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A new optimal family of three-step methods for efficient
finding of a simple root of a nonlinear equation
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Abstract. This study presents a new efficient family of eighth-order methods for finding
the simple root of a nonlinear equation. The new family consists of three steps: the
Newton step, any optimal fourth-order iteration scheme and a simply structured third step
which improves the convergence order up to at least eight and ensures the efficiency index
1.6818. For several relevant numerical test functions, the numerical performances confirm
the theoretical results.
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1. Introduction

One of the most frequent problems in engineering, scientific computing and applied
mathematics in general, is the problem of solving a nonlinear equation f(z) = 0.
In this research, we are interested in finding simple roots of the nonlinear function
f: D CR — R, where D is some open interval. The best known iterative method
for determining the solution of this problem is Newton’s method given by

T4+l = Tn — f,(xn)a (1)

which produces a sequence {z,} quadratically convergent to the simple root a, if
the initial approximation xq is sufficiently close to «.

There are many studies which have been developed with the aim to create multi-
step iterative methods with the improved convergence order. Some two-step methods
with third or fourth order of convergence are considered in [2, 5, 6, 8, 12, 14, 20], and
some three-step methods with sixth, seventh and eighth convergence order are given
in[1,4,7, 9,11, 15, 17, 18, 19]. Higher convergence order is achieved by the higher
cost in the sense of the additional function or derivative evaluations. The coefficient
p'/™ is introduced by Ostrowski [13], where p is the convergence order and m is the
number of function or derivative evaluations per iteration, as a measure of meth-
ods efficiency (the efficiency index). According to the Kung-Traub conjecture [10],
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if a multipoint iterative method without memory requires one first-order derivative
evaluation and n — 1 function evaluations per iteration, it can reach the convergence
order of at most 2"~ !. In the literature, those methods are known as optimal meth-
ods. The survey and certain generalizations of optimal methods can be found in
[16].

This paper is reduced only to methods with optimal properties, especially to the
eighth-order methods. Recently, Sharma and Arora [17] have proposed an efficient
family of three-step methods based on the following basic requirements: (i) high
convergence speed, (ii) minimum computational cost, and (iii) a simple structure.
The iteration scheme is given by

Wy =Ty — )
f'(zn)
Zn = M4(xn7 wn)a » (2)
_ f(zn) f'(@n) = flwn, x] + fl2n, wnl
Tn+1 = 2n — 7
f'(@n) 2f[zn, wn] = flon, Tn]
where the first step is Newton’s method, My(-,-) is any optimal fourth-order it-
erative scheme and f[,-] represents the first order divided difference. For every

optimal scheme My(+,-), method (2) reaches the eighth convergence order, requires
one derivative and three function evaluations, and therefore, its efficiency index is
81/4 ~ 1.6818.

In Section 2, we suggest a new optimal iteration scheme satisfying the same
requirements as method (2), but with an even more simpler structure. Section 2 also
includes the convergence analysis of the new method and the proof of its optimal
behavior. In Section 3, we compare its numerical performance with method (2) and
other well known eighth-order methods. Concluding remarks are given in Section 4.

2. The new method and covergence analysis

Preserving the first and the second step of the Sharma and Arora’s scheme (2), we
present a new efficient family of three-step methods for locating a simple root « of
nonlinear function f(z). The new iteration scheme has a form

W — e — f(zn)
n n f/(xn)7
Zn :M4($nuwn)7 (3)

Z 1=2 + )
" " flzns Tn] flzn, Tnl — 2f[2n, wn]
where My(-,-) is any optimal fourth-order method based on the Newton step, which
satisfies

Zp —a = Agel + Ased + Agel + Azel + Aged +0(ed), (4)
where e, = z, — a. The convergence order of method (3) remains eight, and
consequently, the efficiency index is 8/4 ~ 1.6818 as well. It is easy to note that the
third step of the new method requires only two different divided differences while
method (2) requires three. The theoretical properties and the conditions for optimal
behavior of the new method are summarized in the next theorem.
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Theorem 1. Let a be a simple root of sufficiently differentable function f(z) and
My(-,-) is any optimal fourth-order iteration scheme satisfying (4). Then for any
initial approzimation xo chosen close enough to «, method (8) is at least of eighth
order.

Proof. Let ¢; = (1/i!)f¥(a)/f' () for i = 2,3, ... From Taylor’s expansion of f(x,)
and f’(x,) about a, it is well known that

flxn) = f(a)- en(l + coen + 3 +cqed + .+ Cgefl) +0(€?), (5)

f'(zn) = (@) - (1+ 2coe, + 3cze? 4 4dcged + ..+ 8086771) +0(eB), (6)

and that the error of Newton’s iteration w,, — a, denoted by é,, can be written as
én = coe2 + ( —2c2 + 203)6fL + (403 — Tcacs + 364)631

+( — 80‘21 + 200303 — 60§ — 10cocq + 405)62
+ (1665 — 52¢3cs + 28c5cs — 1Tesey + c2(33c3 — 13¢5) + 5eg) el
- 2(16cg — 64cyez — 95 + 36c5cy + 63 4+ 93 (Tcs — 2¢5) + 1leses
+co(—46¢s3cq + 8cg) — 307)6771
+ (6405 — 3040203 + 17603104 + 750%04 + cg (4080% —92¢5) — 3leqes — 2Tescs
+e2(—348cscs + 44cg) + ca(—135¢3 + 64¢2 + 118cse5 — 19¢7) + 7c8)e,§

+0(ep). (7)

Since equation (4) holds, substituting separately (7) and (4) into (5), we get
flw,) = f(a)-€2 {cz —2(c3 — c3)en + (563 — Teacs + 3ca) €l

—2(60‘21 — 120303 + 3c§ + 5cocy — 205)62
+ (28¢5 — 73c3cs + 3dcieq — 1Tcseq + c2(37¢5 — 13¢5) + Beg ) ey
- 2(32cg —103ckcs — 963 + 52c3cs + 662 + (802 — 22¢5)
+11eses 4 co(—52c3cq + 8¢6) — 307) ed
+ (144c§ — 552c3cs + 297cheq + Thc2es + 23(291¢2 — 67cs)
—3leyes — 2Tcscq 4 ca(—455¢3¢4 + Hdcg)

+ c2(—147¢5 + 73¢3 + 134cses — 19¢7) + 708)62] +0(e) (8)
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and
fzn)=f'(a) e (A4 + Ase, + Age2 + Azed 4 (Ag + Ai@)eﬁ) +0(e2), (9)

respectively, required for calculating divided differences f[z,,w,] and f[zp, x,]. Af-
ter substituting equations (5), (8) and (9) in the third step of method (3), and
simplifying with the help of Mathematica’s symbolic computation, we have the error
equation

Ent+1 = A4 (0204 — Cg)ei + O(e?l) (10)

O

For the purpose of comparing the new family of methods with other recently
developed methods, we choose the optimal fourth-order iteration schemes for the
second step of (3), as they suggested in Sharma and Arora’s research [17]. Namely,
method (3) is denoted by NM;, NMs and NMj, if the second step z, = My(2n, 2,)
has a form

® Z, = W, — f(wn)
e 2f[wn, xn] — f'(2n)’ 13},
2 1
# o= (]~ ) 0

2 fwn, xn]) fwn) 7).

f'(@n) f(@n)’
Analogously, when those fourth-order schemes are used for constructing the mem-

bers of Sharma and Arora’s family (2), they are denoted by SA;, SAs and SAg,
respectively.

° zn:wn—(?)—

3. Numerical results

First, we list other relevant eighth-order methods that will be numerically compared
with the members of families (2) and (3) described in the previous section:
Bi, Wu and Ren’s method [1] (denoted by BWR):

W — 3 — f(@n)
n n f/(xn)7
2f(zn) = flwn) f(wn)

P+ (B2)fCa fen
Tn+1 = 2n f(xn) + Bf(zn) f[zn,wn] + f[2n7.’l,'n,$n](zn - wn)’ ﬁ S Ru

flzn, 0] — f/(xn)

Zn — Tn

where f[z’lh L, xn] =
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Thukral and Petkovié’s method [19] (TP):

(G
) ) )

f In +61f W, f W,
Ten) - ) fl € ]f |
Tn+l = 2Zn (¢(t) + f(wn) — Bof(zn) + ) )f’(:vn)

where ¢(t) =1+ 2t + (5 —261)t% + (12 — 1261 + 283)t3 and t = f(w,,)/f(xn).
Liu and Wang’s method [11] (LW):

=w,, — f(@n f(wy,
o At ﬂhﬁ(ziR () 7 4G
L [(da) =Sy fGn () 1

Cordero, Torregrosa and Vassileva’s method [4] (CTV):

W — 1 — f(zn)
" " f(xn)’
Y flan) — flwn) flan)
" " f@n) = 2f (wn) f'(2n)’
3(B2 + B3)(un — 2n) f(zn)
B1(Un — 2n) + B2 (wn — xn) + 63(271 - xn) f/(xn)

f'(@n) “flzn) = 2f(wn) 2 flwn) —2f(20)"
Khan, Fardi and Sayevand’s method [7] (KFS):

Zn = Wp —

) BQER,

) Blaﬂ2753 ER,

Tp41 = Un —

where B3 + B3 # 0 and u,, = z,, —

o [flan)
Wp = T, f,(xn),
o —w f2(@n) F(wn)
T P = 2 ) f(wa) + B Pl P’
= 1 f(zn)
Tl =2n = 7 B K —Clwn —2) — D(wn — o) B2 € R,
f(zn) f(xn)— H H-K H_K
wh n = , D = _ : C - _D .
ere ¢ f(zn) (X —wp)(Tn — 2n)  (Tn — 2n)? T — 2 (xn +
wn—2zn),H:M and K — 1wn) = f(zn)
Ty — Wh W — 2n

The values of real parameters used for numerical calculations are suggested by
authors of the original papers (8 = 1 for BWR,;; 1 = 0,82 =0 for TP; 81 =5, 52 =
=7 for LW; 81 = 0,82 = 1,83 = 0 for CTV; ;1 = 1,82 =1 for KFS).
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All numerical computations were carried out by Mathematica software package
using its SetPrecision function with 10000 significant digits, on the computer with
the Windows Vista 32-bit operating system and the Intel(R) Pentium(R) Dual CPU
@ 1.73 GHz processor.

Numerical properties of the methods are checked through several test examples
taken from [3, 4, 16]. They are listed with the corresponding roots as follows:

fi(x) = 25 + 2t + 422 — 15; a ~ 1.347428099
fo(z) = 23 + 422 — 15; a =~ 1.631980806
falw) = 7" tor2 1, a=-1

fal@) = (2 = 2)(@0 + 2+ 1)e > a=2

fs(@) = logz + /T — 5; o ~ 8.309432604
fo(x) =sinz — x/2; a =~ 1.895494267

Tables 1-6 show the numerical performances of the methods. The number of
iterations (it) required to satisfy the stopping criterion |x,4+1 — x| + |f(zn)| <
10729 is displayed in the second column. The errors |zp; — x| for k = 1,2,3
are given in the third, fourth and fifth columns. The order of convergence (COC),
calculated using the last three iterations by the formula COC = lolg’c‘; }{éifiéf%;:él)‘
is displayed in the sixth column with the aim to verify the theoretically derived order
of convergence. The last column shows CPU time considered as the average of 50

performances of each method.

Due to the fact that every COC value is approximately 8, it is clear that the
eighth convergence order of method (3) and the underlying theory are numerically
confirmed. Comparison with other optimal methods also verifies the relatively good
numerical performance.

method it |x2 — x1] |x3 — x2| |xa — x3] COC CPU

BWR 5  0.06793 1.072-107° 5.928 - 10772 8.0000 0.2134
TP 5  0.07501 1.227-1078 1.133 - 10752 8.0000 0.2789
LW 5 0.004868 8.790 - 101 9.730-107'%5  8.0000 0.2502
CTV 5 0.03221 7.815-10713 1.040 - 10797 8.0000 0.1672
KFS 5  0.05476 2.248 - 10710 2.306 - 10777 8.0000 0.2602
SA; 5 0.009520 2.696 - 1017 1.080-10713%  8.0000 0.1716
SAs 5  0.01217 5.108 - 10715 4.452-10~1%  8.0000 0.1797
SAs 5 0.01331 3.509 - 10714 7.133-107197  8.0000 0.1870
NM; 5 0.003659 3.088 - 107! 7.892-1071%6  8.0000 0.1703
NMa 5 0.004992 2.007 -1071° 1.402-10~°  8.0000 0.1791
NM; 5  0.01002 9.275 - 10717 5.305-10712°  8.0000 0.1872

Table 1: Numerical results for function fi(z), xo = 2.4
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method it |z2 — 1| |x3 — 2| |x4 — x3] CcOC CPU
BWR 4 1.169-1077 7.913-107% 3.482 107468  8.0000 0.1466
TP 4  4.631-10°° 1.388 .10~ 9.051-1073%  8.0000 0.1791
LW 4  1.146-107° 3.368 - 107 1.870-107%%  8.0000 0.1573
CTV 4 4.604-1077 7.137 10754 2.378-107%%%  8.0000 0.1267
KFS 4 8335.1077 1.688 - 10751 4.776 -1071%°  8.0000 0.1878
SA; 4 1.666-1077 8.463 - 10758 3.749 -107%°  8.0000 0.1092
SAj 4 1.277-10°° 1.309 - 10~ 1.597-1073%  8.0000 0.1154
SAs 4  2.861-107° 2.461-10716 7.368 - 107357 8.0000 0.1250
NA; 4 1.807-107% 1.424 - 1076 2.122-107%%%  8.0000 0.1098
NA; 4  3.675-107% 1.551-10793 1.565 - 10759 8.0000 0.1167
NAs 4 3.732.107% 3.035-10793 5.804 -107%%%  8.0000 0.1217
Table 2: Numerical results for function fa(x), xo = 2
method it |z2 — 1| |xs — 2| |xs — x3] CcOoC CPU
BWR 4 1.309-1077  3607-107°°  1.197-107**® 80000 0.5098
TP 4  3.698-107° 2.309-1042 5.335-107232  8.0000 0.6945
LW 4 8.888-107" 3.981-10748 6.454 - 10737 8.0000 0.6546
CTV 4  3304-1077 4.044 - 1072 2.038-10~**  8.0000 0.3713
KFS 4  6.043-107" 1.283 .10~ 5.290-1073%1  8.0000 0.5129
SA; 4 2.003-107" 4.387 -107%* 2.095-107%27  8.0000 0.4387
SA, 4  1.231-107° 1.183 - 10746 8.616 - 107257  8.0000 0.4555
SAs 4 2.577-107° 1.299 - 10743 5.423-1073%2  8.0000 0.4680
NA; 4 7.661-1078 5.877 -10758 7.045-107%%9  8.0000 0.4324
NA, 4 2.045-1077 6.310 - 1074 5.183-1074%6  8.0000 0.4449
NAs 4  2.873.107" 1.683 - 10752 2.337-1074*  8.0000 0.4561
Table 3: Numerical results for function fs(z), vo = —0.85
method it |x2 — x1] |x3 — x2| |xa — x3] COC CPU
BWR 5  0.0003841 1.191-10"23 1.031-10717  8.0000 1.287
TP 5 0.004192 2.623-10714 7.217-1071%  8.0000 1.755
LW 5 0.001381 6.188 - 1071 1.042 107 8.0000 1.670
CTV 5 0.001309 1.207 -1071° 6.501 - 107148 8.0000 0.8487
KFS 5 0.002338 3.569 - 10717 1.111-107*27  8.0000 1.121
SA; 5 0.0003173 6.294 - 10~2° 1.499-1071°°  8.0000 0.9860
SAs 5 0.0008464 2.980-10~2° 6.812-107152  8.0000 1.024
SAs 5 0.001185 1.403 - 10718 5.120-1071%8  8.0000 1.045
NA; 4 0.00005326 5.001 - 10732 3.020-1072%%  8.0000 0.8324
NA, 4 0.0001893 5.667 - 10727 3.669 -1072°7  7.9998  0.8655
NAs 5 0.0003838 2.853-1072%4 2.692-1071%  8.0000 1.016

Table 4: Numerical results for function fi(z), xo = 2.2
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method it |z2 — 1| |x3 — 2| |x4 — x3] CcOC CPU
BWR 4 1.442.107% 2.336-107% 1.109-10~7™  8.0000 0.7706
TP 4 4.848 .10 1.142 - 1079 1.079-1077¢  8.0000 0.8149
LW 4  1.780-10"% 1.473.107%° 3.245-1077%%  8.0000 0.7931
CTV 4 3.413-10712 5.284-107192  1.744.107%2°  8.0000 0.6146
KFS 4 3.292-10712 3.858-1071%2  1.373.107%'  8.0000 0.6708
SA; 4 2520-10712 3.396- 10719 3.694-107%°  8.0000 0.5984
SAj 4 3.429-10712 4.809-1071%2  7.206-107%1  8.0000 0.6047
SAs 4 3.158-10"1 2.247 10793 1.474-1077°  8.0000 0.6240
NA, 4 1.081-10712 1.679-1071%%  5.673-107%7  8.0000 0.6009
NA; 4 2120-10712 6.897 -1071%%  8.665-107%6  8.0000 0.6040
NAs 4 5.468-10712 3.426-1071%9  8.130-107%6  8.0000 0.6103
Table 5: Numerical results for function fs(z), xo = 8.9
method it |x2 — x1] |x3 — x2| |xa — x3] COC CPU
BWR 4 7.514-107'8 1.224-107%%°  6.081-107'"*  8.0000 3.417
TP 4 1.849-107"  1.545-107'°°  3.670-107''"  8.0000  3.369
LW 4 3.655-107*  7.069-107'°7  1.385-107'*° 80000 3.370
CTV 4 7514-107'%  7.743-1071%°  9.838-107!°7 8.0000 2.371
KFS 4 1527-107%°  2.733-107'°  2.880-107'*"®  8.0000 2.418
SA, 4 6.350-10"2 1.014-1071%  4.280-1073%  8.0000 2.356
SA» 4 3.942.107%° 1.406 -107*°¢  3.680-1072%®  8.0000 2.355
SA; 4 1.002-107%  6.273-107%%%  1.482-107'*8  8.0000 2.371
NA, 4 1.241-107%'  4.186-107'7°  6.997.107'3%®  8.0000 2.356
NA, 4 3.300-10"% 2.792-1071%¢  7.332.1071%27  8.0000 2.356
NA; 4 5347-107%  2.159-107'%*  1.525.107'3t 8.0000 2.371

Table 6: Numerical results for function fs(z), xo = 1.9

For some test functions (for instance, see fo, f5 and fg), it can be seen that all
the members of the new family converge faster to the root o than corresponding
members of family (2). CPU time for those families does not have significantly
different values for every considered test example. Numerical examples suggest that
the new family is very competitive with the existing optimal methods.

4. Conclusion

In this paper, we have proposed a new three-step iterative scheme for solving nonlin-
ear equations. If the first two steps are any optimal fourth-order methods based on
Newton’s iteration (1), then the third step provides the eighth-order of convergence
and preserves the optimal properties of the new method with the efficiency index
81/4 ~ 1.6818. In addition to the high efficiency, the new method has a simpler
structure than some recently developed methods, which is also one of the basic re-
quirements for producing a numerical algorithm. Several test examples confirm the
theoretical results and good numerical properties.
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