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Abstract. A braided E-system is a version of a braided crossed module for rings. In
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1. Introduction

The relationship among crossed modules, extensions of groups and strict categorical
groups was presented in the works of Brown et al. Brown - Spencer [4] proved the
equivalence between the category of crossed modules (the morphisms are morphisms
of crossed modules) and the category of strict categorical groups (the morphisms are
strict monoidal functors). The notion of group extension of the type of a crossed
module is a generalization of the notion of group extension. The problem of group
extensions of the type of a crossed module was dealt with by Brown and Mucuk in
[5].

The notion of a braided crossed module appeared in the works of Brown - Gilbert
[3], and Joyal and Street [8]. In [8], the authors showed that braided crossed modules
are determined by braided strict categorical groups. The problem of classification
of braided crossed modules is solved by Quang - Phung - Cuc in [17], which is
a consequence of the classification of braided Γ-modules. The basic notions and
results on braided Γ-graded categorical groups and fibred braided categorical groups
are studied by Cegarra et al. in [7], [6].

The notion of a crossed module has many versions, such as crossed modules over
k-algebras, crossed bimodules, E-systems. Crossed modules over k-algebras which is
k-split with the same kernel M and coker B were classified by Baues - Minian in [1]
thanks to Hochschild cohomology H3

Hoch(B,M). Baues - Pirashivili [2] replaced the
field k with a commutative ring K, then crossed modules over K-algebras are termed
crossed bimodules. In particular, when K = Z, one obtains crossed bimodules over
rings. The class of E-systems, which is larger than the class of crossed bimodules
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over rings, is classified by Quang - Cuc in [14] thanks to strict Ann-categories. In
this paper, we consider E-systems with a braiding.

The paper is organized as follows. In Section 3, we prove that each braided
regular Ann-category is braided Ann-equivalent to a braided strict Ann-category
(Theorem 2). Then, we introduce the notion of a braided E-system and show the
determination of braided regular E-systems and braided strict Ann-categories. Then,
we indicate the relation between these notions and the notion of internal category
in the commutative rings. We also prove in Section 4 that the category of braided
regular E-systems is equivalent to the category of braided strict Ann-categories and
almost strict braided Ann-functors (Theorem 3). A morphism in the category of
braided E-systems consists of a morphism (f1, f0) :M→M′ of braided E-systems
and an element of the group of symmetric 2-cocycles Z2

Shab(π0M, π1M′) in the
sense of [16]. We also give a result on E-systems (Theorem 4), which contains a
corresponding theorem in [14]. (Braided) regular E-systems having the same two
invariants, π0M, π1M, are classified by means of the group of Shukla cohomology
H3
Sh (H3

Shab). In Section 5, we construct the theory of obstructions of ring extension
of the type of a strong E-system. In the last section, we apply the results of Section
4 to solve the problem of commutative ring extensions.

2. Preliminaries

2.1. Braided Ann-categories

The notions of Ann-category and of Ann-functor can be found in [12, 13].

Definition 1 ([15]). A braided Ann-category A is an Ann-category A together with
a braiding c = cX,Y : X ⊗ Y → Y ⊗ X such that (A,⊗,a, c, (1, l, r)) is a braided
monoidal category and c satisfies the diagram

A(X ⊕ Y ) AX ⊕ AY

(X ⊕ Y )A XA⊕ Y A

-
L̆A
X,Y

?
c

?

c⊕c

-
R̆A

X,Y

(1)

with c0,0 = id.

A braidedAnn-functor (F, F̆ , F̃ , F∗) : A → A′ between two braided Ann-categories
is an Ann-functor which is compatible with braidings. If F is an equivalence of
categories, then the (braided) Ann-functor (F, F̆ , F̃ , F∗) is said to be a (braided)
Ann-equivalence.

Each braided Ann-category A determines three invariants [16]:
- the set R = π0A of isomorphic classes of objects in A is a commutative ring,
- the set M = π1A of automorphisms of 0 is a π0A-bimodule with the same two-
sided actions,
- an element hA ∈ H3

ab(R,M) (this group is mentioned in Section 3).
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Let R be a ring andM an R-bimodule. From the definition of Mac Lane cohomol-
ogy of rings [10], we obtain the description of elements in the group Z3

MacL(R,M).
Each normalized 3-cocycle k of R with coefficients in M consists of a quadruple
(σ, α, λ, ρ) of the maps:

σ : R4 →M ; α, λ, ρ : R3 →M

satisfying the conditions (for details, see Section 2.3 [13]). For each k ∈ Z3
MacL(R,M),

Quang [13] constructed an Ann-category denoted by S =
∫
(R,M, k). The objects

of S are elements of R and its morphisms are automorphisms, (s, a) : s → s, s ∈
R, a ∈M . The composition of morphisms is given by

(s, a) ◦ (s, b) = (s, a+ b).

Two operations on S are given by

s⊕ t = s+ t, (s, a)⊕ (t, b) = (s+ t, a+ b),

s⊗ t = st, (s, a)⊗ (t, b) = (st, sb+ at),

where s, t ∈ R, a, b ∈ M . The unit constraints of S are identities. The 3-cocycle
k = (ξ, η, α, λ, ρ) defines other constraints.

In the case when R is commutative, two-sided actions on M are equal, and
h = (k, β) ∈ Z3

ab(R,M) (see Section 3), then S =
∫
(R,M, h) is a braided Ann-

category whose braiding is induced by the function β : R2 → M . The braided
Ann-category

∫
(π0A, π1A, hA), which is equivalent to A, is called a reduction of A.

We now recall some results on braided Ann-functors from [16]. Each braided

Ann-functor (F, F̆ , F̃ ) : A → A′ induces one SF of their reductions. A functor
F :

∫
(R,M, h)→

∫
(R′,M ′, h′) is of type (p, q) if

F (s) = p(s), F (s, a) = (p(s), q(a))

where p : R → R′ is a ring homomorphism and q : M → M ′ is a group homomor-
phism such that

q(sa) = p(s)q(a), s ∈ R, a ∈M.

One can regardM ′ as an R-bimodule with the action sa′ = p(s)a′, then q is a homo-
morphism of R-bimodules. In this case we say that (p, q) is a pair of homomorphism,
and the function

ζ = q∗h− p∗h′ (2)

is an obstruction of F , where p∗, q∗ are canonical homomorphisms

Z3
ab(R,M)

q∗−→ Z3
ab(R,M

′)
p∗←− Z3

ab(R
′,M ′).

Denote by
HomBrAnn

(p,q) [S,S ′]

the set of all homotopy classes of braided Ann-functors of type (p, q) from S to S ′.
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Theorem 1 ([16, Theorem 5.5]). A functor F :
∫
(R,M, h) →

∫
(R′,M ′, h′) of

type (p, q) realizes a braided Ann-functor if and only if the obstruction ζ = 0 in
H3
ab(R,M

′). Then, there exists a bijection

HomBrAnn
(p,q) [S,S ′]↔ H2

ab(R,M
′).

2.2. E-systems

The notion of E-system is presented in [14]. For convenience, we recall some notions
and terminologies. The category of E-systems and their morphisms is equivalent to
the homotopy category of strict Ann-category and single Ann-functors. According
to Mac Lane [10], we call a bimultiplication of a ring B a pair of mappings a →
ζa, a→ aζ of B into itself which satisfy the rules

ζ(a+ b) = ζa+ ζb, (a+ b)ζ = aζ + bζ,

ζ(ab) = (ζa)b, (ab)ζ = a(bζ), a(ζb) = (aζ)b,

for all elements a, b ∈ B. The sum ζ+ω and the product ζω of two bimultiplications
ζ and ω are defined by the equations for all a in B

(ζ + ω)a = ζa+ ωa, a(ζ + ω) = aζ + aω,

(ζω)a = ζ(ωa), a(ζω) = (aζ)ω.

The set of all bimultiplications of B is a ring denoted by MB. For each element
c of B, an inner bimultiplication τc is defined by

τcb = cb, bτc = bc, b ∈ B.

The kernel CB of the homomorphism τ : B →MB is a two-sided ideal in B consisting
of elements c ∈ B such that cb = bc = 0 for all b ∈ B. We call CB a bicenter of B.
The bimultiplications σ and σ′ are called permutable if for every a ∈ B,

σ(aσ′) = (σa)σ′, σ′(aσ) = (σ′a)σ. (3)

The quotient ring PB = MB/τB is called the ring of outer bimultiplication of B,
and a ring homomorphism ψ : R → PB is called regular if ψ(1) = 1 and two any
elements of ψ(R) are permutable. Then, CB is an R-bimodule under the operations

xc = (ψx)c, cx = c(ψx), c ∈ CB , x ∈ R.

Definition 2 ([14]). (i) An E-system is a quadruple M = (B,D, d, θ), where d :
B → D, θ : D →MB are ring homomorphisms satisfying:

E1. θ ◦ d = τ ,
E2. d(θxb) = xd(b), d(bθx) = d(b)x, x ∈ D, b ∈ B.
(ii) An E-system (B,D, d, θ) is termed regular if θ is an 1-homomorphism (a

homomorphism carries the identity to the identity), and elements of θ(D) are per-
mutable.

(iii) A morphism (f1, f0) : (B,D, d, θ)→ (B′, D′, d′, θ′) of E-systems consists of
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ring homomorphisms f1 : B → B′, f0 : D → D′ such that
H1. f0d = d′f1,
H2. f1(θxb) = θ′f0(x)f1(b), f1(bθx) = f1(b)θ

′
f0(x)

, for all x ∈ D, b ∈ B.

In this paper, an E-system (B,D, d, θ) is sometimes denoted by B
d→ D, or

B → D. The following result follows from the definition of an E-system.

Proposition 1. LetM = (B,D, d, θ) be a regular E-system. Then, Kerd ⊂ CB and
Kerd is a Cokerd-bimodule with the actions

sa = θx(a), as = (a)θx, a ∈ Kerd, x is a representative of r ∈ Cokerd.

We denote the groups CokerdandKerd by π0Mandπ1M, respectively.

3. Braided E-systems and braided strict Ann-categories

In this section, we study the relationship among braided strict Ann-categories,
braided regular E-systems and internal categories in the commutative rings.

Definition 3. (i) An Ann-category is strict if its constraints are identities and for
each object there is a strict inverse with respect to ⊕ (x⊕ y = 0).

(ii) A braided Ann-category A is strict if it is a strict Ann-category.

According to [13], an Ann-category A is termed regular if the commutativity
constraint with respect to ⊕, c+X,Y : X ⊕Y → Y ⊕X, satisfies the condition c+X,X =
idX . A braided Ann-category A is called a braided regular Ann-category if it is a
regular Ann-category. The following theorem is necessary to classify braided regular
E-systems (Definition 4).

Theorem 2. Each braided regular Ann-category is braided Ann-equivalent to a
braided strict Ann-category.

Proof. Let A be a braided regular Ann-category with the braiding c. According to
[21], A is Ann-equivalent to an Ann-category A′ whose constraints are strict. Paper
[21] is only published in the form of a short report (in Communication of the Moscow
Mathematical Society). This statement can be proved analogously to [18] (Lemmas
13, 14, Proposition 15). We sketch this proof as follows.

1. Let A be a regular Ann-category whose reduction one is
∫
A =

∫
(Π, C, k). By

the theorem on realization of the obstruction ([10], Theorem 8) there exists a ring B
with the bicenter CB = C and a ring homomorphism ψ : Π→ PB, (PB =MB/τB),
such that the obstruction of ψ is k. Consider the category MB whose objects are
elements of the ring MB , and if φ, λ are bimultiplications of B, then let us denote:

Hom(φ, λ) = {c ∈ B | λ = τc + φ}.

The composition of two arrows is the operation + in B. The operations ⊕ and ⊗
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are given by:

φ⊕ λ = φ+ λ, φ, λ ∈MB

c⊕ d = c+ d, c, d ∈ B
φ⊗ λ = φ ◦ λ, (the composition of two maps)
c⊗ d = cd+ cλ+ φd, where c : φ→ φ′, d : λ→ λ′

With these two operations,MB becomes an Ann-category with the constraints natu-
rally determined to be strict. Then, the reduced Ann-category ofMB is

∫
(PB , C, h),

where [ψ∗h] = [k] ∈ H3
MacL(Π, C).

2. For the Ann-category H = MB and the homomorphism ψ, we construct a
braided strict Ann-category Hψ as follows:

Ob(Hψ) = {(x,X)| x ∈ Π, X ∈ ψ(x)},
Hom((x,X), (x, Y )) = {x} ×HomH(X,Y ).

Two operations ⊕ and ⊗ on objects and on morphism in G are given by

(x,X)⊕ (y, Y ) = (x+ y,X ⊕ Y ), (x, u)⊕ (y, v) = (x+ y, u+ v),

(x,X)⊗ (y, Y ) = (xy,X ⊗ Y ), (x, u)⊗ (y, v) = (xy, u⊗ v).

The zero object and the unit object of Hψ are (0, O) and (1, I), respectively, where O
and I are the zero object and the unit object ofH, respectively. Since the constraints
in H are strict, so are the reducing constraints in Hψ. Further, the inverse of the
object (x,X) is (−x,−X), so Hψ is a strict Ann-category. This Ann-category is
Ann-equivalent to A.

3. Finally, let c be the braiding in A and (F, F̆ , F̃ , F∗) : Hψ → A the above
Ann-equivalence. According to Proposition 3.9 [16], F induces a braiding c′ in Hψ
by

F (c′X,Y ) = (F̃Y,X)−1 ◦ cX,Y ◦ F̃X,Y
thus F is a braided Ann-equivalence.

The construction of the notion of braided E-systems is similar to that of braided
crossed modules of Brown and Gilbert [3] (Example on p. 55), of Joyal and Street
[8] (p. 47).

Definition 4. A braided E-system consists of an E-system M = (B,D, d, θ) and a
function η : D ×D → B called a braiding satisfying the following conditions:

B1. d(η(x, y)) = yx− xy,
B2. η(db, y) = θy(b)− bθy, η(x, db) = −η(db, x),
B3. η is a biadditive function,
B4. η(x, yz) = η(x, y)θz + θyη(x, z),
B5. η(xy, z) = η(x, z)θy + θxη(y, z),

for all x, y, z ∈ D, b ∈ B.
A braided E-system is termed regular if it is a regular E-system.

Proposition 2. Let (B,D, d, θ, η) be a braided regular E-system.
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(i) The function η is normalized in the sense that η(x, y) = 0 if either x or y is
equal to 0 or 1.

(ii) Coker d is a commutative ring and two-sided actions of Coker d on Ker d as
in Proposition 1 are coincident.

Proof. (i) It follows from conditions B3 - B5 in Definition 4.

(ii) It follows from condition B1 that Coker d is commutative. For a ∈ Ker d and
s ∈ Coker d, then Coker d acts on Ker d by

sa = θx(a), as = (a)θx, x ∈ s.

By condition B2 and the normality of η, one has sa = as.

Example 1. For any ring extension

0→ B
j→ E

p→ R→ 0,

the E-system (B,E, j, τ), where τ is given by multiplications, is a regular E-system
if p is a 1-homomorphism. It is a braided E-system with a braiding η if and only if
R is a commutative ring and η is given by

η(x, y) = {x, y} = yx− xy, x, y ∈ E. (4)

According to [14], each regular E-systemM = (B,D, d, θ) defines a strict Ann-
category AM associated to the E-systemM. Ob(AM) = D and for two objects x, y
of AM, then

Hom(x, y) = {b ∈ B | y = d(b) + x}.

The composition of morphisms is given by the addition in B. Two operations ⊕,⊗
on objects are given by the operations +,× on the ring D. For the morphisms, we
set

(x
b→ y)⊕ (x′

b′→ y′) = (x+ x′
b+b′−→ y + y′). (5)

(x
b→ y)⊗ (x′

b′→ y′) = (xx′
bb′+bθx′+θxb

′

−→ yy′). (6)

The fact that elements of θ(D) are permutable is equivalent to the associativity of
the operation ⊗ on morphisms, so one can choose the associativity constraint a to
be strict. The remaining constraints of AM are strict. Now, ifM has a braiding η,
then AM is a braided strict Ann-category whose braiding c is given by

cx,y = η(x, y) : xy → yx.

Indeed, condition B1 in Definition 4 shows that cx,y is a morphism inAM. Condition
B3 shows that c satisfies diagram (1) in the definition of braided Ann-category. By
conditions B4, B5, the braiding c is compatible with the associativity constraint a.
The naturality of c follows from the conditions B2, B3.

Conversely, for any braided strict Ann-category (A,⊕,⊗) one can define a braided
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regular E-systemMA = (B,D, d, θ). Indeed, let

D = Ob(A), B = {0 b−→ x| x ∈ D}.

Then, B and D are rings with the units, and their corresponding operations are
given by

b+ c = b⊕ c, bc = b⊗ c,
x+ y = x⊕ y, xy = x⊗ y.

The homomorphisms d : B → D and θ : D →MB are defined by

d(0
b−→ x) = x,

θy(0
b−→ x) = (0

idy⊗b−−−−→ yx), (0
b−→ x)θy = (0

b⊗idy−−−−→ xy).

The braiding of E-systemMA is given by

η(x, y) = cx,y ⊕ id−xy, x, y ∈ D.

Definition 5. An E-system (B,D, d, θ, η) is strong if θ is a 1-homomorphism and

θxb = bθx, x ∈ D, b ∈ B. (7)

Example 2. In Example 1, the braided E-system (B,E, j, τ, {, }) is strong if and
only if R is commutative and B ⊂ Z(E), where the center Z(E) consists of elements
z ∈ E such that zx = xz for all x ∈ E.

Proposition 3. LetM = (B,D, d, θ, η) be a strong braided E-system.
(i)M is a regular E-system.
(ii) d(B) ⊂ Z(D).
(iii) B is a commutative ring.
(iv) In the Ann-category AM associated to the E-system M, the braiding con-

straint induces a function β : (Coker d)2 → Ker d, and b ⊗ b′ = b′ ⊗ b for any two

morphisms x
b→ y , x′

b′→ y′ in Mor(AM).

Proof. (i) For all x, y ∈ D,

θx(bθy) = θx(θyb) = θxyb = bθxy = (bθx)θy = (θxb)θy.

Thus, θx, θy are permutable.
(ii) It follows from (7) and E2 that

(db)x = x(db), x ∈ D,

that means Imd ⊂ Z(D).
(iii) and (iv) According to condition B2 in Definition 4,

η(db, y) = 0 = η(x, db). (8)
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For (x
b−→ x′), (y

c−→ y′) two morphisms in the associated Ann-category AM, the
following diagram commutes by the naturality of braiding constraint c,

xy yx

x′y′ y′x′.

-cx,y

?

b⊗c

?

c⊗b

-
cx′,y′

It follows from (6) that

b⊗ c = bc+ bθy + θxc,

c⊗ b = cb+ cθx + θyb.

By (7), two above equalities imply

b⊗ c− c⊗ b = bc− cb.

Note that x′ = d(b) + x, y′ = d(c) + y. Since η is biadditive ( condition B3) and by
(8), then η(x′, y′) = η(x, y). It follows that cx′,y′ = cx,y. This defines a function
β : Coker d× Coker d→ Ker d by

β(r, s) = cx,y, x ∈ r, y ∈ s.

The above commutative diagram leads to b⊗ c− c⊗ b = bc− cb = 0, that is, the ring
B is commutative and the tensor product of morphisms in A is commutative.

Obviously, one has the following result.

Proposition 4. If A a braided strict Ann-category whose operation ⊗ on morphisms
is aben, then the associated braided E-systemMA is strong.

The above construction leads to the relation to the notion of internal category
in the commutative rings in the sense of [11].

Proposition 5. Each braided strict Ann-category associated with a strong braided
E-system (B,D, d, θ), where D is commutative, is an internal category in the com-
mutative rings.

Proof. Let us prove that each strict Ann-category is an internal category in the
rings.

Let M = (B,D, d, θ) be a strong braided E-system and AM its associated
braided strict Ann-category. Then, by Proposition 3, B is a commutative ring and
is a D-module with the same two-sided actions

xb = θx(b) = (b)θx = bx, b ∈ B, x ∈ D.

Since elements of θ(D) are permutable, then there exists a semidirect product BoD
with two operations:

(b, x) + (b′, x′) = (b+ b′, r + r′),
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(b, x).(b′, x′) = (b.b′ + bx′ + xb′, rr′).

The exact sequence of rings

0→ B
i→ B oD

p

�
e
D → 0, (9)

for e(x) = (0, x) is split. The ring homomorphisms s, t : B oD → D are given by
s(b, x) = x, t(b, x) = d(b) + x. Clearly, se = te = idD. So (B o D, s, t, e) is an
internal category in the commutative rings.

Remark 1. It follows from the above proof that each strong braided E-system (B,D,
d, θ), where D is commutative, is a C-crossed module, where C is the category of the
commutative rings. In general, a C-crossed module is not a strong braided E-system
since D-modules are not unita.

4. Classification thoerems

In order to classify braided regular E-systems, we first indicate the determination
of braided Ann-functors corresponding to morphisms of braided E-systems. This
relates to Mac Lane cohomology groups ([9]) and the group Z2

ab(R,M) of a com-
mutative ring R. Quang and Hanh [16] define groups Hn

ab(R,M) (n = 1, 2, 3) of
a commutative ring R and an R-module M in terms of the complex Cab(R,M) as
follows

0 −→ C1
ab(R,M)

∂−→ C2
ab(R,M)

∂−→ Z3
ab(R,M) −→ 0,

where C1
ab(R,M) consists of all normalized maps t : R→M , C2

ab(R,M) consists of
all normalized maps µ, ν : R2 →M , and Z3

ab(R,M) consists of pairs (h, β) in which
h ∈ Z3

MacL(R,M) and β : R→M satisfies conditions of a 3-cocycle:

α(x, y, z)− α(x, z, y) + α(z, x, y) + xβ(y, z)− β(xy, z) + yβ(x, z) = 0,

α(x, y, z)− α(y, x, z) + α(y, z, x)− yβ(x, z) + β(x, yz)− zβ(x, y) = 0,

β(x, y)− β(x, y + z) + β(x, z) = ρ(y, z, x)− λ(x, y, z),

for all x, y, z ∈ R.
For each t ∈ C1

ab(R,M), the coboundary ∂abt is given by

∂abt = ∂MacLt,

and for each g = (µ, ν) ∈ C2
ab(R,M), the coboundary ∂abg is given by

∂abg = (∂MacLg, β),

where β(x, y) = ν(x, y)− ν(y, x).

Remark 2. (i) If the function η of a Mac Lane 3-cocycle k = (ξ, η, α, λ, ρ) satisfies
the regular condition η(x, x) = 0, for all x ∈ R, then k is a Shukla 3-cocycle [19].
The group of such (k, β) is denoted by Z3

Shab(R,M).
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(ii) When n = 2 then Z2
Shu(R,M) = Z2

MacL(R,M).

Definition 6. A morphism (f1, f0) : (B,D, d, θ, η) → (B′, D′, d′, θ′, η′) of braided
E-systems is a morphism of E-systems and it satisfies

H3. f1(η(x, y)) = η′(f0(x), f0(y)), x, y ∈ D.

Lemma 1. Let (f1, f0) : (B,D, d, θ, η) → (B′, D′, d′, θ′, η′) be a morphism of a
braided regular E-system.

(i) There is a functor F : AB→D → AB′→D′ defined by

F (x) = f0(x), F (b) = f1(b), x ∈ ObA, b ∈ MorA.

(ii) Natural isomorphisms F̆x,y : F (x + y) → F (x) + F (y) and F̃x,y : F (xy) →
F (x)F (y) together with F is a braided Ann-functor if and only if F̆x,y = µ(x, y),

F̃x,y = ν(x, y), for (µ, ν) ∈ Z2
ab(Coker d,Ker d′).

Proof. (i) Every element b ∈ B can be considered as a morphism (0
b→ db) in

A. Then, (F (0)
F (b)→ F (db)) is a morphism in A′. By the construction of the Ann-

category associated to an E-system, F is a functor.
(ii) We define natural isomorphisms

F̆x,y : F (x+ y)→ F (x) + F (y), F̃x,y : F (xy)→ F (x)F (y)

such that F = (F, F̆ , F̃ ) becomes an Ann-functor. Since f0 is a ring homomorphism,

F (x) + F (y) = F (x+ y),

hence d′(F̆x,y) = 0. Analogously, d′(F̃x,y) = 0. Thus,

F̆x,y, F̃x,y ∈ Kerd′ ⊂ CB′ . (10)

Besides, since f1 is a ring homomorphism and by (5),

F (b⊕ b′) = F (b+ b′) = F (b) + F (b′) = F (b)⊕ F (b′).

Then, the commutativity of the diagram

F (x+ y) F (x) + F (y)

F (x′ + y′) F (x′) + F (y′)

-F̆x,y

?

F (b⊕b′)

?

F (b)⊕F (b′)

-
F̆x′,y′

is equivalent to F̆x,y = F̆x′,y′ , where x
′ = d(b) + x, y′ = d(b′) + y. This defines a

function µ : (Coker d)2 → Ker d′ by

µ(x, y) = F̆x,y.
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The fact that homomorphisms f0, f1 satisfy H2 is equivalent to

F (b⊗ b′) = F (b)⊗ F (b′).

The naturality of F̃ is equivalent to the relation F̃x,y = F̃x′,y′ , where x
′ = d(b) +

x, y′ = d(b′) + y. This defines a function ν : (Coker d)2 → Ker d′ by

ν(x, y) = F̃x,y.

Since F (0) = 0′, F (1) = 1′, then the compatibility of (F, F̆ ), (F, F̃ ) with unit con-

straints is equivalent to the normality of µ, ν. The compatibility of (F, F̃ ) with
associativity constraints is equivalent to the relation

θ′F (x)F̃y,z + F̃x,yz = F̃xy,z + F̃x,yθF (z).

In terms of the homomorphism F : D → D′, the abelian group Ker d′ is a Coker d-
bimodule under the actions

rb′ = θ′F (x)b
′, b′r = (b′)θ′F (x), (11)

where x is a representative of r ∈ Coker d, b′ ∈ Ker d′. Together with (10) and (11),
one has

rν(s, t)− ν(rs, t) + ν(r, st)− ν(r, s)t = 0. (12)

Similarly, the compatibility of F with other constraints leads to

µ(s, t)− µ(r + s, t) + µ(r, s+ t)− µ(r, s) = 0, (13)

µ(s, r)− µ(r, s) = 0, (14)

ν(r, s+ t)− ν(r, s)− ν(r, t) + rµ(s, t)− µ(rs, rt) = 0, (15)

ν(r + s, t)− ν(r, t)− ν(s, t) + µ(r, s)t− µ(rt, st) = 0. (16)

Relations (12)–(16) show that (µ, ν) ∈ Z2
MacL(Coker d,Ker d′). The compatibility of

F̃ with the braiding constraint c is given by

F (xy) F (x)F (y)

F (yx) F (y)F (x).

-F̃x,y

?
F (cx,y)

?
c′
Fx,Fy

-
F̃y,x

(17)

This diagram implies

ν(r, s) + η′(f0(x), f0(y)) = f1η(x, y) + ν(s, r),

where r = x, s = y. It follows from the condition H3 that ν(r, s) = ν(s, r). This
means that (µ, ν) ∈ Z2

ab(Coker d,Ker d′).
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Definition 7. (i) An Ann-functor (F, F̆ , F̃ ) : A → A′ is almost strict if the functor
F satisfies the following conditions for x, y ∈ ObA, b, c ∈ MorA:

S1. F (x)⊕ F (y) = F (x⊕ y),
S2. F (x)⊗ F (y) = F (x⊗ y),
S3. F (b)⊕ F (c) = F (b⊕ c),
S4. F (b)⊗ F (c) = F (b⊗ c).
(ii) A braided Ann-functor (F, F̆ , F̃ ) is almost strict if it is a regular Ann-functor

and:
S5. F̃x,y = F̃y,x.

The braided Ann-functor mentioned in Lemma 1 is almost strict. Note that
if A,A′ are Ann-categories associated to regular E-systems and F : A → A′ is a
functor, then the condition S3 always holds, which follows from the preserving of
composition of morphisms.

Denote by BrEsyst the category of braided regular E-systems whose morphisms
are quadruple (f1, f0, µ, ν), where (f1, f0) is a morphism of braided E-systems and
(µ, ν) ∈ Z2

ab(Coker d,Ker d′). Composition of morphisms is given by

(f ′1, f
′
0, µ

′, ν′) ◦ (f1, f0, µ, ν) = (f ′1f1, f
′
0f0, (f

′
1)∗µ+ f∗0µ

′, (f ′1)∗ν + f∗0 ν
′).

This definition is compatible with the composition of braided Ann-functors.

Lemma 2. Let A and A′ be two braided strict Ann-categories associated to braided
regular E-systems (B,D, d, θ, η) and (B′, D′, d′, θ′, η′), respectively. Let (F, F̆ , F̃ ) :
A → A′ be a regular braided Ann-functor. The quadruple (f1, f0, µ, ν), where

f0(x) = F (x), f1(b) = F (b), µ(x, y) = F̆x,y, ν(x, y) = F̃x,y,

for b ∈ B, x, y ∈ D,x, y ∈ Coker d, is a morphism in the category BrEsyst.

Proof. We prove that (f1, f0) is a morphism of a braided regular E-system and
(µ, ν) ∈ Z2

ab(Coker d,Ker d′). It follows from S1 and S2 in Definition 7 that f0 is a
ring homomorphism. The condition S3 shows that f1 is a homomorphism of additive
groups.

For b ∈ B, then (0
b→ db) is a morphism in A, and hence (F (0)

F (b)→ F (db)) is
a morphism in A′. The condition F (0) = 0 is just H1: d

′f1(b) = f0(db). By the
definition of the operation ⊗, the condition S4 is equivalent to

f1(bb
′) + f1(bθx′) + f1(θxb

′) = f1(b)f1(b
′) + f1(b)θ

′
f0(x′) + θ′f0(x)f1(b

′). (18)

By taking b = 0 and then b′ = 0, one obtains H2:

f1(θxb
′) = θ′f0(x)f1(b

′), f1(bθx′) = f1(b)θ
′
f0(x)

.

Equality (18) becomes f1(bb
′) = f1(b)f1(b

′), that means f1 is a ring homomorphism.
By S5, commutative diagram (17) implies F (cx,y) = c′Fx,Fy, thus the pair (f1, f0)
satisfies H3, and hence it is a morphism of braided E-systems.

According to the proof of Lemma 1, the natural isomorphisms F̆ , F̃ determine
an element (µ, ν) ∈ Z2

ab(Coker d,Ker d′) by µ(x, y) = F̆x,y, ν(x, y) = F̃x,y.
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Denote by BrAnnstr the category of braided strict Ann-categories and almost
strict braided Ann-functors we state the following result.

Theorem 3 (Classification theorem for braided regular E-systems). There exists
an equivalence of the categories

Φ : BrEsyst → BrAnnstr,

(B → D) 7→ A(B→D)

(f1, f0, µ, ν) 7→ (F, F̆ , F̃ ),

where F (b) = f1(b), F (x) = f0(x), F̆x,y = µ(x, y), F̃x,y = ν(x, y), for x, y ∈ D, b ∈ B.

Proof. By Lemmas 1, 2, the correspondence (f1, f0, µ, ν) 7→ (F, F̆ , F̃ ) defines a
bijection on homsets

Φ : HomBrEsyst(M,M′)→ HomBrAnnstr(Φ(M),Φ(M′)).

If A is a braided strict Ann-category and MA is the associated braided regular
E-system, then Φ(MA) = A (not only isomorphic). Thus, Φ is an equivalence.

In Lemma 1, if B → D is an E-system without a braiding, then the pair (µ, ν) is
an element in Z2

MacL(Coker d,Ker d′)(= Z2
Sh(Coker d,Ker d′). We obtain a similar

result to Theorem 3 for the category Esyst of regular E-systems and the category
Annstr of strict Ann-categories and almost strict Ann-functors.

Theorem 4 (Classification theorem for regular E-systems). There exists an equiv-
alence of the categories

Φ : Esyst → Annstr,

(B → D) 7→ A(B→D)

(f1, f0, µ, ν) 7→ (F, F̆ , F̃ ),

where F (b) = f1(b), F (x) = f0(x), F̆x,y = µ(x, y), F̃x,y = ν(x, y), for x, y ∈ D, b ∈ B.

In Theorem 4, if µ = id, ν = id, then the corresponding Ann-functor F has
F̆ = id, F̃ = id. Thus, this result contains Theorem 3 [14].

(Braided) regular E-systems having the same two invariants can be classified by
the groups H3

Sh(R,M), (H3
Sh(R,M)) as below.

Let R be a commutative ring with a unit and M an R-bimodule (regarded as
a ring with the null multiplication). We say that a braided Ann-category A has a
pre-stick of type (R,M) if there is a pair of ring isomorphisms, ϵ = (p, q),

p : R→ π0A, q :M → π1A,

which is compatible with the bimodule actions

q(su) = p(s)q(u),
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where s ∈ R, u ∈ M . The pair (p, q) is called a pre-stick of type (R,M) of the
braided Ann-category A.

A morphism (F, F̆ , F̃ ) : A → A′ in the category BrAnnstr(R,M) of braided
strict Ann-categories whose pre-sticks (respectively, ϵ = (p, q), ϵ′ = (p′, q′)) are of
type (R,M) is a braided Ann-functor such that the following diagrams commute

π0A π0A′ π1A π1A′

R M

-π0(F ) -π1(F )

@
@@I
p �

���
p′ @

@@I
q �

���
q′

where π0(F ), π1(F ) are two homomorphisms induced from (F, F̆ , F̃ ). Clearly, it
follows immediately from the definition that π0(F ), π1(F ) are isomorphisms, and
hence F is an equivalence. We write

BrAnnstr[R,M ]

for the set of connected components of braided strict Ann-categories whose pre-sticks
are of type (R,M).

We say that a braided regular E-system M = (B,D, d, θ, η) has a pre-stick
of type (R,M) if there exist isomorphisms M → Coker d, R → Ker d which are
compatible with the structures of R-bimodule on M and of Coker d-bimodule on
Ker d. Equivalently, a braided regular E-systemM has a pre-stick of type (R,M) if
and only if its associated braided Ann-category AM has a pre-stick of type (R,M).

A morphism (f1, f0) : M → M′ in the category BrEsyst(R,M) of braided
E-systems whose pre-sticks are of type (R,M) induces isomorphisms f1 : Ker d →
Ker d′, f0 : Coker d → Coker d′. Then, the braided Ann-functor (F, id, id) : AM →
AM′ , where F = (f1, f0), is a morphism in the category BrAnnstr(R,M).

Denote byBrEsyst[R,M ] the connected components of the categoryBrEsyst(R,
M). Without braiding structures, the corresponding notations are Esyst(R,M) and
Esyst[R,M ].

Lemma 3. There exist bijections

Π : Esyst[R,M ]→ Annstr[R,M ],

Π′ : BrEsyst[R,M ]→ BrAnnstr[R,M ].

Theorem 5 (Classification Theorem). There are bijections

Ω : Esyst[R,M ]→ H3
Sh(R,M),

Ω′ : BrEsyst[R,M ]→ H3
Shab(R,M).

Proof. According to Theorem 4.3 [12], one has a bijection

Γ : Annreg[R,M ]→ H3
Sh(R,M),

where Annreg[R,M ] is the set of equivalence classes of regular Ann-categories whose
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pre-sticks are of type (R,M). Since each regular Ann-category is Ann-equivalent to
a strict Ann-category (see [21]), then there is a bijection

Annreg[R,M ]→ Annstr[R,M ].

Together with the bijection Π in Lemma 3, one obtains the bijection Ω.
According to Theorem 6.2 [16], there is a bijection

Γ : BrAnnreg[R,M ]→ H3
Shab(R,M).

By Theorem 2, there is a bijection

BrAnnreg[R,M ]↔ BrAnnstr[R,M ].

Together with the bijection Π′ in Lemma 3, one obtains the bijection Ω′.

Remark 3. According to [2], each crossed bimodule over an algebra A is embedded
into an exact sequence called a crossed extension of R by M ,

0→M → B
d→ D → R→ 0.

Denote by Cros(R,M) connected components of the category of crossed extensions
of M by R. One has a bijection ([2, Theorem 4.4.1]):

Cros(R,M)↔ H3
Sh(R,M).

When A is a ring (regarded as an Z-algebra), Quang and Cuc [14] proved that the
category crossed bimodules over rings is isomorphic to that of regular E-systems.
Since Cros(R,M) = Esystreg[R,M ], then the above bijection together with the
bijection Π gives a bijection

Esyst[R,M ]↔ Esystreg[R,M ].

An analogous result was stated by Baues and Minian for K-split crossed extensions
and Hochschild cohomology ( [1, Theorem 3.2]): there is a bijection

CrosK(R,M)↔ H3
Hochs(R,M).

5. Strong braided E-systems and ring extensions of the type
of a strong braided E-system

In this section, we apply the above results to extensions of commutative rings.

Analogously to group extensions of the type of a crossed module [5] and ring
extensions of the type of an E-system [14], we consider center extensions of a com-
mutative ring B by a commutative ring R of the type of a strong braided E-system
as follows.

Definition 8. Let M = (B,D, d, θ, η) be a strong braided E-system and R a com-
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mutative ring. A center extension of B by R of typeM is a diagram of ring homo-
morphisms

E 0 // B
j // E

p //

ε

��

R // 0,

B
d // D

(19)

where the top row is exact, B ⊂ Z(E), (B,E, j, τ, {, }) is a strong braided E-system
in which τ is given by inner bimultiplications, the braiding {, } is given by (4)

{e, e′} = e′e− ee′,

and the pair (id, ε) : (B → E)→ (B → D) is a morphism of braided E-systems.

Let q : D → Coker d be a canonical homomorphism. Since the top row of
diagram (19) is exact and since q ◦ ε ◦ j = q ◦ d = 0, there is a ring homomorphism
ψ : R→ Cokerd with ψ ◦ p = q ◦ ε, and we say that E induces ψ.

Two extensions E , E ′ of typeM are equivalent if the following diagram commutes

E : 0 // B
j // E

p //

α

��

R // 0, E
ε // D

E ′ : 0 // B
j′ // E′ p′ // R // 0, E′ ε′ // D

and ε′α = ε. Obviously, α is an isomorphism, and E , E ′ induce the same ψ.

Our purpose is to describe the set of equivalence classes of ring extensions of B
by R of typeM inducing ψ,

ExtM(R,B,ψ).

We deal with this problem by the method done for ring extensions of the type of an
E-system in [14], Section 5. Let A be the braided Ann-category associated to the
strong braided E-systemM. Since π0A = Coker d and π1A = Ker d, then its third
invariant is k ∈ H3

ab(Coker d,Ker d). The homomorphism ψ : R → Coker d induces
an element

ψ∗k ∈ H3
ab(R,Ker d), (20)

called the obstruction of the pair (M, ψ).

Lemma 4. LetM = (B,D, d, θ, η) be a strong braided E-system, R a commutative
ring and ψ : R → Coker d a ring homomorphism. Then, each braided Ann-functor
(F, F̆ , F̃ ) : DisR → AM with Fr ∈ ψ(r) determines a ring extension EF of B by R
of typeM inducing ψ : R→ Coker d.

Proof. We write F̆ = f, F̃ = g. The constraints of DisR and AM, except for the
braiding, are all strict. Thus, the compatibility of F with these constraints implies
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that f, g : R2 → B are normalized functions satisfing the rules

f(r, s+ t) + f(s, t)− f(r, s)− f(r + s, t) = 0, (21)

f(r, s)− f(s, r) = 0, (22)

φ(r)g(s, t)− g(rs, t) + g(r, st)− g(r, s)φ(t) = 0, (23)

g(r, s+ t)− g(r, s)− g(r, t) + φ(r)f(s, t)− f(rs, rt) = 0, (24)

g(r + s, t)− g(r, t)− g(s, t) + f(r, s)φ(t)− f(rt, st) = 0, (25)

where φ(r) = θFr. Act θ on the equalities

Fr + Fs = d(f(r, s)) + F (r + s),

F rFs = d(g(r, s)) + F (rs),

one obtains

φ(r) + φ(s) = τf(r,s) + φ(r + s), (26)

φ(r)φ(s) = τg(r,s) + φ(rs). (27)

Since functions (φ, f, g) satisfy (21) - (27), then E = B × R is a ring with the
operations

(b, r) + (b′, r′) = (b+ b′ + f(r, r′), r + r′),

(b, r).(b′, r′) = (b.b′ + bφ(r′) + φ(r)b′ + g(r, r′), rr′),

denoted by E(f,g). Note that the associativity of the multiplication in E(f,g) holds if
and only if the E-system (B → D) is regular. It is obvious by Proposition 3. The
sequence of ring homomorphisms

EF : 0→ B
j0→ E(f,g)

p0→ R→ 0

is exact, where j0, p0 are canonical homomorphisms. By the multiplication in the
ring E(f,g),

(b, r)(c, 0) = (bc+ φ(r)c, 0), (28)

(c, 0)(b, r) = (cb+ cφ(r), 0). (29)

Since M is a strong braided E-system, then φ(r)c = cφ(r). By Proposition 3,
the ring B is commutative. Therefore, (b, r)(c, 0) = (c, 0)(b, r), that means j0B ⊂
Z(E(f,g)), and it follows from Example 2 that the braided E-system (B,E(f,g), j0, τ, {, })
is strong.

According to the definition of operations in E(f,g), the map ε0 : E(f,g) → D given
by

ε(b, r) = db+ Fr (30)

is a ring homomorphism. We now prove that (idB, ε) is a morphism of braided E-
systems. The conditions H1 - H3 of Definition 2 turn into:
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H1. εj = d,
H2. τeb = θεeb, bτe = bθεe,
H3. {e, e′} = η(εe, εe′), e, e′ ∈ E.

The verification of these conditions consists of pure calculations, so the readers can
skip it. Clearly, H1 holds.
- Verify H2: For c ∈ B and e = (b, r) ∈ E(f,g), we have

θεe(c)
(30)
= θdbc+ θFrc

E1= bc+ θFrc,

τec =j
−1
0 [(b, r)(c, 0)]

(28)
= bc+ θFrc.

Similarly, it follows from (29) that bτe = bθεe.
- Verify H3: The compatibility of F with the braiding constraints implies

g(r, s)− g(s, r) = cFs,Fs = η(Fr, Fs). (31)

For e = (b, r), e′ = (b′, r′), then

{e, e′} (4)
= (b′, r′)(b, r)− (b, r)(b′, r′) ≡ g(r′, r)− g(r, r′),

η(εe, εe′) = η(db+ Fr, db′ + Fr′) = η(Fr, Fr′)
(31)
= g(r′, r)− g(r, r′).

Thus, E(f,g) is a center extension of the ring B by the ring R of type M. Since
qε(0, r) = q(F (r)) = ψ(r) for all r ∈ R, then the extension E(f,g) induces ψ : R →
Coker d.

Lemma 5. Under the hypothesis of Lemma 4, each center extension E of B by R
of type M inducing ψ defines a braided Ann-functor (F, f, g) : DisR → AM with
Fr ∈ ψ(r). Further, E is equivalent to E(f,g).

Proof. The extension E of typeM gives a strong braided E-systemM′ = (B,E, j, τ,
{, }) as in Example 2. Let A′ be the braided strict Ann-category associated to the
strong braided E-system M′. By Lemma 1, the morphism (idB , ε

′) : (B,E) →
(B,D) defines a braided Ann-functor (K, K̆, K̃) : A′ → A, where K = (idB , ε).
The reduced Ann-category of A′ is just the discrete Ann-category DisR. For the
canonical braided Ann-functor H : DisR→ A′, the composition

(F, F̆ , F̃ ) : DisR
(H,H̆,H̃)→ A′ (K,K̆,K̃)→ A

is a braided Ann-functor with
Fr = ε′er, (32)

where {er, r ∈ R} is a set of representatives of R in E. Set F̆ = f, F̃ = g, we
construct a ring extension E(f,g) of type M as in Lemma 4. We now show that E
and E(f,g) are equivalent. In diagram (19), since the top row is exact, then each
element of E is written uniquely in the form b+ er, b ∈ B. The map

α : E(f,g) → E, (b, r) 7→ b+ er,
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is a ring isomorphism. Indeed, observe that the representatives er have the following
properties:

er.c = θF (r)(c), c.er = cθF (r), c ∈ B, (33)

er + es = f(r, s) + er+s, (34)

er.es = g(r, s) + ers. (35)

Relation (33) is just the condition H2 of the morphism (idB , ε
′) : (B → E)→ (B →

D). It follows from er + es − er+s ∈ B that

er + es − er+s = ε(er + es − er+s) = εer + εes − εer+s
= Fr + Fs− F (r + s) = f(r, s).

Analogously, we obtain (35). By relations (33)-(35) one can verify that α is a ring
homomorphism. Moreover,

ε′α(b, r) = ε′(b+ er) = db+ ε′(er)
(32)
= d(b) + F (r)

(30)
= ε(b, r),

that means E and EF are two equivalent ring extensions of typeM.

Theorem 6 (Schreier theory for center extensions of the type of a strong braided
E-system). Under the hypothesis of Lemma 4, there exists a bijection

Ω : HomBrAnn
(ψ,0) [DisR,A]→ ExtM(R,B, ψ).

Proof. It is easy to prove that two braided Ann-functors (F, f, g), (F ′, f ′, g′) :
DisR → AM are homotopic via α : F → F ′ if and only if the corresponding
extensions E(f,g), E(f ′,g′) are equivalent via the isomorphism α∗ : (b, r) 7→ (b−αr, r).
This together with Lemmas 4, 5 completes the proof.

Theorem 7. Under the hypothesis of Lemma 4, the vanishing of ψ∗k in H3
ab(R,Ker d)

is necessary and sufficient for there to exist a center extension of a ring B by a ring
R of typeM inducing ψ. Further, if ψ∗k vanishes, then there is a bijection

ExtM(R,B,ψ)↔ H2
ab(R,Ker d).

Proof. Recall thatAM is the braided Ann-category associated to the strong braided

E-system M = (B
d→ D). Then, its reduced braided Ann-category is SA =∫

(Coker d,Ker d, k), where k ∈ Z3
Shab(Coker d,Ker d). According to (2), an ob-

struction of the pair

(ψ, 0) : DisR→
∫
(Coker d,Ker d, k)

is −ψ∗k. By Theorem 1, the pair (ψ, 0) realizes a braided Ann-functor if and only
if ψ∗k = 0 in H3

ab(R,Ker d). Thus, the first assertion of the theorem follows from
Lemmas 4 and 5. The second one follows from Theorems 1 and 6.



Braided strict Ann-categories and commutative extensions of rings 179

6. Ring extensions of commutative rings

We define the obstruction of a regular homomorphism ψ : R→ PB in the case B,R
are commutative rings. For each r ∈ R, choose a bimultiplication φ(r) ∈ ψ(r) with
φ(1) = idB . The bimultiplication φ(r) induces functions f, g : R2 → B satisifying
the relations

φ(r) + φ(s) = τf(r,s) + φ(r + s), (36)

φ(r) ◦ φ(s) = τg(r,s) + φ(rs). (37)

The functions f, g are normalized in the sense that f(r, 0) = f(0, s) = 0, g(r, 1) =
g(1, s) = 0. The ring structure of MB induces a family h = (ξ, η, α, β, λ, ρ) by

ξ(r, s, t) = f(r, s+ t) + f(s, t)− f(r, s)− f(r + s, t),

η(r, s) = f(r, s)− f(s, r),
α(r, s, t) = φ(r)g(s, t)− g(rs, t) + g(r, st)− g(r, s)φ(t),
β(r, s) = g(r, s)− g(s, r),

λ(r, s, t) = g(r, s+ t)− g(r, s)− g(r, t) + φ(r)f(s, t)− f(rs, rt),
ρ(r, s, t) = g(r + s, t)− g(r, t)− g(s, t) + f(r, s)φ(t)− f(rt, st).

According to [10], the family of functions k = (ξ, η, α, λ, ρ) is a 3-cocycle in the
group Z3

MacL(R,CB). It is easy to verify that h = (k, β) is an element in Z3
ab(R,CB).

The cohomology class h is called the obstruction of the regular homomorphism ψ :
R → PA, denoted by Obs(ψ). Note that h is of form δ(f, g), but it is not a 3-
coboundary since the functions f, g do not take values in CB .

Proposition 6. Let B,R be commutative rings and ψ : R → PB a regular homo-
morphism. Then, the obstruction Obsψ in the sense of MacLane [10] is coincident
with the obstruction of the pair (M, ψ) in the sense of (20).

Proof. Suppose that the reduced Ann-category of MB is S = (PB , CB, h). Let

H = (H, H̆, H̃) : S → MB be the canonical Ann-equivalence. We choose φ =
H ◦ ψ : R→MB . Then, the pair of functions

f = ψ∗H̆, g = ψ∗H̃,

satisfies (36) and (37). By the above determination, Obs(ψ) = δ(f, g). Besides,
the compatibility of H with the constraints implies ψ∗h = δ(f, g), so that ψ∗h =
Obs(ψ).

Proposition 7. Each commutative ring extension of B by R is regarded as a ring
extension of type (B,LB , τ, j, 0), where LB is a certain commutative subring of MB.

Proof. Consider a commutative extension of commutative rings

E : 0→ B
i−→ E

p−→ R −→ 0.
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For any e ∈ E, the inner bimultiplication τe of E induces a bimultiplication of B.
This gives a homomorphism τ ′ : E → MB . Since q ◦ τ ′ = 0, then the universal
property of coker implies that there is a ring homomorphism ψ : R→ PB such that
the following diagram commutes

0 // B
j // E

τ ′

��

p // R

ψ

��

// 0

B
τ // MB

q // PB // 0.

Since ψ is a regular homomorphism, then two elements of ring K = q−1(Imψ) are
permutable. A bimultiplication σ on B is strong if σb = bσ for all b ∈ B. Denote
by LB the subset of K consisting of strong bimultiplications. Then, LB is a ring.
Indeed, for σ, σ′ ∈ LB , b ∈ B, we have

σσ′(b) = σ(σ′b) = σ(bσ′)
(3)
= (σb)σ′ = (bσ)σ′ = (b)σσ′.

Moreover, it is commutative

σσ′(b) = σ(σ′b) = (σ′b)σ
(3)
= σ′(bσ) = σ′(σb) = σ′σ(b).

Since E is commutative , then τ ′E ⊂ LB . Thus, the above diagram induces the
following commutative one

0 // B
j // E

τ ′

��

p // R

ψ

��

// 0

B
τ // LB

q // Coker τ // 0.

The homomorphism τ defines a strong braided E-system (B,LB , τ, ι, 0), where ι :
LB →MB is the canonical embedding and η = 0. The embedding j : B → E defines
a strong braided E-system (B,E, j, τ ′, 0), where τ ′ is given by inner bimultiplications

and the braiding is 0. Then, (idB, τ
′) : (B

i−→ E) → (B
τ−→ LB) is a morphism of

strong braided E-systems. Thus, each commutative extension E inducing ψ : R →
PB is viewed as a ring extension of type (B,LM , τ, ι, 0).

Denote by Extab(R,B,ψ) the set of equivalence classes of commutative extensions
of the ring B by the ring R inducing ψ : R→ PB.

Theorem 8. Let B,R be commutative rings and ψ : R → PB a regular homo-
morphism. Then the vanishing of Obs(ψ) in H3

ab(R,CB) is necessary and sufficient
for there to exist a commutative extension of the ring B by the ring R. Further, if
Obs(ψ) vanishes, there is a bijection

Extab(R,B, ψ)↔ H2
ab(R,CB).

Proof. It follows from Propositions 6, 7 and Theorem 7.



Braided strict Ann-categories and commutative extensions of rings 181

This result is a version of Theorems 5 and 7 [10] for commutative rings.
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