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Abstract. The structure of the algebra of K−invariants in U(g) ⊗ C(p) is important for
constructing (g,K)−modules by means of algebraic Dirac induction as developed in [5] and
its variants in [8] and [10]. We show that for the groups SU(n, 1) and SOe(n, 1) this algebra
is a free U(g)K−module of rank dimC(p) = 2dim p. We also indicate a way of constructing
a U(g)K−basis in (U(g)⊗ C(p))K .
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1. Introduction

Throughout the whole paper, for any group H and any H−module V we denote by
V H the subspace of H−invariant vectors in V. Furthermore, for a compact group
K we denote by K̂ its unitary dual. The elements of K̂ are called K−types. The
degree (dimension) of a K−type δ will be denoted by d(δ).

Let g0 be a real simple Lie algebra of noncompact type. Denote by G its ad-
joint group and choose its maximal compact subgroup K. Let g0 = k0 ⊕ p0 be the
corresponding Cartan decomposition. Let g, k and p be the complexifications of g0,
k0 and p0. Denote by U(g) the universal enveloping algebra of g. The Killing form
B of g restricts to a nondegenerate K−invariant symmetric bilinear form on p× p.
Denote by C(p) the corresponding Clifford algebra over p. An important element
of the algebra (U(g)⊗ C(p))K of K−invariants is the so-called Dirac operator D
defined by

D =
∑
i

bi ⊗ di,

where {bi} is a basis of p and {di} is the dual basis with respect to B|p × p. Dirac
operators were first introduced into representation theory in [6] as a tool for con-
structing discrete series representations. The above algebraic version of the Dirac
operator has been investigated in [11]. For a (g,K)−module X, Dirac operator D
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acts on X ⊗ S, where S is the spin−module over the Clifford algebra C(p). The
Vogan−Dirac cohomology of X is defined in [11] by

HD
V (X) = KerD/ImD ∩KerD.

Unfortunately, the Vogan−Dirac cohomology defined in this way is not a cohomology
theory: it is a functor which is neither left nor right exact and admits no adjoints.
Two alternative definitions were given in [5]: the Dirac cohomology which is left exact
and admits a right adjoint, and the Dirac homology which is right exact and admits
a left adjoint. Both functors coincide with the Vogan’s definition for unitary and for
finite dimensional representations. In [5], certain ways to construct representations
with prescribed Dirac (co)homology W are described. It is shown that in this way
one obtains all holomorphic (and antiholomorphic) discrete series representations.
The constructions are by tensoring (or taking Hom) of U(g)⊗ C(p) with W over a
subalgebra of (U(g) ⊗ C(p))K containing the Dirac operator D. In [8], it is proved
that non(anti)holomorphic discrete series representations of the group SU(2, 1) can
also be obtained by choosing a slightly bigger subalgebra of (U(g)⊗C(p))K , and in
[10], the same is done in the case of the group SOe(4, 1).

These results show the importance of investigating the structure of the alge-
bra (U(g) ⊗ C(p))K . In this paper, we prove that in the case of groups SU(n, 1)
and SOe(n, 1) the algebra (U(g) ⊗ C(p))K is a free U(g)K−module of finite rank
dimC(p) = 2dim p. In fact, we get more generally that for any finite dimensional
K−module V the space of K−invariants (U(g) ⊗ V )K is free U(g)K−module of
rank dimV. The proof will show how one can explicitly construct a U(g)K−basis of
(U(g)⊗ C(p))K .

2. K−types in U(g)

To prove the results on the K−invariants in U(g) ⊗ C(p) we shall first investigate
the K−structure of U(g) considered as a U(g)K−module. Denote by U(k) ⊆ U(g)
the universal enveloping algebra of k. Furthermore, denote by S(g) and S(k) ⊆ S(g)
the symmetric algebras over g and k, and by P(g) and P(k) the polynomial algebras
over g and k. Then P(g) and P(k) can be identified with the symmetric algebras
S(g∗) and S(k∗) over dual spaces g∗ and k∗ of g and k. The Killing form B on g
allows us to identify g with g∗ and k with k∗. Thus the algebras P(g) and P(k) are
identified with S(g) and S(k). Considering polynomials as complex functions on g
and k, the inclusion P(k) ⊆ P(g) is obtained via the projection pr : g −→ k along
p. The group G acts by automorphisms on the algebras U(g), S(g) and P(g), and
the subgroup K also acts by automorphisms on the algebras U(k), S(k) and P(k).
The algebra U(g)G is the center Z(g) of U(g), and U(k)K is the center Z(k) of U(k).
Obviously, the multiplication defines algebra homomorphisms

Z(g)⊗ Z(k) −→ U(g)K , S(g)G ⊗ S(k)K −→ S(g)K , P(g)G ⊗ P(k)K −→ P(g)K .

In [2], Knop proved the following highly nontrivial results:
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Theorem 1.

(a) Z(g)⊗Z(k) −→ U(g)K is an isomorphism onto the center of the algebra U(g)K .

(b) The algebra U(g)K is commutative (i.e. U(g)K = Z(g)Z(k) ) if and only if g0
is either su(n, 1) or so(n, 1). In these cases, U(g) is free as a U(g)K−module.

The symmetrization S(g) ' P(g) −→ U(g) is an isomorphism of vector spaces
and of G−modules and (a) implies that the homomorphism

P(g)G ⊗ P(k)K −→ P(g)K

is always injective and by (b), in the cases g0 = su(n, 1) and g0 = so(n, 1), this is an
isomorphism; furthermore, the last sentence in (b) implies that in these two cases
P(g) is free as a P(g)K−module.

Let ∂ : S(g) −→ D(g) be the usual isomorphism of the symmetric algebra S(g)
onto the algebra D(g) of linear differential operators on P(g) with constant coeffi-
cients: for any x ∈ g ∂(x) is the derivation in the direction x. Let S+(g)

K and P+(g)
K

denote the maximal ideals (of codimension 1) of the algebras of K−invariants S(g)K

and P(g)K given by

S+(g)
K =

⊕
k>0

Sk(g)K , P+(g)
K =

⊕
k>0

Pk(g)K = {f ∈ P(g)K ; f(0) = 0}.

Let us define the (graded) space of K−harmonic polynomials on g as follows:

HK(g) = {f ∈ P(g); ∂(u)f = 0 ∀u ∈ S+(g)
K}.

Now, Proposition 1 in [3], the last sentence in (b) in Theorem 1, and the obvious
analogues of Propositions 3 and 4 in [3] imply immediately:

Theorem 2. For g0 = su(n, 1) and for g0 = so(n, 1) we have:

(a) P(g) = P(g)P+(g)
K ⊕HK(g).

(b) The multiplication defines an isomorphism P(g)K ⊗HK(g) ' P(g).

Let N be the zero set in g of the ideal P(g)P+(g)
K generated by P+(g)

K in
P(g) :

N = {x ∈ g; f(x) = 0 ∀f ∈ P+(g)
K}.

By Proposition 16 in [3] the zero set

NG = {x ∈ g; f(x) = 0 ∀f ∈ P+(g)
G}

is exactly the set of all nilpotent elements in g. Analogously,

NK = {x ∈ k; f(x) = 0 ∀f ∈ P+(k)
K}

is the set of all nilpotent elements in the reductive Lie algebra k. Now, P(g)K =
P(g)G ⊗ P(k)K by the Knop’s theorem, so we get
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Proposition 1. N is the set of all nilpotent elements in g whose projection to k
along p is nilpotent in the reductive Lie algebra k :

N = {x ∈ g; x ∈ NG, pr x ∈ NK}.

The elements of N will be called K−nilpotent elements of g.
By the Harish−Chandra isomorphism and by Chevalley’s theorem on Weyl group

invariants we know that the algebra P(g)G is generated by ` = rank g homogeneous
algebraically independent G−invariant polynomials f1, . . . , fℓ and the algebra P(k)K

is generated by k = rank k homogeneous algebraically independent K−invariant
polynomials ϕ1, . . . , ϕk. Since

P(g)K = P(g)GP(k)K ' P(g)G ⊗ P(k)K ,

we conclude that the algebra P(g)K is generated by `+k homogeneous algebraically
independent polynomials f1, . . . , fℓ, ϕ1, . . . , ϕk. Thus

N = {x ∈ g; f1(x) = · · · = fℓ(x) = ϕ1(x) = · · · = ϕk(x) = 0},

so N is a Zariski closed subset of g of dimension

dim N = dim g− `− k.

More generally, for any (ξ, η) = (ξ1, . . . , ξℓ, η1, . . . , ηk) ∈ Cℓ+k, we define aKC−stable
Zariski closed set (KC being the complexification of the group K) :

N (ξ, η) = {x ∈ g; fj(x) = ξj , j = 1, . . . , `, ϕi(x) = ηi, i = 1, . . . , k}.

Obviously,
dim N (ξ, η) = dim g− `− k ∀(ξ, η) ∈ Cℓ+k.

As in [3] and [4], we conclude from Theorem 2(a):

Proposition 2. For every (ξ, η) ∈ Cℓ+k the restriction of polynomials on g to the
set N (ξ, η) induces an isomorphism of K−modules

HK(g) ' P(N (ξ, η)) = R(N (ξ, η)).

Here for any subset S ⊆ g we denote P(S) = {f |S; f ∈ P(g)}, and R(T ) denotes
the algebra of regular functions on any algebraic variety T.

The dimensions and the ranks in our cases are the following:

g0 dim g dim k rank g rank k
su(n, 1) n2 + 2n n2 n n
so(2n, 1) 2n2 + n 2n2 − n n n

so(2n+ 1, 1) 2n2 + 3n+ 1 2n2 + n n+ 1 n

So we see that in each case we have the equality of dimensions:

dim N (ξ, η) = dim k = dim KC. (1)



The structure of the algebra (U(g)⊗ C(p))K 15

Consider the action of the complex group KC on g. For x ∈ g denote by Ox its
KC−orbit. Then, of course,

dimOx = dimKC/KC
x = dimKC − dimKC

x , (2)

where KC
x denotes the stabilizer of the point x in the group KC. So, if KC

x is trivial,
from (1) and (2) we get

dimOx = dimKC = dimN (ξ, η). (3)

Lemma 1. There exists x ∈ g0 such that the stabilizer KC
x is trivial. In this case,

let (ξ, η) = (f1(x), . . . , fℓ(x), ϕ1(x), . . . , ϕk(x)). The orbit Ox is open in N (ξ, η).

Proof. By induction on n one directly verifies that the stabilizer is trivial, e.g. for
the 3−diagonal matrix x ∈ g0 with zeroes on diagonal, the upper parallel (1, . . . , 1, 1)
and the lower parallel (−1, . . . ,−1, 1).

Now, we can prove our main result referring to the structure of the K−module
HK(g):

Theorem 3. The K−module HK(g) of K−harmonic polynomials on g is equivalent
to the regular representation of K. In other words, the multiplicity of every K−type
δ ∈ K̂ in the K−module HK(g) is equal to its degree d(δ).

Proof. Let x ∈ g0 be as in Lemma 1, i.e. such that its stabilizer in KC is trivial.
Set

(ξ, η) = (f1(x), . . . , fℓ(x), ϕ1(x), . . . , ϕk(x)) ∈ Cℓ+k.

The KC−orbit Ox is contained in N (ξ, η), and by (3) it is open in N (ξ, η). Thus,
the restriction to Ox is an isomorphism of P(N (ξ, η)) = R(N (ξ, η)) onto P(Ox). So
we get the isomorphism HK(g) ' P(Ox) as K−modules. Now, P(Ox) ⊆ R(Ox) '
R(KC). Using the Frobenius reciprocity we find that the multiplicity of any K−type
δ ∈ K̂ in R(Ox) is equal to its degree d(δ). Since we do not know a priori that
P(Ox) = R(Ox), we get only the inclusion of K−modules HK(g) ↪→ R(KC), and
so if m(δ) denotes the multiplicity of K−type δ in HK(g), one has the inequalities:

m(δ) ≤ d(δ), δ ∈ K̂. (4)

To prove the equalities we use the compact form K of the complex group KC. Denote
by P(Kx) the restriction of the polynomial algebra P(g) to the K−orbit Kx. Note
that the fact that KC is the complexification of K easily implies that the restriction
Ox −→ Kx induces an isomorphism of K−modules HK(g) ' P(Ox) onto P(Kx).
Thus, as a K−module we have

P(Kx) =
⊕
δ∈K̂

m(δ)δ. (5)

The subalgebra P(Kx) of the algebra C(Kx) of all complex continuous functions
on the compact space Kx evidently distinguishes the points of Kx. Furthermore,
this subalgebra is closed under complex conjugation. This follows from the fact
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that Kx is contained in the real form g0 of g. Finally, the algebra P(Kx) obviously
contains constants. Thus, by the Stone−Weierstrass theorem, the subalgebra P(Kx)
is uniformly dense in C(Kx). The Peter−Weyl theorem implies that in (4) we have
the equalities m(δ) = d(δ) for all δ ∈ K̂. This proves Theorem 3.

The symmetrization P(g) ' S(g) −→ U(g) is a K−module isomorphism. Let
HK be the image of HK(g) in U(g). The immediate consequence of Theorems 2 and
3 is

Theorem 4. The multiplication induces an isomorphism of K−modules U(g)K ⊗
HK ' U(g). The multiplicity of every K−type δ ∈ K̂ in the K−module HK is equal
to its degree d(δ).

Remark 1. We note that it is easy to see (as in [1], [3] or [4]) that HK is the
subspace of U(g) spanned by all powers xk, x ∈ N , k ∈ Z+.

Remark 2. HK is equivalent to R(KC) as a K−module. The Ad−action of K
on U(g) restricted to HK corresponds to the left regular action of K on R(KC).
But R(KC) also carries the right regular action of K commuting with the left one.
In fact, R(KC) is a multiplicity free K × K−module. The right regular action of
K on R(KC) by isomorphism U(g)K ⊗ R(KC) −→ U(g) gives rise to an action of
K on U(g) which commutes with both the Ad−action of K and the U(g)K−module
structure of U(g). We note that this other K−action is not independent of the choice
of x ∈ g0 with the property from Lemma 1 that its Ad−stabilizer in KC is trivial.
Furthermore, this other K−action on U(g) is not by automorphisms − we only get

automorphisms on the localization
(
U(g)K \ {0}

)−1 U(g) considered as an algebra
over the quotient field of the ring U(g)K . In a subsequent paper, we will investigate
this other K−action in the simplest nontrivial case g0 = so(3, 1).

3. Freeness of (U(g)⊗ C(p))K as a U(g)K−module

Theorem 5. Let V be a finite dimensional K−module. Then the space of
K−invariants (U(g)⊗ V )K is a free U(g)K−module of finite rank dim V.

Proof. By Theorem 4 we have

(U(g)⊗ V )K ' (U(g)K ⊗HK ⊗ V )K = U(g)K ⊗ (HK ⊗ V )K .

Thus, (U(g)⊗V )K is a free U(g)K−module of rank dim(HK ⊗V )K . If n(ε) denotes
the multiplicity of a K−type ε ∈ K̂ in V, we have

(HK ⊗ V )K '
( (

⊕δ∈K̂d(δ)δ
)
⊗
(
⊕ε∈K̂n(ε)ε

) )K
= ⊕δ,ε∈K̂d(δ)n(ε)(δ ⊗ ε)K .

Thus,

dim(HK ⊗ V )K =
∑

δ,ε∈K̂

d(δ)n(ε) dim(δ ⊗ ε)K .
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By Schur’s Lemma dim(δ ⊗ ε)K is 1 if δ and ε are contragredient to each other and
0 otherwise. Since the degrees of contragredient representations are equal, we finish
the proof:

dim(HK ⊗ V )K =
∑
δ∈K̂

n(δ)d(δ) = dim V.

This proof also gives a way to find a U(g)K−basis in (U(g)⊗V )K if theK−structu-
re of V is not too complicated and well known. This is the case for V = C(p), which
is as a K−module isomorphic to the exterior algebra Λ(p). The isomorphism is
given by the Chevalley map τ : Λ(p) −→ C(p), which is obtained by composing the
antisymmetrisation map

v1 ∧ · · · ∧ vk 7→ 1

k!

∑
σ∈Sk

sgn(σ)vσ(1 )̧ ⊗ · · · ⊗ vσ(k), v1, . . . , vk ∈ p,

from Λ(p) into the tensor algebra T (p) with the canonical epimorphism T (p) −→
C(p). For SOe(n, 1) the K−module p is irreducible, and for SU(n, 1) it is a di-
rect sum of two mutually contragredient irreducible K−types. The K−module
Λ(p) is multiplicity free and for small values of n we can rather easily write down
some canonical bases (e.g. Gelfand−Zeitlin’s bases, or bases obtained from the
highest weight vectors) for K−types δ appearing in Λ(p) (see calculations in [7]
for SU(2, 1) and in [9] for SOe(4, 1) ). Now one has to find the canonical bases
in the contragredient K−types in HK(g) by solving systems of linear differen-
tial equations with constant coefficients. Finally, one has to combine these bases
to write down the K−invariants in HK(g) ⊗ Λ(p), thus obtaining the basis of
(HK(g) ⊗ Λ(p))K . The basis of (U(g) ⊗ C(p))K over U(g)K is obtained by the iso-
morphism (HK(g)⊗Λ(p))K −→ (HK ⊗C(p))K . The second step is somewhat more
complicated than the first one but the complete computations in the cases SU(2, 1)
and SOe(4, 1) seem to be considerably shorter than those in [7] and [9].
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