{i}$ and $\alpha_{i j}=\beta_{i j}$ for $r_{i}+1 \leq j \leq l_{i}$, where r_{i} is the largest integer between 1 and l_{i} such that $\beta_{i r_{i}}>\gamma_{i 1}$.

Proof. Since $L(G)$ is a central subgroup fixed by all automorphisms, therefore $\operatorname{Aut}_{l}(G) \simeq \operatorname{Hom}(G / L(G), L(G))$ by Lemma 2. It is not very hard to see that if any of the two conditions is satisfied, then $\operatorname{Aut}_{l}(G) \simeq \operatorname{Inn}(G)$.

Conversely, suppose that $\operatorname{Aut}_{l}(G) \simeq \operatorname{Inn}(G)$. Then $\operatorname{Hom}(G / L(G), L(G)) \simeq$ $G / Z(G)$ and thus

$$
\begin{equation*}
\operatorname{Hom}\left(Y \times \mathbb{Z}^{b}, Z \times \mathbb{Z}^{c}\right) \simeq X \times \mathbb{Z}^{a} \tag{1}
\end{equation*}
$$

First, assume that G is torsion-free. Then $L(G)$ is torsion-free and $G / Z(G)$ is also torsion-free by Lemma 1 (i) \& (v) and equation (1). As $\operatorname{Hom}\left(Y \times \mathbb{Z}^{b}, \mathbb{Z}^{c}\right) \simeq \mathbb{Z}^{a}$ by (1), we have $b c=a$. Since $a \leq b, c=1$ and $a=b$. It follows that $L(G)$ is infinite cyclic and $\rho(G / L(G))=\rho(G / Z(G))$.

Next, assume that G is torsion. Then G is finite, because both $L(G)$ and $G / L(G)$, being torsion and abelian, are finite. Thus $\operatorname{Hom}(Y, Z) \simeq X$ by (1). Since $d\left(X_{p_{i}}\right) \leq$ $d\left(Y_{p_{i}}\right), q_{i}=p_{i}$ and $n_{i}=1$ for $1 \leq i \leq d$ and $q_{i} \neq p_{i}$ for $i>d$. Thus $L(G) \simeq$ $\prod_{i=1}^{d} C_{p_{i}^{\gamma_{i 1}}} \times \prod_{i=d+1}^{f} Z_{q_{i}}$ and therefore

$$
\begin{aligned}
\operatorname{Hom}(Y, Z) & \simeq \operatorname{Hom}\left(\prod_{i=1}^{e} \prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{i j}}}, \prod_{i=1}^{d} C_{p_{i}^{\gamma_{i 1}}} \times \prod_{i=d+1}^{f} \prod_{j=1}^{n_{i}} C_{q_{i}^{\gamma_{i j}}}\right) \\
& \simeq \operatorname{Hom}\left(\prod_{i=1}^{d} \prod_{j=1}^{m_{i}} C_{p_{i}} \beta_{i j}, \prod_{i=1}^{d} C_{p_{i}^{\gamma_{i 1}}}\right) \\
& \simeq \prod_{i=1}^{d} \operatorname{Hom}\left(\prod_{j=1}^{m_{i}} C_{p_{i}}{ }_{i j}, C_{p_{i}^{\gamma_{i 1}}}\right) .
\end{aligned}
$$

Since $X \simeq \prod_{i=1}^{d} \prod_{j=1}^{l_{i}} C_{p_{i}}{ }^{i_{i j}}$, thus it follows that for $1 \leq i \leq d$,

$$
\operatorname{Hom}\left(\prod_{j=1}^{m_{i}} C_{p_{i}^{\beta_{i j}}}, C_{p_{i}^{\gamma_{i 1}}}\right) \simeq \prod_{j=1}^{l_{i}} C_{p_{i}^{\alpha_{i j}}},
$$

and hence $l_{i}=m_{i}$. We thus have

$$
\begin{equation*}
\operatorname{Hom}\left(\prod_{j=1}^{l_{i}} C_{p_{i}^{\beta_{i j}}}, C_{p_{i}^{\gamma_{i 1}}}\right) \simeq \prod_{j=1}^{l_{i}} C_{p_{i}^{\alpha_{i j}}} \tag{2}
\end{equation*}
$$

for $1 \leq i \leq d$. Two cases now arise here. Either $\exp \left(Y_{p_{i}}\right) \leq \exp \left(Z_{p_{i}}\right)$ or $\exp \left(Y_{p_{i}}\right)>$ $\exp \left(Z_{p_{i}}\right)$. If $\exp \left(Y_{p_{i}}\right) \leq \exp \left(Z_{p_{i}}\right)$, then $\beta_{i j} \leq \gamma_{i 1}$ for each j and thus

$$
\operatorname{Hom}\left(\prod_{j=1}^{l_{i}} C_{p_{i}^{\beta_{i j}}}, C_{p_{i}^{\gamma_{i 1}}}\right) \simeq \prod_{j=1}^{l_{i}} C_{p_{i}^{\beta_{i j}}} .
$$

It therefore follows from (2) that $\alpha_{i j}=\beta_{i j}$ for each j, and thus $(G / Z(G))_{p_{i}}=$ $(G / L(G))_{p_{i}}$. And, if $\exp \left(Y_{p_{i}}\right)>\exp \left(Z_{p_{i}}\right)$, then there exists the largest integer r_{i} between 1 and l_{i} such that $\beta_{i r_{i}}>\gamma_{i 1}$ and $\beta_{i j} \leq \gamma_{i 1}$ for each $j, r_{i}+1 \leq j \leq l_{i}$. Then $\operatorname{Hom}\left(\prod_{j=1}^{l_{i}} C_{p_{i}^{\beta_{i j}}}, C_{p_{i}^{\gamma_{i 1}}}\right) \simeq \prod_{j=1}^{r_{i}} C_{p_{i}^{\gamma_{i 1}}} \times \prod_{j=r_{i}+1}^{l_{i}} C_{p_{i}^{\beta_{i j}}}$ and hence, by (2), $\alpha_{i j}=\gamma_{i 1}$ for $1 \leq j \leq r_{i}$ and $\alpha_{i j}=\beta_{i j}$ for $r_{i}+1 \leq j \leq l_{i}$.

Proposition 2. Let G be a finitely generated non-abelian infinite mixed group such that $G^{\prime} \leq L(G)$. Then $\operatorname{Aut}_{l}(G) \simeq \operatorname{Inn}(G)$ if and only if one of the following conditions holds:
(i) $L(G)$ is infinite cyclic, $G / Z(G)$ is torsion-free and $\rho(G / Z(G))=\rho(G / L(G))$.
(ii) $L(G)$ is finite cyclic and (a) $G / L(G)$ is mixed and $G / Z(G) \simeq \operatorname{Hom}(Y, Z) \times Z^{b}$ or $(b) G / L(G)$ is torsion-free and $G / Z(G) \simeq Z^{b}$.
(iii) $L(G) \simeq C_{\prod_{i=1}^{d} p_{i}^{\gamma_{i 1}}} \times \prod_{i=d+1}^{f} Z_{q_{i}} \times \mathbb{Z}^{c}$ (c is either 1 or arbitrary), $q_{i} \neq p_{i}$ for $d+1 \leq i \leq \bar{f}$, both $G / Z(G)$ and $G / L(G)$ are finite, and for $1 \leq i \leq d$, either $(G / L(G))_{p_{i}}=(G / Z(G))_{p_{i}}$ or $d\left((G / L(G))_{p_{i}}\right)=d\left((G / Z(G))_{p_{i}}\right), \alpha_{i j}=\gamma_{i 1}$ for $1 \leq j \leq r_{i}$ and $\alpha_{i j}=\beta_{i j}$ for $r_{i}+1 \leq j \leq l_{i}$, where r_{i} is the largest integer between 1 and l_{i} such that $\beta_{i r_{i}}>\gamma_{i 1}$.

Proof. It is easy to see that if any of the three conditions holds, then $\operatorname{Aut}_{l}(G) \simeq$ $\operatorname{Inn}(G)$. For the converse part, we proceed according to the structure of $L(G)$. First, suppose that $L(G)$ is torsion-free. Then $G / Z(G)$ is torsion-free and $G / L(G)$ is either mixed or torsion-free by Lemma $1(\mathrm{v})$ and equation (1). In both cases, it is easy to see from (1) that $c=1$ and $a=b$. Thus $L(G)$ is infinite cyclic and $\rho(G / Z(G))=\rho(G / L(G))$.

Next, suppose that $L(G)$ is torsion. If $G / L(G)$ is torsion, then G is finite, which is not so. If $G / L(G)$ is mixed, then $\operatorname{Hom}\left(Y \times \mathbb{Z}^{b}, Z\right) \simeq X \times \mathbb{Z}^{a}$ by (1) and hence $a=0$. It follows that $d(X) \leq d(Y)+b$. On the other hand, from (1), we have that
$d(X)=d(\operatorname{Hom}(Y, Z))+b d(Z)$. Hence $d(Z)=1$. Thus $L(G)$ is finite cyclic and $G / Z(G) \simeq \operatorname{Hom}(Y, Z) \times Z^{b}$. Finallly, if $G / L(G)$ is torsion-free, then, by equation (1), $\operatorname{Hom}\left(\mathbb{Z}^{b}, Z\right) \simeq X \times \mathbb{Z}^{a}$ and thus $a=0$ and $X \simeq Z^{b}$. Since $d(X)+a \leq d(Y)+b$, $d(X) \leq b$ and hence $Z=L(G)$ is cyclic.

Finally, we suppose that $L(G)$ is a mixed group. First, assume that $G / L(G)$ is torsion-free. Then $\operatorname{Hom}\left(\mathbb{Z}^{b}, Z \times \mathbb{Z}^{c}\right) \simeq X \times \mathbb{Z}^{a}$ by (1) and hence $b c=a$, implying that $a=b$ and $c=1$. As $d(X)+a \leq b, d(X)=0$ and hence $d(Z)=0$. Thus $L(G)$ is infinite cyclic, $G / Z(G)$ is torsion-free and $\rho(G / Z(G))=\rho(G / L(G))$. Next, we assume that $G / L(G)$ is a mixed group. Then $\operatorname{Hom}(Y, Z) \times Z^{b} \simeq X$ and $\mathbb{Z}^{b c} \simeq \mathbb{Z}^{a}$, again implying that $a=b$ and $c=1$. Thus $d(X) \leq d(Y)$ and hence $a=b=0$. Therefore (1) reduces to $\operatorname{Hom}(Y, Z) \simeq X$. Now, by proceeding as in Proposition 1(ii), we can prove that $L(G) \simeq C_{\prod_{i=1}^{d} p_{i}^{\gamma_{i 1}}} \times \prod_{i=d+1}^{f} Z_{q_{i}} \times \mathbb{Z}$, and for $1 \leq i \leq d$, either $(G / L(G))_{p_{i}}=(G / Z(G))_{p_{i}}$ or $d\left((G / L(G))_{p_{i}}\right)=d\left((G / Z(G))_{p_{i}}\right), \alpha_{i j}=\gamma_{i 1}$ for $1 \leq j \leq r_{i}$ and $\alpha_{i j}=\beta_{i j}$ for $r_{i}+1 \leq j \leq l_{i}$, where r_{i} is the largest integer between 1 and l_{i} such that $\beta_{i r_{i}}>\gamma_{i 1}$. Finally assume that $G / L(G)$ is torsion. Then $\operatorname{Hom}(Y, Z \times$ $\left.\mathbb{Z}^{c}\right) \simeq X \times \mathbb{Z}^{a}$ implying $a=0, c$ arbitrary and $\operatorname{Hom}(Y, Z) \simeq X$. Again, proceeding as in Proposition 1(ii), we can prove that $L(G) \simeq C_{\prod_{i=1}^{d} p_{i}^{\gamma_{i 1}}} \times \prod_{i=d+1}^{f} Z_{q_{i}} \times \mathbb{Z}^{c}$, and for $1 \leq i \leq d$, either $(G / L(G))_{p_{i}}=(G / Z(G))_{p_{i}}$ or $d\left((G / L(G))_{p_{i}}\right)=d\left((G / Z(G))_{p_{i}}\right)$, $\alpha_{i j}=\gamma_{i 1}$ for $1 \leq j \leq r_{i}$ and $\alpha_{i j}=\beta_{i j}$ for $r_{i}+1 \leq j \leq l_{i}$, where r_{i} is the largest integer between 1 and l_{i} such that $\beta_{i r_{i}}>\gamma_{i 1}$.

Let G be a finite p-group such that $G^{\prime} \leq L(G)$. Let $G / Z(G) \simeq \prod_{i=1}^{r} C_{p^{\alpha_{i}}}$, $G / L(G) \simeq \prod_{i=1}^{s} C_{p^{\beta_{j}}}$ and $L(G) \simeq \prod_{i=1}^{t} C_{p^{\gamma_{i}}}$, where $\alpha_{i} \geq \alpha_{i+1}, \beta_{i} \geq \beta_{i+1}$ and $\gamma_{i} \geq \gamma_{i+1}$ are positive integers. Since $G / Z(G)$ is a quotient group of $G / L(G), r \leq s$ and $\alpha_{i} \leq \beta_{i}$ for $1 \leq i \leq r$.

Corollary 1. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}_{l}(G)=\operatorname{Inn}(G)$ if and only if $G^{\prime} \leq L(G), L(G)$ is cyclic and either $L(G)=Z(G)$ or $d(G / L(G))=$ $d(G / Z(G)), \alpha_{i}=\gamma_{1}$ for $1 \leq i \leq k$ and $\alpha_{i}=\beta_{i}$ for $k+1 \leq i \leq r$, where k is the largest integer such that $\beta_{k}>\gamma_{1}$.

Proof. Observe that if $\operatorname{Aut}_{l}(G)=\operatorname{Inn}(G)$, then for any commutator $[a, b] \in G^{\prime}$, $[a, b]=a^{-1} I_{b}(a) \in L(G)$, where I_{b} is the inner automorphism of G induced by b, and thus $G^{\prime} \leq L(G)$. The result now follows from Proposition 1(ii).

Acknowledgement

Authors are very thankful to the referee for patiently reading the manuscript, for his/her valuable suggestions and for pointing out the crucial mistakes.

References

[1] J. L. Alperin, Groups with finitely many automorphisms, Pacific J. Math. 12(1962), 1-5.
[2] R. D. Carmicheal, Groups of Finite Order, Dover Publications, New York, 1965.
[3] T. A. Fournelle, Torsion in semicomplete nilpotent groups, Math. Proc. Cambridge Philos. Soc. 94(1983), 191-202.
[4] P. B. Hegarty, The absolute center of a group, J. Algebra 169(1994), 929-935.
[5] M. M. Nasrabadi, Z. K. Farimani, Absolute central automorphisms that are inner, Indag. Math. (N. S.) 26(2015), 137-141.

[^0]: *Supported partially by CSIR and partially by NBHM, DAE
 ${ }^{\dagger}$ Corresponding author. Email addresses: sandeepinsan86@gmail.com (S. Singh), dkgumber@yahoo.com (D. Gumber)

