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Abstract. In this paper, we study q-Sturm-Liouville operators. We construct a space
of boundary values of the minimal operator and describe all maximal dissipative, maxi-
mal accretive, self-adjoint and other extensions of q-Sturm-Liouville operators in terms of
boundary conditions. Then we prove a theorem on completeness of the system of eigen-
functions and associated functions of dissipative operators by using the Lidskii’s theorem.
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1. Introduction

Quantum calculus was initiated at the beginning of the 19th century and recently
there has been great interest therein. The subject of q-difference equations has
evolved into a multidisciplinary subject [6]. There are several physical models in-
volving q-difference and their related problems (see [2, 5, 8, 9, 12, 23]). Many
works have been devoted to some problems of a q-difference equation. In partic-
ular, Adıvar and Bohner [1] investigated eigenvalues and spectral singularities of
non-self-adjoint q-difference equations of second order with spectral singularities.
Huseynov and Bairamov [16] examined the properties of eigenvalues and eigenvec-
tors of a quadratic pencil of q-difference equations. In [2], Annaby and Mansour
studied a q-analogue of Sturm-Liouville eigenvalue problems and formulated a self-
adjoint q-difference operator in a Hilbert space. They also discussed properties of
eigenvalues and eigenfunctions. One can see the reference [17] for some definitions
and theorems on q-derivative, q-integration, q-exponential function, q-trigonometric
function, q-Taylor formula, q-Beta and Gamma functions, Euler-Maclaurin formula,
etc.

Many problems in mechanics, engineering, and mathematical physics lead to
the study of completeness and basic properties of all or part of eigenvectors and
associated vectors corresponding to some operators. For instance, when we apply
the method of separation of variables to solve an equation like the reduced wave
equation or Helmholtz equation, we assume the solution expanded in a series of
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eigenfunctions of one of the variables. The coefficients depend upon the other vari-
able. We substitute the expansion into the equation, thereby obtaining ordinary
differential equations for the coefficients. The method relies upon completeness of
eigenfunctions corresponding to one of the variables [19]. Dissipative operators are
an important part of non-self-adjoint operators. In the spectral analysis of a dissipa-
tive operator, we should answer the question whether all eigenvectors and associated
vectors of a dissipative operator span the whole space or not. Many authors inves-
tigated the problem of completeness of the system of eigenvectors and associated
vectors of boundary value problems for differential and difference operators (see
[3, 4, 7, 13, 14, 15, 24]).

The organization of this paper is as follows: In Section 2, some preliminary con-
cepts related to q-difference equation and Lidskii’s theorem essentials are presented
for the convenience of the readers. In Section 3, we construct a space of boundary
values of the minimal operator and describe all maximal dissipative, maximal ac-
cretive, self-adjoint and other extensions of q-Sturm-Liouville operators in terms of
boundary conditions. Finally, in Section 4, we proved a theorem on completeness
of the system of eigenvectors and associated vectors of dissipative operators under
consideration.

2. Preliminaries

In this section, we introduce some of the required q-notations and Lidskii’s theorem
essentials.

Following the standard notations in [7] and [17], let q be a positive number with
0 < q < 1, A ⊂ R and a ∈ C. A q-difference equation is an equation that contains
q-derivatives of a function defined on A. Let y (x) be a complex-valued function on
x ∈ A. The q-difference operator Dq is defined by

Dqy (x) =
y (qx)− y (x)

µ (x)
, for all x ∈ A, (1)

where µ (x) = (q − 1)x. The q-derivative at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)

qnx
, x ∈ A, (2)

if the limit exists and does not depend on x. A right inverse to Dq, the Jackson
q-integration is given by∫ x

0

f (t) dqt = x (1− q)
∞∑

n=0

qnf (qnx) , x ∈ A, (3)

provided that the series converges, and∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f (t) dqt, a, b ∈ A. (4)



Completeness of the system of root functions of q-Sturm-Liouville operators 67

Let L2
q (0, a) be the space of all complex-valued functions defined on [0, a] such that

∥f∥ :=

(∫ a

0

|f (x)| dqx
)1/2

< ∞. (5)

The space L2
q (0, a) is a separable Hilbert space with the inner product

(f, g) :=

∫ a

0

f (x) g (x)dqx, f, g ∈ L2
q(0, a). (6)

Let A denote the linear non-self-adjoint operator in the Hilbert space with domain
D (A) . A complex number λ0 is called an eigenvalue of the operator A if there exists
a non-zero element y0 ∈ D (A) such that Ay0 = λ0y0; in this case, y0 is called the
eigenvector of A for λ0. The eigenvectors for λ0 span a subspace of D (A), called the
eigenspace for λ0.

The element y ∈ D (A) , y ̸= 0 is called a root vector of A corresponding to the
eigenvalue λ0 if (T − λ0I)

n
y = 0 for some n ∈ N. The root vectors for λ0 span a

linear subspace of D (A) , is called the root lineal for λ0. The algebraic multiplicity
of λ0 is the dimension of its root lineal. A root vector is called an associated vector
if it is not an eigenvector. The completeness of the system of all eigenvectors and
associated vectors of A is equivalent to the completeness of the system of all root
vectors of this operator.

An operator A is called dissipative if Im (Ax, x) ≥ 0, (∀x ∈ D (A)) . A bounded
operator is dissipative if and only if

ImA =
1

2i
(A−A∗) ≥ 0. (7)

Theorem 1 (see [25]). Let A be an invertible operator. Then −A is dissipative if
and only if the inverse operator A−1 of A is dissipative.

A linear bounded operator A defined on the separable Hilbert space H is said to
be of trace class (nuclear) if the series∑

j

(Aej , ej) (8)

converges and has the same value in any orthonormal basis {ej} of H. The sum

TrA =
∑
j

(Aej , ej) (9)

is called the trace of A.
The kernel G(x, t), x, t ∈ R, of the integral operator K on L2(R)

Kf =

∫
R
G(x, t)f (x) dx, f ∈ L2(R), (10)

is a Hilbert-Schmidt kernel if |G(x, t)|2 is integrable on R2, i.e.,
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∫
R2

|G(x, t)|2dxdt < ∞. (11)

If G(x, x) is measurable and summable, then it is called a trace-class kernel (see
[21],[22]). Recall that the integral operator with a trace class-kernel is nuclear.

Theorem 2 (see [10, 18]). If the dissipative operator A is the nuclear operator, then
the system of root functions is complete in H.

3. Dissipative extensions of q-difference operators

In this section, we describe all maximal dissipative, maximal accretive, self-adjoint
and other extensions of q-Sturm-Liouville operators. We will consider a q-Sturm-
Liouville operator

l (y) := −1

q
Dq−1Dqy (x) + w (x) y (x) , 0 ≤ x ≤ a < +∞, (12)

where w (x) is defined on [0, a] and continuous at zero. The q-Wronskian of y1 (x) , y2 (x)
is defined to be

Wq (y1, y2) (x) := y1 (x)Dqy2 (x)− y2 (x)Dqy1 (x) , x ∈ [0, a].

Let L0 denote the closure of the minimal operator generated by (12) and by D0

its domain. Besides, by D we denote the set of all functions y (x) from L2
q (0, a) such

that y (x) and Dqy (x) are continuous in [0, a) and l (y) ∈ L2
q (0, a); D is the domain

of the maximal operator L. Furthermore, L = L∗
0 [20]. Suppose that the operator

L0 has a defect index (2, 2), so the case of Weyl’s limit-circle occurs for l.
For every y, z ∈ D we have q-Lagrange’s identity ([2])

(Ly, z)− (y, Lz) = [y, z]a − [y, z]0

where [y, z]x := y (x)Dq−1z (x)−Dq−1y (x) z (x).
By u (x, λ) , v (x, λ) denote the solutions of the equation l (y) = λy satisfying the

initial conditions

u (0, λ) = cosα, Dq−1u (0, λ) = sinα, (13)

v (0, λ) = − sinα, Dq−1v (0, λ) = cosα, (14)

where α ∈ R. The solutions u (x, λ) and v (x, λ) form a fundamental system of
solutions of l (y) = λy and they are entire functions of λ (see [2]). Let u (x) =
u (x, 0) and v (x) = v (x, 0) be the solutions of the equation l (y) = 0 satisfying the
initial conditions

u (0) = cosα, Dq−1u (0) = sinα, (15)

v (0) = − sinα, Dq−1v (0) = cosα. (16)
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Lemma 1. For arbitrary y, z ∈ D, one has the equality

[y, z]x[u, v]x = [y, u]x[z, v]x − [y, v]x[z, u]x, 0 ≤ x ≤ +∞ (17)

Proof. Direct calculations verify equality (17).

Let us consider the functions y ∈ D satisfying the conditions

y (0) cosα+Dq−1y (0) sinα = 0, (18)

[y, u]a − h[y, v]a = 0, (19)

where Imh > 0, α ∈ R.

We recall that a triple (H,Γ1,Γ2) is called a space of boundary values of a closed
symmetric operator A on a Hilbert space H if Γ1,Γ2 are linear maps from D (A∗)
to H with equal deficiency numbers and

i) for every f, g ∈ D (A∗)

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H ,

ii) for any F1, F2 ∈ H there is a vector f ∈ D (A∗) such that Γ1f = F1, Γ2f =
F2 ([11]).

Let us define by Γ1,Γ2 linear maps from D to C2 by the formula

Γ1y =

(
−y (0)
[y, u]a

)
, Γ2y =

(
Dq−1y (0)
[y, v]a

)
, y ∈ D. (20)

For any y, z ∈ D, using Lemma 1, we have

(Γ1y,Γ2z)C2 − (Γ2y,Γ1z)C2 = −y (0)Dq−1z (0) + z (0)Dq−1y (0)

+[y, u]a[z, v]a − [z, u]a[y, v]a

= [y, z] (a)− [y, z] (0)

= (Ly, z)− (y, Lz) . (21)

Theorem 3. The triple
(
C2,Γ1,Γ2

)
defined by (20) is a boundary space of the

operator L0.

Proof. The proof is obtained from (21) and the definition of the boundary value
space.

The following result is obtained from Theorem 1.6 in Chapter 3 of [11].

Theorem 4. For any contraction K in C2 the restriction of the operator L to the
set of functions y ∈ D satisfying either

(K − I) Γ1y + i (K + I) Γ2y = 0 (22)

or
(K − I) Γ1y − i (K + I) Γ2y = 0 (23)
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is a maximal dissipative and accretive extension of the operator L0, respectively.
Conversely, every maximally dissipative (accretive) extension of L0 is the restriction
of L to the set of functions y ∈ D satisfying (22)((23)), and the contraction K is
uniquely determined by the extension. Conditions (22)((23))) define self-adjoint
extensions if K is unitary.

In particular, boundary conditions

cosαy (0) + sinαDq−1y (0) = 0 (24)

[y, u]a − h[y, v]a = 0 (25)

with Imh > 0, describe the maximal dissipative (self-adjoint) extensions of L0 with
separated boundary conditions.

We know that all eigenvalues of a dissipative operator lie in the closed upper
half-plane. By virtue of Theorem 4, all the eigenvalues of L lie in the closed upper
half-plane Imλ ≥ 0.

4. Completeness theorem for the q-difference operators

Theorem 5. The operator L has no any real eigenvalue.

Proof. Suppose that the operator L has a real eigenvalue λ0. Let η0 (x) = η (x, λ0)
be the corresponding eigenfunction. Since

Im (Lη0, η0) = Im
(
λ0 ∥η0∥2

)
= Imh ([η0, v]a)

2
,

we get [η0, v]a = 0. By boundary condition (25), we have [η0, u]a = 0. Thus

[η0 (t, λ0) , u]a = [η0 (t, λ0) , v]a = 0. (26)

Let ξ0 (t) = v (t, λ0) . Then

1 = [η0, ξ0]a = [η0, u]a[ξ0, v]a − [η0, v]a[ξ0, u]a.

By equality (26), the right-hand side is equal to 0. This contradiction proves Theo-
rem 5.

Definition 1. Let f be an entire function. If for each ε > 0 there exists a finite
constant Cε > 0, such that

|f (λ) | ≤ Cεe
ε|λ|, λ ∈ C, (27)

then f is called an entire function of order ≤ 1 of growth and minimal type [10].

Let φ (x, λ) be a single linearly independent solution of the equation l (y) = λy,
and

τ1 (λ) : = [φ (x, λ) , u (x)]a,

τ2 (λ) : = [φ (x, λ) , v (x)]a,

τ (λ) : = τ1 (λ)− hτ2 (λ) .
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It is clear that

σp (L) = {λ : λ ∈ C, τ (λ) = 0} ,

where σp (L) denotes the set of all eigenvalues of L. Since φ (a, λ) and Dq−1φ (a, λ)
are entire functions of λ of order ≤ 1

2 (see [2]), consequently, τ (λ) have the same
property. Then τ (λ) is entire functions of order ≤ 1 of growth, and of minimal type.
It is clear that all zeros of τ (λ) (all eigenvalues of L) are discrete and possible limit
points of these zeros (eigenvalues of L) can only occur at infinity.

For y ∈ D (L) , Ly (x) = f (x)
(
x ∈ (0, a), f (x) ∈ L2

q(0, a)
)
is equivalent to

the nonhomogeneous differential equation l (y) = f (x) (x ∈ (0, a)) , subject to the
conditions

cosαy (0) + sinαDq−1y (0) = 0,

[y, u]a − h[y, v]a = 0, Imh > 0.

By Theorem 5, there exists an inverse operator L−1. In order to describe the
operator L−1, we use the Green’s function method. We consider the functions v (x)
and θ (x) = u (x) − hv (x) . These functions belong to the space L2

q (0, a). Their
Wronskian Wq (v, θ) = −1.

Let

G (x, t) =

{
v (x) θ (t) , 0 ≤ x ≤ t ≤ a

v (t) θ (x) , 0 ≤ t ≤ x ≤ a
. (28)

Let us consider the integral operator K defined by the formula

Kf =

∫ a

0

G (x, t) f (t)dqt,
(
f ∈ L2

q(0, a)
)
. (29)

It is evident that K = L−1. Consequently, the root lineals of the operators L
and K coincide and, therefore, the completeness in L2

q(0, a) of the system of all
eigenfunctions and associated functions of L is equivalent to the completeness of
those for K.

We obtain that G (x, t) is a Hilbert-Schmidth kernel since v, θ ∈ L2
q (0, a). Fur-

thermore, G (x, t) is measurable and integrable on (0, a). Hence K is of trace class.
Since L is a dissipative operator, −K is a dissipative operator by Theorem 1. Thus
all conditions are satisfied for the Lidskii’s theorem. Hence we have;

Theorem 6. The system of all root functions of −K (also K) is complete in L2
q

(0, a).

From all above conclusions, we have;

Theorem 7. All eigenvalues of the operator L lie in the open upper half-plane
and they are purely discrete. The limit points of these eigenvalues can only occur
at infinity. The system of all eigenfunctions and associated functions of the L is
complete in the space L2

q (0, a).
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