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Abstract. In this paper, we establish new properties for the Fourier transform over the
space of distributions S ′k introduced by Horváth. We prove Abelian theorems for the
Fourier transform over the space S ′k, k ∈ Z, k < 0. Continuity properties and some results
concerning regular distributions are studied. We also prove that the Fourier transform is
an injection from S ′k, k ∈ Z, k < 0, into O−2k−1

C , where this space denotes the union of the
spaces S−2k−1

k∗ , as k∗ varies in Z, which have been given by Horváth. The convolution over
S ′k for certain regular distributions and its relation with the usual convolution product of
functions is exhibited. Finally, some illustrative examples are considered.
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1. Introduction and preliminaries

In this paper, we deal with new interesting results concerning the Fourier transform
over the space of distributions S ′k, k ∈ Z, k < 0. This space is the dual of the
space of functions Sk introduced by Horváth in [9], on which the authors have also
published several papers (see [2], [3] and [5], amongst others).

The spaces Sk [9, p. 90] are related to the spaces Ḃ introduced by Laurent
Schwartz [16, p. 199], which are used in the theory of partial differential equations.

In Section 2, we analyse the asympotic behaviour of the Fourier transform over
the space S ′k, k ∈ Z, k < 0. These types of results are also known as Abelian
theorems, which have been studied in several works (see [6], [7], [13], [14] and [17],
amongst others). Specifically, we establish some results in which one shows the
behaviour of the Fourier transform of any distribution in S ′k, when its domain
variable approaches infinity. Its development has applications in different branches
of mathematical analysis, such as the case of integral transforms, the summability
of the Fourier series, as well as in the field of distribution spaces and generalized
functions due to their usefulness in various fields, such as PDEs, number theory,
and others. Abelian theorems on distributional transforms were first established by
Zemanian in [21], (see also [6], [7], [10] and [18], amongst others).

In Section 3, we study properties of the regular distribution generated by the
function given by the Fourier transform of the distribution f ∈ S ′k, k ∈ Z, k < 0.
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In Section 4, we prove that the image of S ′k, k ∈ Z, k < 0, via the Fourier
transform, is contained in the space O−2k−1C and it is an injection. For this purpose
we use the definition given by Horváth of the space Om

C , for m a positive integer, as
the union of the spaces Sm

k (see [9, example 11, p. 90]).
Section 5 is devoted to the convolution of the Fourier transform over the space

S ′k, k ∈ Z, k < 0, for certain regular distributions over this space and its relation
with the usual convolution product of functions.

Finally, some illustrative examples are shown.
Throughout this paper we shall use the terminology and notation of [9]. Thus,

N denotes the set of all non-negative integers.
The Fourier transform on Rn of a complex-valued function f ∈ L1(Rn) is given

by ∫
Rn

f(x)eixydx, y ∈ Rn. (1)

In [2], we studied the Fourier transform over the spaces of distributions S ′k. In
this sense we recall that (see [9, example 12, p. 90]) if k is a fixed integer, by Sk we
denote the vector spaces of all functions φ defined on Rn which possess continuous
partial derivatives of all orders and satisfy the condition that if p ∈ Nn and ε > 0,
then there exists A(φ, p, ε) > 0 such that∣∣(1 + |x|2)k∂pφ(x)

∣∣ ≤ ε, for |x| > A(φ, p, ε).

For every p ∈ Nn, on Sk Horváth defines the seminorms

qk,p(φ) = max
x∈Rn

∣∣(1 + |x|2)k∂pφ(x)
∣∣ .

The space Sk equipped with the countable family of seminorms (qk,p) is a Fréchet
space. As usual, S ′k denotes the dual of the space Sk.

This topology coincides with the initial topology of this space with respect to
the linear mapping

Sk −→ Ḃ, φ −→ (1 + |x|2)kφ,

(see [11, p. 87]).
Observe that for k ∈ Z, k < 0, and each y ∈ Rn, one has eixy ∈ Sk.
Furthermore, we recall that [9, p. 173] if m is a positive integer and k an arbitrary

integer, the vector space of all complex-valued φ defined on Rn is denoted by Sm
k ,

whose partial derivatives ∂pφ exist and are continuous for |p| ≤ mm and which
satisfies the following condition: given p ∈ Nn with |p| ≤ m and ε > 0, there exists
A(φ, p, ε) > 0 such that∣∣(1 + |x|2)k∂pφ(x)

∣∣ ≤ ε, for |x| > A(φ, p, ε).

For every p ∈ Nn with |p| ≤ m, the family of seminorms on Sm
k is defined by

qk,p(φ) = max
x∈Rn

∣∣(1 + |x|2)k∂pφ(x)
∣∣ .

Let m be a positive integer. We denote by Om
C the union of the spaces Sm

k as k
varies in Z (see [12, p. 63]).
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The Fourier transform of a member f ∈ S ′k is defined by

(Ff)(y) = F (y) =
〈
f(x), eixy

〉
, y ∈ Rn. (2)

Moreover, in [2, Theorem 2.1] it is established that for all f ∈ S ′k one has that

〈f,Fφ〉 =

∫
Rn

〈
f(x), eixy

〉
φ(y)dy, (3)

where S is the space of rapidly decreasing functions, and Fφ denotes the classical
Fourier transform (1) of the function φ.

Formula (3) proves that function (2) represents the usual distributional Fourier
transform [16, Chapter VII, Section 6, p. 248], when it acts over distributions f ∈ S ′k
and functions in S .

For previous studies of Fourier transform over spaces of distributions, we refer
to [15], [19] and [20], amongst others.

2. Abelian theorems for the Fourier transform of distributions
of S ′

k

For f ∈ S ′k, k ∈ Z, k < 0, we consider the Fourier transform of f by means of the
function given by (2).

Lemma 1. Let f ∈ S ′k, k ∈ Z, k < 0, and let F be defined by (2). Then there exist
C > 0 and a nonnegative integer m, all depending on f , such that

|F (y)| ≤ C max
|p|≤m

|y||p| , p ∈ Nn. (4)

Proof. Set f ∈ S ′k, k ∈ Z, k < 0. From [9, Proposition 2, p. 97], there exist C > 0
and a nonnegative integer m, all depending on f , such that

|< f, φ >| ≤ C max
|p|≤m

max
x∈Rn

∣∣(1 + |x|2)k∂pφ(x)
∣∣ , (5)

for all φ ∈ Sk.
Now, we have

|F (y)| ≤C max
|p|≤m

max
x∈Rn

∣∣(1 + |x|2)k∂peixy
∣∣

=C max
|p|≤m

max
x∈Rn

∣∣(1 + |x|2)k(iy)peixy
∣∣ ≤ C max

|p|≤r
max
x∈Rn

{
(1 + |x|2)k|yp|

}
.

Since for p = (p1, p2, . . . , pn) ∈ Nn we get

|(iy)p| = |(iy1)p1(iy2)p2 · · · (iyn)pn | ≤ |y|p1 · · · |y|pn = |y||p| ,

inequality (4) follows.

The smallest integer r which verifies inequality (5) is defined as the order of the
distribution f (cf. [16, Théorème XXIV, p. 88]).

The next result establishes an Abelian theorem for the Fourier transform of
distributions in S ′k, k ∈ Z, k < 0.
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Theorem 1 (Abelian theorem). Let f be a member in S ′k, k ∈ Z, k < 0, of order
r ∈ N, and let F (y) be given by (2). Then for any γ > 0 one has

lim
|y|→+∞

{|y|−r−γF (y)} = 0.

Proof. From Lemma 1 one has

|F (y)| ≤ C max
|p|≤r

|y||p| ,

Thus, for |y| ≥ 1,

|F (y)| ≤ C max
|p|≤r

|y||p| ≤ C|y|r.

So, the result follows.

Now let f be a locally integrable function defined on Rn such that (1+|x|2)−kf(x)
is Lebesgue integrable on Rn for k ∈ Z, k < 0. One has that f gives rise to a regular
distribution Tf on S ′k of order r = 0 through

< Tf , φ >=

∫
Rn

f(x)φ(x)dx, ∀φ ∈ Sk.

In fact, taking into account that

|〈Tf , φ〉| ≤
∫
Rn

∣∣(1 + |x|2)−kf(x)
∣∣ ∣∣(1 + |x|2)kφ(x)

∣∣ dx
≤ qk,0(φ)

∫
Rn

∣∣(1 + |x|2)−kf(x)
∣∣ dx,

it follows that Tf ∈ S ′k and its order is r = 0.

Thus, we have

F (y) =< Tf (x), eixy >=

∫
Rn

f(x)eixydx, φ ∈ Sk. (6)

So one concludes

Corollary 1. Let f be a locally integrable function defined on Rn such that (1 +
|x|2)−kf(x) is Lebesgue integrable on Rn for k ∈ Z, k < 0, and let F be given by
(6). Then for any γ > 0 one has

lim
|y|→+∞

{
|y|−γF (y)

}
= 0.

For the case p = 1, k < 0, one has the well-known result that the Fourier trans-
form is a continuous operator from L1

(
Rn, (1 + |x|2)−kdx

)
⊆ L1(Rn) into L∞ (Rn).

Moreover, one has



The Horváth’s spaces S ′k and the Fourier transform 23

Proposition 1. If f ∈ Lp
(
Rn, (1 + |x|2)−kdx

)
, k ∈ Z, k < 0, 1 ≤ p <∞ and

(Ff) (y) =

∫
Rn

f(x)eixydx, y ∈ Rn,

then for 1 ≤ p < 1− 2k/n the operator F is bounded from Lp
(
Rn, (1 + |x|2)−kdx

)
into L∞ (Rn).

Proof. Denote by ‖ · ‖p the norm of the space Lp
(
Rn, (1 + |x|2)−kdx

)
. By Hölder’s

inequality, one has

(Ff) (y) ≤
∫
Rn

|f(x)| dx =

∫
Rn

|f(x)| (1 + |x|2)−k/p(1 + |x|2)k/pdx

≤
(∫

Rn

|f(x)|p (1 + |x|2)−kdx

)1/p(∫
Rn

(1 + |x|2)kp
′/pdx

)1/p′

= ‖f‖p
(∫

Rn

(1 + |x|2)kp
′/pdx

)1/p′

, where
1

p
+

1

p′
= 1.

So,

ess suppy∈Rn |(Ff) (y)| ≤ ‖f‖p · ess suppy∈Rn

{(∫
Rn

(1 + |x|2)kp
′/pdx

)1/p′
}
.

Now, making use of spherical coordinates (ρ, θ1, . . . , θn−1) we have∫
Rn

(
1 + |x|2

)kp′/p
dx =

∫ π

0

dθ1 · · ·
∫ π

0

dθn−2

∫ 2π

0

dθn−1

∫ ∞
0

(1 + ρ2)kp
′/pρn−1dρ,

and this integral converges for k < −n
2

(p − 1), that is, 1 ≤ p < 1 − 2k/n, k ∈ Z,

k < 0. Thus concludes the proof.

3. Regular distributions versus Fourier transform over S ′
k

In [2, Theorem 2.1], it was proved that for f ∈ S ′k, k ∈ Z, k < 0, the functional TF
is a member of S ′, where F is the function F (y) =< f(x), eixy >, y ∈ Rn. Now,
as a consequence of Theorem 1 above, we can be more explicit and prove that TF is

a member of S ′k∗ , where k∗ ∈ Z is such that k∗ >
r + n

2
, and where r denotes the

order of f .
Before we prove this result, we need to extend Proposition 2.1 of [3] from k ∈ Z,

k < 0 to all k ∈ Z. In fact,

Proposition 2. Let f be a locally integrable function defined on Rn such that (1 +
|x|2)−kf(x) is Lebesgue integrable on Rn for some k ∈ Z. Then the linear functional
over S ′k given by

< Tf , φ >=

∫
Rn

f(x)φ(x)dx, φ ∈ Sk,

is a member of S ′k.
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Proof. For φ ∈ Sk, one has

|〈Tf , φ〉| ≤
∫
Rn

∣∣(1 + |x|2)−kf(x)
∣∣ ∣∣(1 + |x|2)kφ(x)

∣∣ dx
≤ qk,0(φ)

∫
Rn

∣∣(1 + |x|2)−kf(x)
∣∣ dx.

From the hypothesis, the continuity of Tf follows immediately.

Now, we have the next result

Theorem 2. Let f ∈ S ′k, k ∈ Z, k < 0, and let r be the order of f . Denotes
by F (y) = < f(x), eixy >, y ∈ Rn. Then the functional TF given by 〈TF , φ〉 =∫
Rn F (y)φ(y)dy is a member of S ′k∗ , where k∗ ∈ Z is such that k∗ >

r + n

2
.

Proof. Making use of (4) and taking into account that r is the order of f one has∫
Rn

(1 + |y|2)−k∗ |F (y)| dy ≤ C
∫
Rn

(1 + |y|2)−k∗ max
|p|≤r

|y||p|dy, p ∈ Nn. (7)

From the use of spherical coordinates, the right-hand side of equation (7) becomes

C

∫ π

0

dθ1 · · ·
∫ π

0

dθn−2

∫ 2π

0

dθn−1

∫ ∞
0

(1 + ρ2)−k∗ max
|p|≤r

(
ρ|p|
)
ρn−1dρ,

which converges for k∗ >
r + n

2
. From this fact the result follows.

Concerning regular distributions on S ′k, k ∈ Z, and having into account that its
order is r = 0, one obtains

Corollary 2. Let f be a locally integrable function defined on Rn such that (1 +
x2)−kf(x) is Lebesgue integrable on Rn for some k ∈ Z, k < 0. Denotes

F (y) =< Tf , e
ixy >=

∫
Rn

f(x)eixydx, y ∈ Rn,

(the classical Fourier transform of f).

Then the functional TF is a member of S ′k∗ , where k∗ ∈ Z, k∗ >
n

2
.

Proof. Since Tf is a regular distribution, one has r = 0. Now, the conclusion follows
from Theorem 2.

4. The Fourier transform as an injection from S ′
k into O−2k−1

C

In [3, Proposition 2.2], it was proved that if f ∈ S ′k, k ∈ Z, k < 0, and F (y) =
〈f(x), eixy〉, then the partial derivatives ∂mF (y) exists on Rn for m ∈ Nn, |m| ≤
−2k − 1, and one has

∂mF (y) = 〈f(x), (ix)meixy〉, y ∈ Rn.

Now, we establish the next
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Proposition 3. Let f be a member of S ′k, k ∈ Z, k < 0, and F (y) = 〈f(x), eixy〉.
Then for any m ∈ Nn, |m| ≤ −2k − 1, ∂mF (y) is continuous in Rn.

Proof. We now prove that

lim
h→0

(∂mF (y + h)− ∂mF (y)) = 0, y ∈ Rn, h ∈ Rn.

Since f ∈ S ′k, it suffices to prove that

(ix)m
(
eix(y+h) − eixy

)
→ 0,

as h→ 0 in Sk.
For this, we consider

max
x∈Rn

∣∣∣(1 + |x|2
)k
∂px

(
(ix)m

(
eix(y+h) − eixy

))∣∣∣ , p ∈ Nn. (8)

By the Leibniz rule, this expression is equal to

max
x∈Rn

∣∣∣∣∣∣(1 + |x|2
)k∑

j≤p

(
p

j

)
∂jx(ix)m∂p−jx

(
eix(y+h) − eixy

)∣∣∣∣∣∣
≤
∑
j≤p

(
p

j

)
max
x∈Rn

((
1 + |x|2

)k ∣∣∂jx(ix)m
∣∣ ∣∣∣∂p−jx

(
eix(y+h) − eixy

)∣∣∣) .
Observe that, applying a process similar to that followed in the proof of Proposition
2.1 of [2], one has∣∣∣∂p−jx

(
eix(y+h) − eixy

)∣∣∣ ≤ ((|p| − |j|)(|y|+ |h|)|p|−|j|−1 + (|y|+ |h|)|p|−|j|n|x|
)
|h|,

and if we suppose that |h| ≤ 1, we get∣∣∣∂p−jx

(
eix(y+h) − eixy

)∣∣∣ ≤ ((|p| − |j|)(|y|+ 1)|p|−|j|−1 + (|y|+ 1)|p|−|j|n|x|
)
|h|.

On the other hand, with m = (m1, , . . . ,mn) ∈ Nn and j = (j1, . . . , jn) ∈ Nn,
one has

∂j(ix)m = ∂j ((ix1)m1 · · · (ixn)mn)

= i|m|
(

m1!

(m1 − j1)!
xm1−j1
1 · · · mn!

(mn − jn)!
xmn−jn
n

)
.

Thus, for j ≤ m,∣∣∂j(ix)m
∣∣ ≤ m!

(m− j)!
|x1|m1−j1 · · · |xn|mn−jn =

m!

(m− j)!
|x||m|−|j|,

and ∂j(ix)m = 0 for j � m.
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Hence, expression (8) is less than or equal to∑
j≤p

(
p

j

)
max
x∈Rn

{(
1 + |x|2

)k m!

(m− j)!
|x||m|−|j|

×
(

(|p| − |j|)(|y|+ 1)|p|−|j|−1 + (|y|+ 1)|p|−|j|n|x|
)
|h|
}
.

(9)

Note that for k ∈ Z, k < 0, and |m| ≤ −2k − 1, expression (9) is bounded by

|h|
∑
j≤p

My,m,p,j ,

where My,m,p,j ≥ 0. This concludes the proof.

From this proposition one has that if f ∈ S ′k, k ∈ Z, k < 0, and F (y) =
〈f(x), eixy〉, then the partial derivatives ∂mF of the function F are continuous on
Rn for |m| ≤ −2k − 1. That is, F ∈ C−2k−1(Rn), k ∈ Z, k < 0.

We can now state the following

Theorem 3. The Fourier transform understood as an automorphism of S ′ is a
linear injective map from S ′k onto O−2k−1C , k ∈ Z, k < 0.

Proof. Let f be a member of S ′k. By Proposition 3 above, the function F (y) =
〈f(x), eixy〉 is of class C−2k−1 (Rn), k ∈ Z, k < 0.

By Proposition 2.2 in [3], one has

|∂mF (y)| =
∣∣〈f(x), (ix)meixy〉

∣∣ , y ∈ Rn m ∈ Nn, |m| ≤ −2k − 1.

By virtue of [9, Proposition 2, p. 97], there exists C > 0 and l ∈ N, all depending
on f such that

|∂mF (y)| ≤C ·max
|p|≤l

(
max
x∈Rn

∣∣∣(1 + |x|2
)k
∂px
(
xmeixy

)∣∣∣)

≤C ·max
|p|≤l

∑
j≤p

(
p

j

)
max
x∈Rn

∣∣∣(1 + |x|2
)k
∂p−jx xm∂j

(
eixy

)∣∣∣


=C ·max
|p|≤l

∑
j≤p

(
p

j

)
max
x∈Rn

∣∣∣(1 + |x|2
)k
∂p−jx xm

(
(iy)jeixy

)∣∣∣
 , (10)

where, since |yj | ≤ |y||j|, equation (10) is bounded above by

C ·max
|p|≤l

∑
j≤p

(
p

j

)
|y||j| max

x∈Rn

∣∣∣(1 + |x|2
)k
∂p−jx xm

∣∣∣
 . (11)

Thus, since |m| ≤ −2k − 1, there exists a constant Mm,p,j ≥ 0 such that(
p

j

)
· max
x∈Rn

∣∣∣(1 + |x|2
)k
∂p−jx xm

∣∣∣ = Mm,p,j ,
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and expression (11) can be written as

C ·max
|p|≤r

∑
j≤p

Mm,p,j |y||j|
 ,

which is for |y| ≥ 1 less than or equal to

C · |y|r ·max
|p|≤r

∑
j≤p

Mm,p,j

 ,

where r denotes the order of f .
Therefore, one has∣∣(1 + |y|2)k∗∂mF (y)

∣∣→ 0, |y| → +∞,

whenever 2k∗ + r < 0. From this fact one has that

F ∈
⋃
k∗∈Z

S −2k−1k∗
= O−2k−1C .

Finally, from [2, Corollary 3.1] it follows that the mentioned map S ′k ↪→ O−2k−1C

is injective.

5. Regular distributions versus convolution on S ′
k, k ∈ Z, k < 0

In this section, we deal with the convolution for the Fourier transform over the space
S ′k, k ∈ Z, k < 0 for certain regular distributions over this space.

Under certain restrictions, the convolution of members in S ′k corresponds to the
usual convolution of ordinary functions.

Proposition 4. Let f, g be locally integrable functions defined on Rn such that
(1 + |x|2)−kf(x) and (1 + |x|2)−kg(x) are Lebesgue integrable on Rn for some k ∈ Z,
k < 0. Then the linear functional Tf ∗ Tg given by

〈Tf ∗ Tg, φ〉 = 〈Tf (x), 〈Tg(y), φ(x+ y)〉〉 , φ ∈ Sk,

is equal to Tf∗g, where f ∗ g denotes the usual convolution of the functions f and g.

Proof. In [1], it was established that for f, g ∈ S ′k, k ∈ Z, k < 0, the convolution
f ∗ g given by

〈f ∗ g, φ〉 = 〈f(x), 〈g(y), φ(x+ y)〉〉 , φ ∈ Sk,

is a member of S ′k.
Now, if f and g are functions satisfying the above hypothesis, one has that

Tf , Tg ∈ S ′k, and then

〈Tf ∗ Tg, φ〉 = 〈Tf (x), 〈Tg(y), φ(x+ y)〉〉 =

∫
Rn

∫
Rn

f(x)g(y)φ(x+ y)dydx. (12)
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In order to show that f(x)g(y)φ(x + y) is integrable as a function of (x, y), we
consider the following inequality:

|f(x)g(y)φ(x+ y)|

=

∣∣∣∣ f(x)g(y)

(1 + |x|2)k(1 + |y|2)k

∣∣∣∣ (1 + |x|2)k(1 + |y|2)k

(1 + |x+ y|2)k
∣∣(1 + |x+ y|2)kφ(x+ y)

∣∣ .
Note that for k < 0, [1, Lemma 2.1], one has that

(1 + |x|2)k(1 + |y|2)k

(1 + |x+ y|2)k
≤ 4−k.

Moreover, the function
f(x)g(y)

(1 + |x|2)k(1 + |y|2)k

is integrable on R2n and (1 + |x + y|2)kφ(x + y) is bounded on R2n. Therefore,
by using Fubini’s theorem, the repeated integral (12) becomes a double integral in
(x, y) given by ∫

Rn

∫
Rn

f(x)g(y)φ(x+ y)dydx. (13)

Next, applying the change of variables u = x, v = x+ y, whose Jacobian is equal
to one, it follows that (13) becomes∫

Rn

∫
Rn

f(u)g(v − u)φ(v)dudv,

which, by applying Fubini’s theorem again, can be written in the form:∫
Rn

∫
Rn

f(u)g(v − u)duφ(v)dv.

Here one observes that ∫
Rn

f(u)g(v − u)du = (f ∗ g)(v)

is the usual convolution product of f and g.
Let us now see that

(1 + |v|2)−k
∫
Rn

f(u)g(v − u)du

is integrable on Rn from which Tf∗g ∈ S ′k, k ∈ Z, k < 0.
Now we consider ∫

Rn

(1 + |v|2)−k
∫
Rn

f(u)g(v − u)dudv.

The change of variables x = u, y = v − u yields∫
Rn

(1 + |x+ y|2)−k
∫
Rn

f(x)g(y)dxdy.
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Taking into account that∣∣(1 + |x+ y|2)−kf(x)g(y)
∣∣

=

∣∣∣∣ f(x)g(y)

(1 + |x|2)k(1 + |y|2)k

∣∣∣∣ (1 + |x|2)k(1 + |y|2)k

(1 + |x+ y|2)k
(1 + |x+ y|2)k(1 + |x+ y|2)−k,

the fact
(1 + |x|2)k(1 + |y|2)k

(1 + |x+ y|2)k
≤ 4−k

for k < 0, [1, Lemma 2.1], and that from the hypotheses (1 + |x|2)−kf(x) and
(1 + |x|2)−kg(x) are Lebesgue integrable on Rn, it follows that

f(x)g(y)

(1 + |x|2)k(1 + |y|2)k

is integrable on R2n, and therefore, Tf ∗Tg = Tf∗g, where f∗g is the usual convolution
of the functions f and g.

6. Some examples

6.1. Example 1

Assume that f is a locally integrable function on Rn such that (1 + |x|2)−kf(x)
is integrable on Rn, k ∈ Z, k < 0, and set g(x) = 2−ne−(|x1|+|x2|+···+|xn|), x =
(x1, x2, . . . , xn) ∈ Rn. Observe that

2−n
∫
Rn

(1 + |x|2)−ke−(|x1|+|x2|+···+|xn|)dx

≤ 1

2

∫ +∞

−∞
(1 + x21)−ke−|x1|dx1

1

2

∫ +∞

−∞
(1 + x22)−ke−|x2|dx2 · · ·

1

2

∫ +∞

−∞
(1 + x2n)−ke−|xn|dxn

since
1 + |x|2 = 1 + x21 + x22 + · · ·+ x2n ≤ (1 + x21)(1 + x22) · · · (1 + x2n),

and thus, with k < 0,

(1 + |x|2)−k ≤ (1 + x21)−k(1 + x22)−k · · · (1 + x2n)−k.

This shows that (1 + |x|2)−ke−(|x1|+|x2|+···+|xn|) is Lebesgue integrable on Rn and
thus Tg ∈ S ′k.

Set

(f∗g)(w) = 2−n
∫
Rn

f(x)e−(|w1−x1|+|w2−x2|−···−|wn−xn|)dx, w = (w1, w2, . . . , wn) ∈ Rn.

Then Tf∗g ∈ S ′k and Tf ∗ Tg = Tf∗g.
Taking into account that

(F (Tf∗g)) (y) = (F (Tf ∗ Tg)) (y) = (F (Tf )) (y) (F (Tg)) (y), y ∈ Rn,
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we get(
F
(

2−n
∫
Rn

f(x)e−(|w1−x1|+|w2−x2|−···−|wn−xn|)dx

))
(y) = (Ff) (y) (Fg) (y).

Next,

(Fg) (y) = 2−n
∫
Rn

e−(|x1|+|x2|+···+|xn|)eixydx

=
1

2

∫ +∞

−∞
e−|x1|eix1y1dx1 · · ·

1

2

∫ +∞

−∞
e−|xn|eixnyndxn, y = (y1, . . . , yn) ∈ Rn.

Moreover, for x > 0 one has

1

2

∫ +∞

0

e−xeixydx =
1

2

1

1− iy
,

and for x < 0 one has
1

2

∫ 0

−∞
exeixydx =

1

2

1

1 + iy
;

therefore,

1

2

∫ +∞

−∞
e−|x|eixydx =

1

1 + y2
.

Thus,

(Fg) (y) =
1

(1 + y21) · · · (1 + y2n)
, y = (y1, . . . , yn) ∈ Rn,

and then, (
F
(∫

Rn

f(x)e−(|w1−x1|+···+|wn−xn|)dx

))
(y)

=
2n

(1 + y21) · · · (1 + y2n)
(Ff) (y), y = (y1, . . . , yn) ∈ Rn,

for f a locally integrable function on Rn such that (1 + |x|2)−kf(x) is integrable on
Rn, k ∈ Z, k < 0, and where F denotes the classical Fourier transform.

6.2. Example 2

Consider the function g(x) = e−|x|
2

= e−(x
2
1+···+x

2
n), for x = (x1, . . . , xn) ∈ Rn. One

has that Tg ∈ S ′k. Moreover,

(Fg) (y) =

∫
Rn

e−(x
2
1+···+x

2
n)eix1y1+···+xnyndx

=

∫ +∞

−∞
eix1y1e−x

2
1dx1 · · ·

∫ +∞

−∞
eixnyne−x

2
ndxn. (14)
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Next, from the formula

1√
2πc

∫ +∞

−∞
eνxe−x

2/2cdx = ecν
2/2, c > 0,

there follows ∫ +∞

−∞
eixjyje−x

2
jdxj =

√
πe−y

2
j/4, 1 ≤ j ≤ n,

and then (14) is equal to

πn/2e−
1
4 |y|

2

.

Thus, as in Example 6.1, one has(
F
(∫

Rn

f(x)e−|w−x|
2

dx

))
(y) = πn/2e−

1
4 |y|

2

(Ff) (y), y ∈ Rn,

where f is a locally integrable function on Rn such that (1+ |x|2)−kf(x) is integrable
on Rn, k ∈ Z, k < 0, and F denotes the classical Fourier transform.
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