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The cyclic codes of length 5ps over Fpm + uFpm and their dual
codes

Brahim Boudine∗, Jamal Laaouine and Mohammed Elhassani Charkani

Department of Mathematics, Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Dhar El Mahraz, Fez, 30 003, Morocco

Received September 2, 2021; accepted March 28, 2022

Abstract. Let p be a prime integer and m an integer such that p ≡ 2 (mod 5) or p ≡
(mod 5), and let m be odd. We classify explicitly the cyclic codes of length 5ps over
R = Fpm + uFpm with u2 = 0 and compute completely their dual codes.
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1. Introduction

Linear codes have been widely studied due to their algebraic structure which sim-
plifies study, and they even have many applications in storage and communication
systems as they have efficient encoding and decoding algorithms [18]. For the sake
of easy encoding and decoding, one naturally requires a cyclic shift of a codeword
in a code C to be still a codeword of C. This yields cyclic codes [13]. Namely, the
codes C such that: (c0, . . . , cn) is a codeword in C implies that (cn, c0, c1, . . . , cn−1)
is a codeword in C. Formally, cyclic codes of length p over a field k are defined as
the ideals of the ring k[X]/〈Xp − 1〉 [10].
In 1957, Prange [17] have been the first to study the cyclic codes. Since then, cyclic
codes over Fpm was completely classified (see [12, 11, 7, 8, 9, 5]). After that, cyclic
codes have been generalized over finite rings instead of fields only. Classifications of
cyclic codes over Fpm + uFpm for some lengths are known, e.g. for length ps in 2010
by Dinh [6], for length 2ps in 2014 by Liu and Xu [14], and for length 3ps in 2020
by Phuto and Klin-eam [16].
Our aim in this paper is to classify the cyclic codes of length 5ps over R = Fpm+uFpm
when p ≡ 2 (mod 5) or p ≡ 3 (mod 5) and m is odd, and to give their dual codes.
We propose a method of the ideals classification inspired by the number theory
techniques based on the valuation language (see [15]). This new method allows to
simplify proofs and calculations, and it strengthens the algebraic coding vocabulary.
Moreover, our classification is characterized by an important parameter L which al-
lows the avoidance of the repetition of some codes in different given types or classes.
Let p be a prime integer such that p ≡ 2 (mod 5) or p ≡ 3 (mod 5) and m is odd.
The decomposition of the cyclic codes of length 5ps yields a class of codes that we

∗Corresponding author. Email addresses: brahimboudine.bb@gmail.com (B.Boudine),
laaouine.jamal@gmail.com (J. Laaouine), mcharkani@gmail.com (M.E.Charkani)

http://www.mathos.hr/mc c©2022 Department of Mathematics, University of Osijek



128 B.Boudine, J. Laaouine and M.E.Charkani

call the n−cyclotomic codes. So we define the n−cyclotomic codes and recall some
results about their factorization in preliminaries. Then, in Section 3, we classify the
cyclic codes of length 5ps over R by giving a classification of 5-cyclotomic codes of
length 4ps over Fpm + uFpm . Finally, the last section will be devoted to computing
all the dual codes for each given type.

2. Preliminaries

Let R = Fpm +uFpm with u2 = 0. Every element x of R is of the form x = x0 +ux1
with xi in Fpm . We put ν(x) = min{i ∈ {0, 1} | xi 6= 0}. Likewise, if I is an ideal of
R, then we put ν(I) = max{i ∈ {0, 1} | I ⊆ uiR}. In R[X], a polynomial f(X) is of
the form f(X) = f0(X) + uf1(X) with fi(X) ∈ Fpm [X]. So we put ν(f) = min{i ∈
{0, 1} | fi 6= 0}, and for any ideal I in R[X], ν(I) = max{i ∈ {0, 1} | I ⊆ uiR[X]}.
On the other hand, cyclotomic polynomials denoted by Φn(X) are defined as special
divisors of polynomials of the form Xn − 1. When n is prime [1], we get

Φn(X) = Xn−1 +Xn−2 + · · ·+X + 1.

Lemma 1. [20] Φn(X) is irreducible in Fq[X] if and only if q is a primitive root
modulo n and n is equal to 2, 4, rk or 2rk, where r is an odd prime and k is a
positive integer.

Definition 1. Let R be a commutative ring. We define a n-cyclotomic code of
length dnk over R as an ideal of the ring R[X]/〈Φn(X)k〉 where dn = deg(Φn).

n-cyclotomic codes generalize cyclic and negacyclic codes; indeed, 1-cyclotomic
codes of length ps are exactly the negacyclic codes of length ps, and 2-cyclotomic
codes of length ps are the cyclic codes of length ps [1]:

Φ1(X) = 1 +X,

Φ2(X) = 1−X.

Proposition 1. Φ5(X) is irreducible in Fpm if and only if p ≡ 2 (mod 5) or p ≡ 3
(mod 5) and m is odd.

Proof. If p ≡ 0 (mod 5) or p ≡ 1 (mod 5) or p ≡ 4 (mod 5), then clearly pm is not
a primitive root modulo 5.
If p ≡ 2 (mod 5), then when m = 2k we get pm ≡ 4 (mod 3) that is not a primitive
root modulo 5, and when m is odd, we get pm ≡ 2 (mod 5) or pm ≡ 3 (mod 5),
which are primitive root modulo 5. Likewise, we get that pm is a primitive root
modulo 5 when p ≡ 3 (mod 5) and m is odd.
Therefore, Φ5(X) is irreducible in Fpm if and only if p ≡ 2 (mod 5) or p ≡ 3 (mod 5)
and m is odd.

Proposition 2. Let C be a cyclic code of length 5ps over Fpm + uFpm . If p ≡ 2
(mod 5) or p ≡ 3 (mod 5) and m is odd, then

C = C1 ⊕ C2,

where C1 is a cyclic code of length ps over Fpm +uFpm and C2 is a 5-cyclotomic code
of length 4ps over Fpm + uFpm .
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Proof. Notice that X4+X3+X2+X+1 = Φ5(X) is the 5-th cyclotomic polynomial
[1]. Let R = Fpm + uFpm . When p ≡ 2 (mod 5) or p ≡ 3 (mod 5) and m is odd,
Φ5(X) is irreducible in Fpm [X]. We get (X5 − 1)p

s

= (X − 1)p
s

(X4 + X3 + X2 +
X + 1)p

s

. By the Chinese remainder theorem [2] R[X]/〈(X5 − 1)p
s〉 = R[X]/〈(X −

1)p
s〉
⊕
R[X]/〈(X4 +X3 +X2 +X + 1)p

s〉.

In order to classify the cyclic codes of length 5ps over Fpm + uFpm , it is enough
to classify the 5-cyclotomic codes of length 4ps over Fpm +uFpm and the cyclic codes
of length ps over Fpm + uFpm .
Likewise, C⊥ = C⊥1

⊕
C⊥2 . Then we should only compute the dual codes of the 5-

cyclotomic codes of length 4ps over Fpm + uFpm and the cyclic codes of length ps

over Fpm + uFpm .

3. Classification of the cyclic codes of length 5ps over Fpm+uFpm

Theorem 1. Let f(x) = x4 +x3 +x2 +x+ 1, and p ≡ 2 (mod 5) or p ≡ 3 (mod 5)
and m is odd. 5-cyclotomic codes of length 4ps over R = Fpm +uFpm are as follows:

1. Type 1: C1: 〈0〉 ; 〈1〉.

2. Type 2: C2(τ): 〈uf(x)τ 〉; where 0 ≤ τ ≤ ps − 1.

3. Type 3: C3(δ, t, h(x)): 〈f(x)δ + uf(x)th(x)〉;
where δ > t, either h(x) is 0 or h(x) is a unit in R[X]/〈f(X)p

s〉 of the form
L−t−1∑
i=0

hif(x)i with deg(hi) ≤ 1 and h0 6= 0.

4. Type 4: C4(δ, t, h(x), ω): 〈f(x)δ + uf(x)th(x), uf(x)ω〉;
where ps > δ ≥ L > ω > t ≥ 0, either h(x) is 0 or h(x) is a unit in
R[X]/〈f(X)p

s〉. Here, L is the smallest integer satisfying uf(x)L ∈ C3(δ, t, h(x)).

Proof. The proof consists of 3 steps:

Step 1: First, we show the general form of ideals of A = R[X]/〈(f(X))p
s〉.

Let I be an ideal in A; then I = (I + uA)/uA is an ideal in A/uA. Since
A/uA ∼ Fpm [X]/〈f(X))p

s〉 is a principal ideal ring, I = a1A/uA for some
a1 ∈ I. Let x ∈ I; then x = a1.b for some b ∈ A. Namely, x = a1.b+uc for
some c ∈ A. Thus uc = x−a1.b ∈ I. Therefore c ∈ J1 = {r ∈ A | ur ∈ I},
so that I = a1.A+uJ1. By the same logic for J1 we get J1 = a2.A+u.J2 for
J2 = {r ∈ A | ur ∈ J1} = {r ∈ A | u2r ∈ I}. Therefore, I = a1.A+ua2.A.

Step 2: Next, we show the generators ai.
We know that R is a special principal ideal ring [3]. Then, every principal
ideal J in R[X] is of the form 〈uµg〉, where g is a monic polynomial and
µ = ν(J) (see [4]). There exist g0, g1 ∈ Fpm [X]/〈f(X)p

s〉 such that
g = g0 + ug1. For k ∈ {0, 1}. Let vk = max{i ∈ {0, . . . , ps} | f i divide
gk}. Then gk = fvkq for some q ∈ Fpm [X]/〈f(X)p

s〉. Then q does not
divide f which is irreducible, so the Bézout identity proves that q is a unit
in Fpm [X]/〈f(X)p

s〉. Therefore, g = fa +uf bh. If we suppose h is a unit
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and a ≤ b, we get g = fa(1 + uf b−a), and 1 + uf b−ah is a unit because
ufa−bh is nilpotent. So J = faA or J = (fa + uf bh)A with a > b.

Step 3: Finally, we have 4 cases:

1. I = (0) or I = A, which is type 1.

2. I is a principal ideal with ν(I) = 1. In this case, I = ufτA, which is
type 2.

3. I is a principal ideal with ν(I) = 0. In this case I = (fδ + uf th)A
with δ > t and h is either unit or zero. This corresponds to type 3.

4. I is not a principal ideal. In this case, I = a1A+ua2A. Since a1A is a
principal ideal, a1A = (fδ +uf th)A with δ > t and h either a unit or
zero. Therefore, I = (fδ +uf th)A+ufωA. Since ufδ ∈ (fδ +uf th),
if ω ≥ δ, we get I = (fδ + uf th)A + ufωA = (fδ + uf th)A, which
is principal, then ω < δ. Moreover, if t ≥ ω, the ideal I could be
written as I = fδA+ ufωA, which is also of type 4 for h = 0.

We should now compute the parameter L.

Proposition 3. Let f(x) = x4 + x3 + x2 + x + 1 and L = min{k ∈ Nδ | ufk ∈
〈fδ + uf th〉}

L =

{
δ, if h = 0,
min(δ, ps − δ + t), if h 6= 0.

Proof. Suppose ufω = (fδ + uf th)(g′0f
g0 + ug′1f

g1) with g′i is a unit or zero and
g0 > g1. Then {

g′0f
g0+δ = 0,

g′1f
δ+g1 + g′0hf

g0+t = fω.

Then g0 + δ ≥ ps. Let k0 = g0 + δ − ps. We get,

g′1f
δ+g1 + g′0hf

ps−δ+k0+t = fω.

Since δ+g1 > ω, if h = 0, the equation is impossible. Else, ν(g′1f
δ+g1+g′0hf

ps−δ+k0+t)
= ps − δ + k0 + t = ω. It follows that ω ≥ ps − δ + t, while h 6= 0.

The classification of cyclic codes of length ps over Fpm +uFpm was given by Dinh
in [6]:

Theorem 2 (see [6]). Let f ′(x) = x − 1. The cyclic codes of length ps over R =
Fpm + uFpm are:

1. Type 1: C′1: 〈0〉 ; 〈1〉.

2. Type 2: C′2(τ): 〈uf ′(x)τ 〉; where 0 ≤ τ ≤ ps − 1.

3. Type 3: C′3(δ, t, h): 〈f ′δ + uf ′th〉;
where δ > t, either h is 0 or h is a unit in R[X]/〈(f ′(X))p

s〉 of the form
L−t−1∑
i=0

hif
′i with deg(hi) ≤ 1 and h0 6= 0.
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4. Type 4: C′4(δ, t, h, ω): 〈f ′δ + uf ′th, uf ′ω〉;
where ps > δ ≥ T > ω > t ≥ 0, either h is 0 or h is a unit in R[X]/〈(f ′(X))p

s〉.
Here T is the smallest integer satisfying uf ′T ∈ C′3(δ, t, h).

Proposition 4. [6] Let f ′(x) = x− 1 and T = min{k ∈ Nδ | uf ′k ∈ 〈f ′δ + uf ′th〉}

T =

{
δ, if h = 0,
min(δ, ps − δ + t), if h 6= 0.

4. Dual codes of the 5-cyclotomic codes of length 4ps over Fpm+
uFpm

Let f(x) = x4 + x3 + x2 + x + 1 and p ≡ 2 (mod 5) or p ≡ 3 (mod 5), and let
m be odd. According to Theorem 1, we compute the dual code of each type of
5-cyclotomic codes of length 4ps over R = Fpm + uFpm .
For a 5-cyclotomic code C, its dual is C⊥ = Ann(C)∗ = {k∗ | kg = 0, (∀g ∈ C)},
where k∗ is the reciprocal polynomial of k defined by k∗(x) = xdeg(k)k( 1

x ).

Remark 1. Remark that f∗ = f . Indeed, f∗(x) = x4( 1
x4 + 1

x3 + 1
x2 + 1

x + 1) = f(x).

For type 1, it is obvious that 〈0〉⊥ = 〈1〉 and 〈1〉⊥ = 〈0〉.
Let us now show other types.

Proposition 5. Using the above notations, we have

C2(τ)⊥ = C4(ps − τ, 0, 0, 0).

Proof. Let g ∈ R[X]/〈(f(X))p
s〉\{0} such that ufτ×g = 0. There exist a0, a1 ∈ N,

h0, h1 ∈ Fpm [X]/〈(f(X))p
s〉 with h0 a unit and h1 either a unit or zero, verifying

g = h0(fa0 + ufa1h1) and a0 > a1. Then, ufτ × g = ufτ+a0h0 = 0. Therefore,
τ +a0 ≥ ps, namely a0 ≥ ps−τ . Thus, g ∈ 〈fps−τ , u〉. Conversely, it is obvious that
fp

s−τ × ufτ = 0 and u× ufτ = 0. Therefore, C2(τ)⊥ = 〈fps−τ , u〉∗ = 〈fps−τ , u〉 =
C4(ps − τ, 0, 0, 0).

Proposition 6. Using the above notations, we have

C3(δ, t, h)⊥ =

 C3(ps − δ, 0, 0), if h = 0,
C3(ps − δ, ps + t− 2δ + v,−H), if h 6= 0 and ps ≥ 2δ − t,
C3(δ − t, v,−H), if h 6= 0 and ps ≤ 2δ − t,

with v = max{k ∈ N | fk dividing x4(δ−t)h( 1
x )} and x4(δ−t)h( 1

x ) = fv(x)H(x) for
some H, which is either a unit or zero.

Proof. Let g ∈ R[X]/〈f(X)p
s〉 \ {0} such that (fδ + uf th) × g = 0. There exist

a0, a1 ∈ N, h0, h1 ∈ Fpm [X]/〈f(X)p
s〉 with h0 a unit and h1 either a unit or zero,

verifying g = h0(fa0 + ufa1h1) and a0 > a1. Then, (fδ + uf th) × g = h0(fδ+a0 +
u(fδ+a1h1 + f t+a0h)) = 0. Therefore,{

fδ+a0 = 0,
fδ+a1h1 + f t+a0h = 0.
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By the first equation, there exists k0 ∈ N such that a0 = ps − δ + k0. Then, the
second equation becomes as follows:

fδ+a1h1 = −f t+p
s−δ+k0h.

Case 1: If h = 0, we choose t = 0. Then, fδ+a1h1 = 0. It follows that h1 = 0
or a1 = ps − δ + k1 for some k1 ∈ N. Therefore, g = h0(fp

s−δ+k0 +
ufp

s−δ+k1h1) with h1 a unit or zero. In particular, when k0 = k1 = 0, it
is easy to notice that (fδ + uf th)× g = 0. Thus,

C3(δ, 0, 0)⊥ = 〈fp
s−δ〉∗ = 〈fp

s−δ〉 = C3(ps − δ, 0, 0).

Case 2: If h a unit, then we suppose that ps + t − δ + k0 < ps. Then δ + a1 =
t + ps − δ + k0, and h1 = −h. Then, g = h0(fp

s−δ+k0 − ufps+t−2δ+k0h)
with ps + t − 2δ + k0 ≥ 0, namely k0 ≥ 2δ − t − ps. So we put k0 =
max{0, 2δ − t− ps}.
If 0 ≥ 2δ − t− ps, then

C3(δ, t, h)⊥ = 〈fp
s−δ − ufp

s+t−2δh〉∗ = 〈fp
s−δ − ufp

s+t−2δx4(δ−t)h(
1

x
)〉.

Let v = max{k ∈ N | fk divide x4(δ−t)h( 1
x )}; then x4(δ−t)h( 1

x ) =
fv(x)H(x) with H either a unit or zero. Thus,

C3(δ, t, h)⊥ = C3(ps − δ, ps + t− 2δ + v,−H).

If 0 < 2δ − t− ps, then

C3(δ, t, h)⊥ = 〈fδ−t − uh〉∗ = 〈fδ−t − ux4(δ−t)h(
1

x
)〉.

Let v = max{k ∈ N | fk divide x4(δ−t)h( 1
x )}. Then, x4(δ−t)h( 1

x ) =
fv(x)H(x) with H either a unit or zero. Thus,

C3(δ, t, h)⊥ = C3(δ − t, v,−H).

Proposition 7. Using the above notations, we have

C4(δ, t, h, ω)⊥ =

 C4(ps − ω, 0, 0, ps − δ), if h = 0,
C3(ps − ω, ps + t− δ − ω + v,−H), if h 6= 0 and ps ≥ δ + ω − t,
C3(δ − t, v,−H), if h 6= 0 and ps ≤ δ + ω − t,

with v = max{k ∈ N | fk dividing x4(δ−t)h( 1
x )} and x4(δ−t)h( 1

x ) = fv(x)H(x) for
some H which is either a unit or zero.

Proof. Let g ∈ R[X]/〈f(X)p
s〉 \ {0} such that{

g × (f(x)δ + uf(x)th(x)) = 0,
g × uf(x)ω = 0.

Namely, g ∈ C3(δ, t, h)⊥ ∩ C2(ω)⊥. By the previous proofs done, we distinguish two
cases:



The cyclic codes of length 5ps over Fpm + uFpm and their dual codes 133

Case 1: If h = 0, then g = h0(fp
s−ω+k0 + ufv1h1) ∈ 〈fps−δ〉 with k0, v1 ∈ N, h1

either a unit or zero and h0 a unit. It follows that{
ps − ω + k0 ≥ ps − δ
v1 ≥ ps − δ

⇔ v1 ≥ ps − δ.

Therefore, g ∈ 〈fps−ω, ufps−δ〉. Conversely, fp
s−ω, ufp

s−δ ∈ C3(δ, t, h)⊥∩
C2(ω)⊥. Thus,

C4(δ, 0, 0, ω)⊥ = 〈fp
s−ω, ufp

s−δ〉 = C4(ps − ω, 0, 0, ps − δ).

Case 2: If h 6= 0, then g = h0(fp
s−δ+k0 − ufps+t−2δ+k0h) ∈ 〈fps−ω, u〉 with h0 a

unit and k0 ∈ N. It follows that

ps − δ + k0 ≥ ps − ω ⇔ k0 ≥ δ − ω.

In the proof of Proposition 6, we had k0 ≥ max{0, 2δ− t− ps}. Then, we
get k0 ≥ max{δ − ω, 2δ − t− ps}.
If δ − ω ≥ 2δ − t − ps, then k0 = δ − ω + k′ for some k′ ∈ N, as well as
g = h0(fp

s−ω+k′ − ufps+t−δ−ω+k′h) ∈ 〈fps−ω − ufps+t−δ−ωh〉. Then,

C4(δ, t, h(x), ω)⊥ = 〈fp
s−ω − ufp

s+t−δ−ωh〉∗

= 〈fp
s−ω − ufp

s+t−δ−ωx4(δ−t)h(
1

x
)〉.

Let v = max{k ∈ N | fk divide x4(δ−t)h( 1
x )}. Then x4(δ−t)h( 1

x ) =
fv(x)H(x) with H either a unit or zero. Thus,

C4(δ, t, h, ω)⊥ = C3(ps − ω, ps + t− δ − ω + v,−H).

If δ − ω ≤ 2δ − t− ps, then k0 = 2δ − t− ps + k′ for some k′ ∈ N, as well
as g = h0(fδ−t+k

′ − ufk′h) ∈ 〈fδ−t − uh〉. Then,

C4(δ, t, h, ω)⊥ = 〈fδ−t − uh〉∗ = 〈fδ−t − ux4(δ−t)h(
1

x
)〉.

Let v = max{k ∈ N | fk divide x4(δ−t)h( 1
x )}. Then x4(δ−t)h( 1

x ) =
fv(x)H(x) with H either a unit or zero. Thus,

C4(δ, t, h, ω)⊥ = C3(δ − t, v,−H).

Now, for f ′(x) = x − 1, we have f ′∗ = −f . We will get the same results with
very little difference that some powers of −1 will appear.

Proposition 8. Using the above notations, we have

C′2(τ)⊥ = C′4(ps − τ, 0, 0, 0).
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Proposition 9. Using the above notations, we have

C′3(δ, t, h)⊥ =


C′3(ps − δ, 0, 0), if h = 0,
C′3(ps − δ, ps + t− 2δ + v, (−1)p

s+t+1H), if h 6= 0 and ps ≥ 2δ − t,
C′3(δ − t, v,−H), if h 6= 0 and ps ≤ 2δ − t,

with v = max{k ∈ N | f ′k dividing xδ−th( 1
x )} and xδ−th( 1

x ) = f ′v(x)H(x) for some
H which is either a unit or zero.

Proposition 10. Using the above notations, we have

C′4(δ, t, h, ω)⊥ =
C′4(ps − ω, 0, 0, ps − δ) if h = 0,
C′3(ps − ω, ps + t− δ − ω + v, (−1)p

s+t−δ−ω+1H) if h 6= 0 and ps ≥ δ + ω − t,
C′3(δ − t, v,−H) if h 6= 0 and ps ≤ δ + ω − t,

with v = max{k ∈ N | f ′k dividing xδ−th( 1
x )} and xδ−th( 1

x ) = f ′v(x)H(x) for some
H which is either a unit or zero.
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