A note on the products $\left((m+1)^{2}+1\right)\left((m+2)^{2}+1\right) \ldots\left(n^{2}+1\right)$

$$
\text { and }\left((m+1)^{3}+1\right)\left((m+2)^{3}+1\right) \ldots\left(n^{3}+1\right)
$$

Erhan Gürel ${ }^{1, *}$
${ }^{1}$ Middle East Technical University, Northern Cyprus Campus, TZ-32 Kalkanlı, Güzelyurt, Mersin 10, Turkey

Received October 14, 2015; accepted November 24, 2015

Abstract

We prove that for any positive integer m there exists a positive real number N_{m} such that whenever the integer $n \geq N_{m}$, neither the product $P_{m}^{n}=\left((m+1)^{2}+1\right)((m+$ $\left.2)^{2}+1\right) \ldots\left(n^{2}+1\right)$ nor the product $Q_{m}^{n}=\left((m+1)^{3}+1\right)\left((m+2)^{3}+1\right) \ldots\left(n^{3}+1\right)$ is a square.

AMS subject classifications: 11A41, 11A51
Key words: polynomial products, diophantine equations

1. Introduction

In 2008, J. Cilleruelo proved that $\prod_{k=1}^{n}\left(k^{2}+1\right)$ is a square only for $n=3$ [3]. His technique was applied to the products of consecutive values of other polynomials like $4 x^{2}+1$ and $2 x^{2}-2 x+1$ by Fang [5], and to $x^{3}+1$ by Gürel and Kişisel [7]. Later, an idea due to W. Zudilin was applied to $x^{p}+1$ by Zhang and Wang [8] and to $x^{p^{k}}+1$ by Chen et al. [2] for odd prime p. In the very recent article [6], the author proved that while the product $\prod_{k=1}^{n}\left(4 k^{4}+1\right)$ becomes a square infinitely often as the integer n changes, the product $\prod_{k=1}^{n}\left(k^{4}+4\right)$ becomes a square only for $n=2$ using techniques different from the articles mentioned above. The problem is still open for polynomials like $x^{2^{k}}+1$. In this paper, our purpose is to extend results of [3] and [7] for products of sufficiently many consecutive values of the polynomial $x^{2}+1$ and $x^{3}+1$ starting from any positive integer $x=m+1$ up to $x=n$ by using techniques similar to the ones used in the above mentioned articles. The main result of this paper is the following theorem.

Theorem 1. For any positive integer m, there exists a positive real number N_{m} such that whenever the integer $n \geq N_{m}$, neither the product

$$
P_{m}^{n}=\left((m+1)^{2}+1\right)\left((m+2)^{2}+1\right) \ldots\left(n^{2}+1\right)
$$

nor the product

$$
Q_{m}^{n}=\left((m+1)^{3}+1\right)\left((m+2)^{3}+1\right) \ldots\left(n^{3}+1\right)
$$

is a square.

[^0]In order to prove the main result, we need following lemmas.
Lemma 1. If p is a prime such that $p^{2} \mid P_{m}^{n}$ or $p^{2} \mid Q_{m}^{n}$, then $p<2 n$.
Proof. See the proof of Theorem 1 in [3] and the proof of Lemma 1 in [7].
Now, we can write

$$
P_{m}^{n}=\prod_{p<2 n} p^{\alpha_{p}}, Q_{m}^{n}=\prod_{p<2 n} p^{\bar{\alpha}_{p}} \text { and } \frac{n!}{m!}=\prod_{p \leq n} p^{\beta_{p}}
$$

Comparing the products term by term, we can easily deduce that $\left(\frac{n!}{m!}\right)^{2}<P_{m}^{n}$ and $\left(\frac{n!}{m!}\right)^{3}<Q_{m}^{n}$. After taking the natural logarithms of both sides, we obtain the following inequalities under the condition that both P_{m}^{n} and Q_{m}^{n} are square-full.

$$
\begin{align*}
& \sum_{p \leq n} \beta_{p} \ln p<\frac{1}{2} \sum_{p<2 n} \alpha_{p} \ln p . \tag{1}\\
& \sum_{p \leq n} \beta_{p} \ln p<\frac{1}{3} \sum_{p<2 n} \bar{\alpha}_{p} \ln p . \tag{2}
\end{align*}
$$

Lemma 2.

$$
\begin{aligned}
& \text { If } p \equiv 1(\bmod 4) \text { and } p \leq n \text {, then } \frac{\alpha_{p}}{2}-\beta_{p} \leq \frac{\ln \left(n^{2}+1\right)}{\ln p} . \\
& \text { If } p \equiv 1(\bmod 3) \text { and } p \leq n \text {, then } \frac{\bar{\alpha}_{p}}{3}-\beta_{p} \leq \frac{\ln \left(n^{3}+1\right)}{\ln p} . \\
& \text { If } p \equiv 2(\bmod 3) \text { and } p \leq n \text {, then } \bar{\alpha}_{p}-\beta_{p} \leq \frac{\ln \left(n^{3}+1\right)}{\ln p} .
\end{aligned}
$$

Proof. When $p \equiv 1(\bmod 4)$, the equation $x^{2}+1 \equiv 0\left(\bmod p^{j}\right)$ has two solutions in an interval of length p^{j}. That can be used to bound α_{p} as follows:

$$
\alpha_{p}=\sum_{j \leq \frac{\ln \left(n^{2}+1\right)}{\ln p}} \#\left\{m<k \leq n, p^{j} \mid\left(k^{2}+1\right)\right\} \leq \sum_{j \leq \frac{\ln \left(n^{2}+1\right)}{\ln p}} 2\left\lceil\frac{n}{p^{j}}\right\rceil-\sum_{j \leq \frac{\ln \left(m^{2}+1\right)}{\ln p}} 2\left\lfloor\frac{m}{p^{j}}\right\rfloor .
$$

When $p \equiv 1(\bmod 3)$, the equation $x^{3}+1 \equiv 0\left(\bmod p^{j}\right)$ has at most three solutions in an interval of length p^{j}. That can be used to bound $\bar{\alpha}_{p}$ as follows:

$$
\bar{\alpha}_{p}=\sum_{j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}} \#\left\{m<k \leq n, p^{j} \mid\left(k^{3}+1\right)\right\} \leq \sum_{j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}} 3\left\lceil\frac{n}{p^{j}}\right\rceil-\sum_{j \leq \frac{\ln \left(m^{3}+1\right)}{\ln p}} 3\left\lfloor\frac{m}{p^{j}}\right\rfloor .
$$

When $p \equiv 2(\bmod 3)$, the equation $x^{3}+1 \equiv 0\left(\bmod p^{j}\right)$ has exactly one solution in an interval of length p^{j} (see Lemma 2 in [7]). That can be used to bound $\bar{\alpha}_{p}$ as follows:

$$
\bar{\alpha}_{p}=\sum_{j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}} \#\left\{m<k \leq n, p^{j} \mid\left(k^{3}+1\right)\right\} \leq \sum_{j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}}\left\lceil\frac{n}{p^{j}}\right\rceil-\sum_{j \leq \frac{\ln \left(m^{3}+1\right)}{\ln p}}\left\lfloor\frac{m}{p^{j}}\right\rfloor .
$$

We also know that

$$
\beta_{p}=\sum_{j \leq \frac{\ln (n)}{\ln p}} \#\left\{m<k \leq n, p^{j} \mid k\right\}=\sum_{j \leq \frac{\ln (n)}{\ln p}}\left\lfloor\frac{n}{p^{j}}\right\rfloor-\sum_{j \leq \frac{\ln (m)}{\ln p}}\left\lfloor\frac{m}{p^{j}}\right\rfloor .
$$

Therefore, when $p \equiv 1(\bmod 4)$,

$$
\begin{gather*}
\frac{\alpha_{p}}{2}-\beta_{p} \leq \sum_{j \leq \frac{\ln (n)}{\ln p}}\left(\left\lceil\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)+\sum_{\frac{\ln (n)}{\frac{\ln p}{\ln p} \leq \frac{\ln \left(n^{2}+1\right)}{\ln p}}}\left\lceil\frac{n}{p^{j}}\right\rceil \\
-\sum_{\frac{\ln (m)}{\ln p}<j \leq \frac{\ln \left(m^{2}+1\right)}{\ln p}}\left\lfloor\frac{m}{p^{j}}\right\rfloor \leq \frac{\ln \left(n^{2}+1\right)}{\ln p} . \tag{3}
\end{gather*}
$$

When $p \equiv 1(\bmod 3)$,

$$
\begin{align*}
\frac{\bar{\alpha}_{p}}{3}-\beta_{p} \leq & \sum_{j \leq \frac{\ln (n)}{\ln p}}\left(\left\lceil\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)+\sum_{\frac{\ln (n)}{\ln p}<j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}}\left\lceil\frac{n}{p^{j}}\right\rceil \\
& -\sum_{\frac{\ln (m)}{\ln p}<j \leq \frac{\ln \left(m^{3}+1\right)}{\ln p}}\left\lfloor\frac{m}{p^{j}}\right\rfloor \leq \frac{\ln \left(n^{3}+1\right)}{\ln p} . \tag{4}
\end{align*}
$$

When $p \equiv 2(\bmod 3)$,

$$
\begin{align*}
\bar{\alpha}_{p}-\beta_{p} \leq & \sum_{j \leq \frac{\ln (n)}{\ln p}}\left(\left[\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)+\sum_{\frac{\ln (n)}{\ln p}<j \leq \frac{\ln \left(n^{3}+1\right)}{\ln p}}\left[\frac{n}{p^{j}}\right\rceil \\
& -\sum_{\frac{\ln (m)}{\ln p}<j \leq \frac{\ln \left(m^{3}+1\right)}{\ln p}}\left\lfloor\frac{m}{p^{j}}\right\rfloor \leq \frac{\ln \left(n^{3}+1\right)}{\ln p} . \tag{5}
\end{align*}
$$

Using this Lemma 2, we can update inequalities (1) and (2) as follows:

$$
\begin{align*}
& \sum_{\substack{p \equiv 3(\bmod 4) \\
p \leq n}} \beta_{p} \ln p<\left(\frac{\alpha_{2}}{2}-\beta_{2}\right) \ln 2+\sum_{\substack{p \equiv 1(\bmod 4) \\
p \leq n}} \ln \left(n^{2}+1\right)+\sum_{n<p<2 n} \frac{\alpha_{p} \ln p}{2} . \tag{6}\\
& \sum_{\substack{p \equiv 2(\bmod 3) \\
p \leq n}} \frac{2 \beta_{p} \ln p}{3}<\left(\frac{\bar{\alpha}_{3}}{3}-\beta_{3}\right) \ln 3+\sum_{p \equiv 1(\bmod 3)} \ln \left(n^{3}+1\right)+\sum_{p \leq n} \sum_{p \equiv 2(\bmod 3)}^{p \leq n} \frac{\ln \left(n^{3}+1\right)}{3} \tag{7}\\
&+\sum_{n<p<2 n} \frac{\bar{\alpha}_{p} \ln p}{3} .
\end{align*}
$$

Lemma 3. For any prime $p \leq n, \beta_{p} \geq \frac{n-m}{p-1}-\frac{\ln (n+1)}{\ln p}$.

Proof. Using the lower and the upper bounds of the prime powers in a factorial as in Lemma 1 [1] for n and m, respectively, we can easily obtain the desired inequality.

When $p=2$, if k is even $k^{2}+1 \equiv 1(\bmod 4)$, otherwise $k^{2}+1 \equiv 2(\bmod 4)$, so,

$$
\alpha_{2}=\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{m}{2}\right\rceil \leq \frac{n-m+1}{2}
$$

and using the preceding lemma,

$$
\beta_{2} \geq n-m-\frac{\ln (n+1)}{\ln 2}
$$

When $p=3, k^{3}+1 \equiv 0\left(\bmod 3^{t}\right)$ has only one solution for $t=1$ and two solutions for $t>1$. So,

$$
\bar{\alpha}_{3} \leq\left(\left\lceil\frac{n}{3}\right\rceil-\left\lfloor\frac{m}{3}\right\rfloor\right)+2\left(\left\lceil\frac{n}{9}\right\rceil-\left\lfloor\frac{m}{9}\right\rfloor\right)+\cdots \leq \frac{5(n-m)}{6}+3+\frac{3 \ln n}{\ln 3}-\frac{3 \ln m}{\ln 3}
$$

and using the preceding lemma again,

$$
\beta_{3} \geq \frac{n-m}{2}-\frac{\ln (n+1)}{\ln 3}
$$

Lemma 4. If $p>n$, then $\alpha_{p} \leq 2$ and $\bar{\alpha}_{p} \leq 3$.
Proof. If $p>n$, and $\alpha_{p} \geq 3$, then it is easy to see that there exist distinct j, k, l such that $p\left|j^{2}+1, p\right| k^{2}+1$, and $p \mid l^{2}+1$. Then $p \mid(j-k)(j+k)$, so $p \mid j+k$, and similarly, $p \mid j+l$. Then $p \mid k-l$, a contradiction. A similar argument can be applied to $\bar{\alpha}_{p}$, as in [7].

Using Lemma 3 and Lemma 4, inequalities (6) and (7) become

$$
\begin{align*}
& \sum_{\substack{p \equiv 3(4) \\
p \leq n}} \frac{(n-m) \ln p}{p-1}<\left(\frac{\alpha_{2}}{2}-\beta_{2}\right) \ln 2+\sum_{\substack{p \equiv 1(\bmod 4) \\
p \leq n}} \ln \left(n^{2}+1\right)+\sum_{\substack{p \equiv 3(\bmod 4) \\
p \leq n}} \ln (n+1) \tag{8}\\
&+\sum_{n<p<2 n} \ln p . \\
& \sum_{\substack{p \equiv 2(\bmod 3) \\
p \leq n}} \frac{2(n-m) \ln p}{3(p-1)}<\left(\frac{\bar{\alpha}_{3}}{3}-\beta_{3}\right) \ln 3+\sum_{\substack{p \equiv 1(\bmod 3) \\
p \leq n}} \ln \left(n^{3}+1\right) \\
&+\sum_{p \equiv 2(\bmod 3)} \frac{\ln \left(n^{3}+1\right)}{3}+\sum_{p \equiv 2(\bmod 3)} \frac{2 \ln (n+1)}{3} \tag{9}\\
&+\sum_{n<p<n} \ln p .
\end{align*}
$$

Employing the estimates for α_{2}, β_{2}, replacing $\ln (n+1)$ by $\ln \left(n^{2}+1\right)$ and replacing

$$
\sum_{\substack{p \equiv 3(\bmod 4) \\ p \leq n}} \ln p+\sum_{n<p<2 n} \ln p
$$

by

$$
\sum_{p<2 n} \ln p
$$

the right-hand side of inequality (8) gets larger,

$$
\begin{equation*}
\sum_{\substack{p \equiv 3(4) \\ p \leq n}} \frac{(n-m) \ln p}{(p-1)}<\frac{(1-3 n+3 m) \ln 2}{4}+\sum_{p \leq n} \ln \left(n^{2}+1\right)+\sum_{p<2 n} \ln p \tag{10}
\end{equation*}
$$

Dividing both sides by $n-m$ we obtain

$$
\begin{equation*}
\sum_{\substack{p \equiv 3(4) \\ p \leq n}} \frac{\ln p}{(p-1)}<\left(\frac{1}{4(n-m)}-\frac{3}{4}\right) \ln 2+\frac{\pi(n) \ln \left(n^{2}+1\right)}{n-m}+\frac{\sum_{p<2 n} \ln p}{n-m} \tag{11}
\end{equation*}
$$

Likewise, employing the estimates for $\bar{\alpha}_{3}, \beta_{3}$, replacing $\ln (n+1)$ by $\ln \left(n^{3}+1\right)$ and replacing

$$
\sum_{\substack{p \equiv 2(\bmod 3) \\ p \leq n}} \frac{2 \ln p}{3}
$$

by

$$
\sum_{p \leq n} \ln p
$$

the right-hand side of inequality (9) gets larger,

$$
\begin{equation*}
\sum_{\substack{p \equiv 2(\bmod 3) \\ p \leq n}} \frac{2(n-m) \ln p}{3(p-1)}<\frac{(9-n+m) \ln 3}{9}+\sum_{p \leq n} \ln \left(n^{3}+1\right)+\sum_{p<2 n} \ln p . \tag{12}
\end{equation*}
$$

Dividing both sides by $\frac{2(n-m)}{3}$ we obtain

$$
\begin{equation*}
\sum_{\substack{p \equiv 2(\bmod 3) \\ p \leq n}} \frac{\ln p}{(p-1)}<\left(\frac{3}{2(n-m)}-\frac{1}{6}\right) \ln 3+\frac{3 \pi(n) \ln \left(n^{3}+1\right)}{2(n-m)}+\frac{3 \sum_{p<2 n} \ln p}{2(n-m)} . \tag{13}
\end{equation*}
$$

Since

$$
\pi(n) \sim \frac{n}{\ln n} \text { and } \sum_{p<2 n} \ln p \sim 2 n
$$

the limiting values of the right-hand sides in (12) and (13) are $\frac{16-3 \ln 2}{4} \cong 3.48013$ and $\frac{45-\ln 3}{6} \cong 7.31689$, respectively. However, the left hand sides of these inequalities are divergent series exceeding the right-hand sides for some values of N_{m} for each inequality. That means any of these inequalities will no longer be satisfied and it will contradict P_{m}^{n} and/or Q_{m}^{n} is square-full, which proves our theorem.

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

[1] Y. Bugeaud, M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres alge briques, J. Number Theory 61(1996), 311-342.
[2] Y. Chen, M. Gong, X. Ren, On the products $\left(1^{l}+1\right)\left(2^{l}+1\right) \ldots\left(n^{l}+1\right)$, J. Number Theory 133(2013), 2470-2474.
[3] J. Cilleruelo, Squares in $\left(1^{2}+1\right) \ldots\left(n^{2}+1\right)$, J. Number Theory 128(2008), 24882491.
[4] P. Dusart, Sharper bounds for ψ, θ, π, p_{k}, Rapport de recherche ${ }^{\circ}{ }^{\circ}$ 1998-06, L'Université de Limoges, 1998.
[5] J. -H. Fang, Neither $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ nor $\prod_{k=1}^{n}(2 k(k-1)+1)$ is a perfect square, Integers 9(2009), 177-180.
[6] E. Gürel, On the products $\prod_{k=1}^{n}\left(4 k^{4}+1\right)$ and $\prod_{k=1}^{n}\left(k^{4}+4\right)$, to appear.
[7] E. Gürel, A. U. Ö. Kisisel, A note on the products $\left(1^{\mu}+1\right) \ldots\left(n^{\mu}+1\right)$, J. Number Theory 130(2010), 187-191.
[8] W. Zhang, T. Wang, On the products $\left(1^{k}+1\right)\left(2^{k}+1\right) \ldots\left(n^{k}+1\right)$, J. Number Theory 132(2012), 2630-2635.

[^0]: ${ }^{*}$ Corresponding author. Email address: egurel@metu.edu.tr (E. Gürel)

