A note on the products
$$((m+1)^2+1)((m+2)^2+1)\dots(n^2+1)$$

and $((m+1)^3+1)((m+2)^3+1)\dots(n^3+1)$

ERHAN GÜREL^{1,*}

¹ Middle East Technical University, Northern Cyprus Campus, TZ-32 Kalkanlı, Güzelyurt, Mersin 10, Turkey

Received October 14, 2015; accepted November 24, 2015

Abstract. We prove that for any positive integer m there exists a positive real number N_m such that whenever the integer $n \ge N_m$, neither the product $P_m^n = ((m+1)^2 + 1)((m+2)^2 + 1) \dots (n^2 + 1)$ nor the product $Q_m^n = ((m+1)^3 + 1)((m+2)^3 + 1) \dots (n^3 + 1)$ is a square.

AMS subject classifications: 11A41, 11A51 **Key words**: polynomial products, diophantine equations

1. Introduction

In 2008, J. Cilleruelo proved that $\prod_{k=1}^{n} (k^2 + 1)$ is a square only for n = 3 [3]. His technique was applied to the products of consecutive values of other polynomials like $4x^2 + 1$ and $2x^2 - 2x + 1$ by Fang [5], and to $x^3 + 1$ by Gürel and Kişisel [7]. Later, an idea due to W. Zudilin was applied to $x^p + 1$ by Zhang and Wang [8] and to $x^{p^k} + 1$ by Chen et al. [2] for odd prime p. In the very recent article [6], the author proved that while the product $\prod_{k=1}^{n} (4k^4 + 1)$ becomes a square infinitely often as the integer n changes, the product $\prod_{k=1}^{n} (k^4 + 4)$ becomes a square only for n = 2 using techniques different from the articles mentioned above. The problem is still open for polynomials like $x^{2^k} + 1$. In this paper, our purpose is to extend results of [3] and [7] for products of sufficiently many consecutive values of the polynomial $x^2 + 1$ and $x^3 + 1$ starting from any positive integer x = m + 1 up to x = n by using techniques similar to the ones used in the above mentioned articles. The main result of this paper is the following theorem.

Theorem 1. For any positive integer m, there exists a positive real number N_m such that whenever the integer $n \ge N_m$, neither the product

$$P_m^n = ((m+1)^2 + 1)((m+2)^2 + 1)\dots(n^2 + 1)$$

nor the product

$$Q_m^n = ((m+1)^3 + 1)((m+2)^3 + 1)\dots(n^3 + 1)$$

is a square.

http://www.mathos.hr/mc

©2016 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email address:* egurel@metu.edu.tr (E. Gürel)

E. GÜREL

In order to prove the main result, we need following lemmas.

Lemma 1. If p is a prime such that $p^2|P_m^n$ or $p^2|Q_m^n$, then p < 2n.

Proof. See the proof of Theorem 1 in [3] and the proof of Lemma 1 in [7].

Now, we can write

$$P_m^n = \prod_{p < 2n} p^{\alpha_p}, \ Q_m^n = \prod_{p < 2n} p^{\bar{\alpha}_p} \text{ and } \frac{n!}{m!} = \prod_{p \le n} p^{\beta_p}.$$

Comparing the products term by term, we can easily deduce that $(\frac{n!}{m!})^2 < P_m^n$ and $(\frac{n!}{m!})^3 < Q_m^n$. After taking the natural logarithms of both sides, we obtain the following inequalities under the condition that both P_m^n and Q_m^n are square-full.

$$\sum_{p \le n} \beta_p \ln p < \frac{1}{2} \sum_{p < 2n} \alpha_p \ln p.$$
(1)

$$\sum_{p \le n} \beta_p \ln p < \frac{1}{3} \sum_{p < 2n} \bar{\alpha}_p \ln p.$$
(2)

Lemma 2.

If
$$p \equiv 1 \pmod{4}$$
 and $p \leq n$, then $\frac{\alpha_p}{2} - \beta_p \leq \frac{\ln(n^2+1)}{\ln p}$.
If $p \equiv 1 \pmod{3}$ and $p \leq n$, then $\frac{\bar{\alpha}_p}{3} - \beta_p \leq \frac{\ln(n^3+1)}{\ln p}$.
If $p \equiv 2 \pmod{3}$ and $p \leq n$, then $\bar{\alpha}_p - \beta_p \leq \frac{\ln(n^3+1)}{\ln p}$.

Proof. When $p \equiv 1 \pmod{4}$, the equation $x^2 + 1 \equiv 0 \pmod{p^j}$ has two solutions in an interval of length p^j . That can be used to bound α_p as follows:

$$\alpha_p = \sum_{\substack{j \le \frac{\ln(n^2 + 1)}{\ln p}}} \#\{m < k \le n, p^j | (k^2 + 1)\} \le \sum_{\substack{j \le \frac{\ln(n^2 + 1)}{\ln p}}} 2\left\lceil \frac{n}{p^j} \right\rceil - \sum_{\substack{j \le \frac{\ln(m^2 + 1)}{\ln p}}} 2\left\lfloor \frac{m}{p^j} \right\rfloor.$$

When $p \equiv 1 \pmod{3}$, the equation $x^3 + 1 \equiv 0 \pmod{p^j}$ has at most three solutions in an interval of length p^j . That can be used to bound $\bar{\alpha}_p$ as follows:

$$\bar{\alpha}_p = \sum_{j \le \frac{\ln(m^3 + 1)}{\ln p}} \#\{m < k \le n, p^j | (k^3 + 1)\} \le \sum_{j \le \frac{\ln(m^3 + 1)}{\ln p}} 3\left\lceil \frac{n}{p^j} \right\rceil - \sum_{j \le \frac{\ln(m^3 + 1)}{\ln p}} 3\left\lfloor \frac{m}{p^j} \right\rfloor.$$

When $p \equiv 2 \pmod{3}$, the equation $x^3 + 1 \equiv 0 \pmod{p^j}$ has exactly one solution in an interval of length p^j (see Lemma 2 in [7]). That can be used to bound $\bar{\alpha}_p$ as follows:

$$\bar{\alpha}_p = \sum_{j \le \frac{\ln(n^3 + 1)}{\ln p}} \#\{m < k \le n, p^j | (k^3 + 1)\} \le \sum_{j \le \frac{\ln(n^3 + 1)}{\ln p}} \left\lceil \frac{n}{p^j} \right\rceil - \sum_{j \le \frac{\ln(m^3 + 1)}{\ln p}} \left\lfloor \frac{m}{p^j} \right\rfloor.$$

110

We also know that

$$\beta_p = \sum_{j \le \frac{\ln(n)}{\ln p}} \#\{m < k \le n, p^j | k\} = \sum_{j \le \frac{\ln(n)}{\ln p}} \left\lfloor \frac{n}{p^j} \right\rfloor - \sum_{j \le \frac{\ln(m)}{\ln p}} \left\lfloor \frac{m}{p^j} \right\rfloor.$$

Therefore, when $p \equiv 1 \pmod{4}$,

$$\frac{\alpha_p}{2} - \beta_p \le \sum_{j \le \frac{\ln(n)}{\ln p}} \left(\left\lceil \frac{n}{p^j} \right\rceil - \left\lfloor \frac{n}{p^j} \right\rfloor \right) + \sum_{\frac{\ln(n)}{\ln p} < j \le \frac{\ln(n^2 + 1)}{\ln p}} \left\lceil \frac{n}{p^j} \right\rceil - \sum_{\frac{\ln(m)}{\ln p} < j \le \frac{\ln(m^2 + 1)}{\ln p}} \left\lfloor \frac{m}{p^j} \right\rfloor \le \frac{\ln(n^2 + 1)}{\ln p}.$$
(3)

When $p \equiv 1 \pmod{3}$,

$$\frac{\bar{\alpha}_p}{3} - \beta_p \leq \sum_{j \leq \frac{\ln(n)}{\ln p}} \left(\left\lceil \frac{n}{p^j} \right\rceil - \left\lfloor \frac{n}{p^j} \right\rfloor \right) + \sum_{\frac{\ln(n)}{\ln p} < j \leq \frac{\ln(n^3+1)}{\ln p}} \left\lceil \frac{n}{p^j} \right\rceil \\
- \sum_{\frac{\ln(m)}{\ln p} < j \leq \frac{\ln(m^3+1)}{\ln p}} \left\lfloor \frac{m}{p^j} \right\rfloor \leq \frac{\ln(n^3+1)}{\ln p}.$$
(4)

When $p \equiv 2 \pmod{3}$,

$$\bar{\alpha}_{p} - \beta_{p} \leq \sum_{j \leq \frac{\ln(n)}{\ln p}} \left(\left\lceil \frac{n}{p^{j}} \right\rceil - \left\lfloor \frac{n}{p^{j}} \right\rfloor \right) + \sum_{\frac{\ln(n)}{\ln p} < j \leq \frac{\ln(n^{3}+1)}{\ln p}} \left\lceil \frac{n}{p^{j}} \right\rceil - \sum_{\frac{\ln(m)}{\ln p} < j \leq \frac{\ln(m^{3}+1)}{\ln p}} \left\lfloor \frac{m}{p^{j}} \right\rfloor \leq \frac{\ln(n^{3}+1)}{\ln p}.$$
(5)

Using this Lemma 2, we can update inequalities (1) and (2) as follows:

$$\sum_{\substack{p \equiv 3(mod4)\\p \le n}} \beta_p \ln p < (\frac{\alpha_2}{2} - \beta_2) \ln 2 + \sum_{\substack{p \equiv 1(mod4)\\p \le n}} \ln(n^2 + 1) + \sum_{\substack{n < p < 2n}} \frac{\alpha_p \ln p}{2}.$$
 (6)

$$\sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{2\beta_p \ln p}{3} < (\frac{\bar{\alpha}_3}{3} - \beta_3) \ln 3 + \sum_{\substack{p \equiv 1(mod3)\\p \leq n}} \ln(n^3 + 1) + \sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{\ln(n^3 + 1)}{3} + \sum_{\substack{n < p < 2n}} \frac{\bar{\alpha}_p \ln p}{3}.$$
(7)

Lemma 3. For any prime $p \le n$, $\beta_p \ge \frac{n-m}{p-1} - \frac{\ln(n+1)}{\ln p}$.

E. Gürel

Proof. Using the lower and the upper bounds of the prime powers in a factorial as in Lemma 1 [1] for n and m, respectively, we can easily obtain the desired inequality.

When p = 2, if k is even $k^2 + 1 \equiv 1 \pmod{4}$, otherwise $k^2 + 1 \equiv 2 \pmod{4}$, so,

$$\alpha_2 = \left\lceil \frac{n}{2} \right\rceil - \left\lceil \frac{m}{2} \right\rceil \le \frac{n-m+1}{2}$$

and using the preceding lemma,

$$\beta_2 \ge n - m - \frac{\ln(n+1)}{\ln 2}.$$

When p = 3, $k^3 + 1 \equiv 0 \pmod{3^t}$ has only one solution for t = 1 and two solutions for t > 1. So,

$$\bar{\alpha}_3 \le \left(\left\lceil \frac{n}{3} \right\rceil - \left\lfloor \frac{m}{3} \right\rfloor\right) + 2\left(\left\lceil \frac{n}{9} \right\rceil - \left\lfloor \frac{m}{9} \right\rfloor\right) + \dots \le \frac{5(n-m)}{6} + 3 + \frac{3\ln n}{\ln 3} - \frac{3\ln m}{\ln 3}$$

and using the preceding lemma again,

$$\beta_3 \ge \frac{n-m}{2} - \frac{\ln(n+1)}{\ln 3}.$$

Lemma 4. If p > n, then $\alpha_p \leq 2$ and $\bar{\alpha}_p \leq 3$.

Proof. If p > n, and $\alpha_p \ge 3$, then it is easy to see that there exist distinct j, k, l such that $p|j^2 + 1$, $p|k^2 + 1$, and $p|l^2 + 1$. Then p|(j - k)(j + k), so p|j + k, and similarly, p|j + l. Then p|k - l, a contradiction. A similar argument can be applied to $\bar{\alpha}_p$, as in [7].

Using Lemma 3 and Lemma 4, inequalities (6) and (7) become

$$\sum_{\substack{p\equiv3(4)\\p\leq n}} \frac{(n-m)\ln p}{p-1} < (\frac{\alpha_2}{2} - \beta_2)\ln 2 + \sum_{\substack{p\equiv1(mod4)\\p\leq n}} \ln(n^2+1) + \sum_{\substack{p\equiv3(mod4)\\p\leq n}} \ln(n+1) + \sum_{\substack{n< p<2n}} \ln p.$$
(8)

$$\sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{2(n-m)\ln p}{3(p-1)} < (\frac{\bar{\alpha}_3}{3} - \beta_3)\ln 3 + \sum_{\substack{p \equiv 1(mod3)\\p \leq n}} \ln(n^3 + 1) \\ + \sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{\ln(n^3 + 1)}{3} + \sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{2\ln(n+1)}{3} \\ + \sum_{\substack{n < p < 2n}} \ln p.$$
(9)

Employing the estimates for α_2 , β_2 , replacing $\ln(n+1)$ by $\ln(n^2+1)$ and replacing

$$\sum_{\substack{p \equiv 3 (mod4) \\ p \leq n}} \ln p + \sum_{n$$

112

by

$$\sum_{p<2n} \ln p,$$

the right-hand side of inequality (8) gets larger,

$$\sum_{\substack{p\equiv3(4)\\p\leq n}} \frac{(n-m)\ln p}{(p-1)} < \frac{(1-3n+3m)\ln 2}{4} + \sum_{p\leq n}\ln(n^2+1) + \sum_{p<2n}\ln p.$$
(10)

Dividing both sides by n - m we obtain

$$\sum_{\substack{p \equiv 3(4)\\p \leq n}} \frac{\ln p}{(p-1)} < \left(\frac{1}{4(n-m)} - \frac{3}{4}\right) \ln 2 + \frac{\pi(n)\ln(n^2+1)}{n-m} + \frac{\sum_{p < 2n} \ln p}{n-m}.$$
 (11)

Likewise, employing the estimates for $\bar{\alpha}_3$, β_3 , replacing $\ln(n+1)$ by $\ln(n^3+1)$ and replacing

$$\sum_{\substack{p \equiv 2(mod3)\\p \le n}} \frac{2\ln p}{3}$$

by

$$\sum_{p \le n} \ln p,$$

the right-hand side of inequality (9) gets larger,

$$\sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{2(n-m)\ln p}{3(p-1)} < \frac{(9-n+m)\ln 3}{9} + \sum_{p \leq n} \ln(n^3+1) + \sum_{p < 2n} \ln p.$$
(12)

Dividing both sides by $\frac{2(n-m)}{3}$ we obtain

$$\sum_{\substack{p \equiv 2(mod3)\\p \leq n}} \frac{\ln p}{(p-1)} < \left(\frac{3}{2(n-m)} - \frac{1}{6}\right) \ln 3 + \frac{3\pi(n)\ln(n^3+1)}{2(n-m)} + \frac{3\sum_{p < 2n} \ln p}{2(n-m)}.$$
 (13)

Since

$$\pi(n) \sim \frac{n}{\ln n} \text{ and } \sum_{p < 2n} \ln p \sim 2n,$$

the limiting values of the right-hand sides in (12) and (13) are $\frac{16-3\ln 2}{4} \cong 3.48013$ and $\frac{45-\ln 3}{6} \cong 7.31689$, respectively. However, the left hand sides of these inequalities are divergent series exceeding the right-hand sides for some values of N_m for each inequality. That means any of these inequalities will no longer be satisfied and it will contradict P_m^n and/or Q_m^n is square-full, which proves our theorem.

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

E. Gürel

References

- [1] Y. BUGEAUD, M. LAURENT, Minoration effective de la distance p-adique entre puissances de nombres alge briques, J. Number Theory 61(1996), 311-342.
- [2] Y. CHEN, M. GONG, X. REN, On the products $(1^l + 1)(2^l + 1) \dots (n^l + 1)$, J. Number Theory 133(2013), 2470–2474.
- [3] J. CILLERUELO, Squares in $(1^2 + 1) \dots (n^2 + 1)$, J. Number Theory 128(2008), 2488– 2491.
- [4] P. DUSART, Sharper bounds for ψ, θ, π, p_k , Rapport de recherche n° 1998-06, L'Université de Limoges, 1998.
- [5] J.-H. FANG, Neither $\prod_{k=1}^{n} (4k^2 + 1)$ nor $\prod_{k=1}^{n} (2k(k-1) + 1)$ is a perfect square, Integers 9(2009), 177–180.
- [6] E. GÜREL, On the products Πⁿ_{k=1}(4k⁴ + 1) and Πⁿ_{k=1}(k⁴ + 4), to appear.
 [7] E. GÜREL, A. U. Ö. KISISEL, A note on the products (1^μ + 1)...(n^μ + 1), J. Number Theory **130**(2010), 187–191.
- [8] W. ZHANG, T. WANG, On the products $(1^k + 1)(2^k + 1) \dots (n^k + 1)$, J. Number Theory **132**(2012), 2630-2635.

114