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Abstract. In this paper, we establish the existence and multiplicity of solutions to the
following fractional Kirchhoff-type problem

M(∥u∥2)(−∆)su = f(x, u(x)), in Ω u = 0 in RN\Ω,

where N > 2s with s ∈ (0, 1), Ω is an open bounded subset of RN with Lipschitz boundary,
M and f are two continuous functions, and (−∆)s is a fractional Laplace operator. Our
main tools are based on critical point theorems and the truncation technique.
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions for
a class of fractional Kirchhoff-type problemM

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su = f(x, u(x)), in Ω,

u = 0, in RN \ Ω,
(1)

where N > 2s with s ∈ (0, 1), Ω is an open bounded subset of RN with Lipschitz
boundary, M and f are two continuous functions whose properties will be stated
later, and the fractional Laplace operator −(−∆)s which, up to normalization fac-
tors, may be defined as

−(−∆)su(x) :=

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy, x ∈ RN . (2)

As we know, the multidimensional Kirchhoff equation is
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∂2u

∂t2
− (1 +

∫
Ω

|∇u|2dx)∆u = 0, (3)

where Ω ⊂ RN and u : Ω → R satisfies some initial or boundary conditions. It arises
from the following nonlinear generalization of the well known d’Alembert equation

∂2u

∂t2
−

(
p0
h

+
E

2L

∫ L

0

(
∂u

∂x
)2dx

)
∂2u

∂x2
= 0. (4)

This model (4) was proposed by Kirchhoff [12], so the equation of this class is called
a Kirchhoff-type equation. Equation (4) describes a vibrating string, taking into
account the changes in the length of the string during vibration. Here L is the
length of the string, h is the area of the cross section, E is the Young modulus of the
material, ρ is the mass density and p0 is the initial tension. In [13], the hyperbolic
problem was proposed by

∂2u
∂t2 −M

(∫
Ω

|∇u|2dx
)
∆u = f, in Ω× (0, T ),

u = 0, in ∂Ω× (0, T ),

u(0) = u0, u′(0) = u1

(5)

where M : [0,+∞) → R is a continuous function such that M(s) ≥ c > 0 for
any s ≥ 0, and Ω is a bounded set of RN with smooth boundary. This hyperbolic
problem has an elliptic version when we look for stationary solutions. In [28], a
class of problems was considered among which the following elliptic Kirchhoff-type
equation was included−M

(∫
Ω

|∇u|2dx
)
∆u = f, in Ω,

u = 0, in ∂Ω,
(6)

where Ω is an open subset of RN .
According to the original formulation of the equation given by Kirchhoff, if there

exist two positive constants a and b such that M : R+ → R can be written in the
form M(s) = a+ bs, then we say that M is a Kirchhoff function.

Our motivation is that we replace the energy M̃(
∫
Ω
|∇u|2dx) by

M̃

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
,

where M̃ is a primitive of M . Then the classical elliptic Kirchhoff-type problem
becomes a nonlocal Kirchhoff type problem

∂2u

∂t2
+M

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su = 0.

The form of its static state may be written as the following form

M

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su = 0 (7)
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Accordingly, this nonlocal model for the vibrating string may be obtained from (5),
by considering the above tension M(·) and replacing the local spatial second deriva-
tive with the nonlocal operator−(−∆)su. In this way we obtain a higher dimensional
nonlocal Kirchhoff equation (7). It is not artificial to obtain this Kirchhoff equation
(7), the detailed deduction of this nonlocal model can be referred to Fiscella and
Valdinoci [10]. On the other hand, as the lecture notes of Silvestre [25] say, good
understanding of nonlocal equations can ultimately provide better understanding of
the limit PDE case.

In a recent paper, in [10], Fiscella and Valdinoci studied the following Kirchhoff-
type problem involving an integrodifferential operator−M

(∫
RN×RN

|u(x)− u(y)|2K(x− y)dxdy

)
LKu = f(x, u(x)), in Ω,

u = 0, in RN \ Ω,
(8)

where LK is an integrodifferential operator with a singular symmetric kernel K
defined by

LKu(x) :=

∫
RN

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN , (9)

where K : Rn \{0} → (0,+∞) is a singular symmetric kernel function satisfying the
property that
(K) there exist θ > 0 and s ∈ (0, 1) such that

θ|x|−(N+2s) ≤ K(x) ≤ θ−1|x|−(N+2s) for any x ∈ RN \ {0}.

Clearly, a typical model for K is given by the singular kernel K(x) = |x|−(N+2s)

which gives rise to the fractional Laplace operator −(−∆)s. As a result, problem
(8) reduces to our problem (1).

In recent years, nonlinear equations involving fractional powers of the Laplace
operator have played an increasingly important role in physics, probability and fi-
nance, see for instance [14, 15, 29, 30], and so on. Meanwhile, increasing research of
elliptic equations involving fractional powers of the Laplace operator has been inter-
esting to many people, such as [2, 3, 7, 6, 10, 20, 21, 24, 25, 5, 26, 27] and references
therein. Among them, papers [2, 5, 26] studied the different fractional operator
which is another type of a nonlocal operator, for details see [23]. Our main inter-
est is to investigate the Kirchhoff-type problem involving fractional powers of the
Laplace operator, to the best of our knowledge, using variational techniques, there
are intensive results in the document which deal with the elliptic Kirchhoff equa-
tion (6) (see [1, 8, 9, 18, 28]) and its generalization forms such as p-Laplacian type,
p(x)-Laplacian type and so on, but there are only few papers that study this new
Kirchhoff-type problem involving fractional powers of the Laplace operator called
“fractional Kirchhoff equation”.

Inspired by the above articles, in this paper, we would like to investigate the
existence and multiplicity of solutions for problem (1) by using the mountain pass
theorem and the symmetric mountain theorem together with truncation techniques.

The paper is organized as follows. In Section 2, we give some preliminary facts
and provide some basic properties which are needed later and present our main
results. Sections 3 and 4 are devoted to the proof of our results.
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2. Preliminaries and main results

In this section, we shall give some preliminaries and then present our main results.
For studying problem (1) in a variational framework, in the sequel we denote by

Hs(RN ) the usual fractional Sobolev space endowed with the norm

∥u∥Hs(RN ) = ∥u∥L2(RN ) +

∫
RN×RN

u(x)− u(y)

|x− y|N+2s
dxdy,

while Xs
0(Ω) is the function space defined as

Xs
0(Ω) =

{
u ∈ Hs(RN ) : u = 0 a.e. in RN\Ω

}
.

The general definition of Xs
0(Ω) and its properties can be seen in [20, 21]. We define

the inner product ⟨·, ·⟩Xs
0 (Ω) on Xs

0(Ω) as follows

⟨u, v⟩Xs
0 (Ω) =

∫
RN×RN

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|N+2s

dxdy, ∀u, v ∈ Xs
0(Ω).

Then the space Xs
0(Ω) is a Hilbert space endowed with the corresponding norm

∥u∥ =

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

. (10)

Moreover, Xs
0(Ω) is compactly embedded into Lp(RN ) for any p ∈ [1, 2∗s), where

2∗s = 2N
N−2s (see [20]).

Next, we make the assumptions of M and the nonlinearities term f(x, u) as
follows:

(M0) M : R+ → R+ is an increasing and continuous function;

(M1) There exists m0 > 0 such that M(t) ≥ m0 = M(0) for any t ∈ R+;

(f0) f : Ω× R → R is a continuous function satisfying

|f(x, t)| ≤ c(1 + |t|p−1), for all x ∈ Ω and t ∈ R,

where c > 0, 2 < p < 2∗s;

(f1) lim
t→0

f(x,t)
t = 0, uniformly in x ∈ Ω;

(f2) There exist µ > 2 and R > 0 such that

0 < µF (x, t) ≤ tf(x, t), for all x ∈ Ω and all t ≥ R,

where F (x, t) =
∫ t

0
f(x, s)ds.

It follows from [17] that we have the following identity

∥u∥ = ∥(−∆)
s
2u∥L2(RN ).

This leads us to establish as a definition that the solutions to our problem are in a
variational framework.
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Definition 1. We say u ∈ Xs
0(Ω) is weak solution of (1) if for every v ∈ Xs

0(Ω)
one has

M(∥u∥2)
∫
RN×RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω

f(x, u(x))v(x)dx (11)

In the sequel we will omit the term weak when referring to solutions that satisfy
the conditions of Definition 1.

In order to prove our main results, we need to study an auxiliary truncated
problem, and such truncation technique was introduced in [10] to deal with the
fractional Kirchhoff equation. Given a ∈ R+, assume that there exists t0 > 0 such
that M(t0) = a. Now, let

Ma(t) =

{
M(t), if 0 ≤ t ≤ t0,
a, if t ≥ t0.

We introduce an auxiliary problem{
−Ma(∥u∥2)(−∆)su = f(x, u(x)), in Ω,

u = 0, in RN \ Ω,
(12)

with f defined as in problem (1).
Our fundamental idea is that we first prove that problem (12) has a solution u

in Xs
0(Ω) and if we can verify that u satisfies ∥u∥ ≤ t0, then Ma(∥u∥2) = M(∥u∥2),

as a result, u is a solution of problem (1).
The Euler functional Φa : Xs

0(Ω) → R corresponding to problem (12) is defined
by

Φa(u) =
1

2
M̃a(∥u∥2)−

∫
Ω

F (x, u(x))dx, u ∈ Xs
0(Ω),

where M̃a(t) =
∫ t

0
Ma(s)ds, under the assumptions (M0)− (M1) and (f0)− (f1), the

functional Φa is well defined. By a standard argument, Φa ∈ C1(Xs
0(Ω),R) and

⟨Φ′
a(u), v⟩ = Ma(∥u∥2)

∫
R2N

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy

−
∫
Ω

f(x, u(x))v(x)dx

for all u, v ∈ Xs
0(Ω). Moreover, critical points of functional Φa are weak solutions of

problem (12).
The following maximum principle and a priori estimate are crucial to prove our

main results.

Proposition 1 (See [24]). Let Ω ⊂⊂ RN be an open set, let u be a lower semicon-
tinuous function Ω̄ such that (−∆)su ≥ 0 in Ω and u ≥ 0 in RN\Ω. Then u ≥ 0 in
RN . Moreover, if u(x) ≡ 0 for one point x inside Ω, then u ≡ 0 in the whole RN .

Theorem 1 (See [3]). Let u be a positive solution to the problem{
(−∆)su = f(x, u(x)), in Ω,

u = 0, in RN \ Ω,
(13)
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and assume that |f(x, t)| ≤ C(1 + |t|p) for some 1 ≤ p ≤ 2∗s − 1 and C > 0. Then
u ∈ L∞(RN ).

Observe that if u is a non-negative solution of problem (1), the weak solution is
bounded by Theorem 1 and therefore it is a continuous viscosity solution according
to Theorem 1 in [22]. By virtue of Proposition 1, we obtain that u is strictly positive
in Ω, and therefore u is a positive solution of (1).

Lemma 1. Assume that u is a positive solution of problem (12), and |f(x, t)|
≤ C0|t|q−1 + C|t|p−1 for all x ∈ Ω and t ∈ R, where 1 < q ≤ p, 2 < p ≤ 2∗

and C0 ≥ 0, C > 0. Then there exists θ > 0, independent of Ma, such that

∥u∥2 ≤ max
{
Ma(∥u∥2)

2−p+q
p−1 ,Ma(∥u∥2)

2
p−1

}
θ. (14)

Proof. Let u be a positive solution for problem (12), then

w =
u

Ma(∥u∥2)
1

p−2

is a positive solution of{
(−∆)sw = g(x,w(x)), in Ω,

w = 0, in RN \ Ω,

where

g(x,w) =
f(x,Ma(∥u∥2)

1
p−2w)

Ma(∥u∥2)
p−1
p−2

.

It is easy to check that

|g(x, s)| ≤ C(1 + |s|p−1) for all x ∈ Ω and s ∈ R,

where C is dependent on m0. By Theorem 1, there exists C∗ > 0 such that ∥w∥∞ ≤
C∗. Therefore,

∥u∥∞ ≤ Ma(∥u∥2)
1

p−2C∗

and consequently,

∥u∥2 = Ma(∥u∥2)−1

∫
Ω

f(x, u(x))u(x)dx

≤ CMa(∥u∥2)−1

∫
Ω

(
|u(x)|q + |u(x)|p

)
dx

≤ CMa(∥u∥2)−1
(
∥u∥q∞ + ∥u∥p∞

)
|Ω|

≤ max
{
Ma(∥u∥2)

q−p+2
p−2 ,Ma(∥u∥2)

2
p−2

}
(C0C

q
∗ + CCp

∗ )|Ω|.

Therefore, we take θ = (C0C
q
∗ + CCp

∗ )|Ω| and the conclusion follows.

Finally, we state our main results in the following Theorems.
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Theorem 2. Assume that f satisfies the assumptions (f0)− (f2). Suppose that M
satisfies (M0)− (M1) and there exists t0 > 0 such that

M(t0) <
µm0

2
and max

{
M(t0)

2−p+q
p−2 ,M(t0)

2
p−2

}
≤ t0

θ
.

Then problem (1) has a positive solution.

We can obtain the existence of infinitely many solutions for problem (1) under
the following assumption via the symmetric mountain pass Theorem 5 stated later.

(f3) lim
t→0

f(x,t)
t = +∞ uniformly in x ∈ Ω;

(f4) f(x,−t) = −f(x, t).

The second result is stated as follows:

Theorem 3. Assume that f satisfies the assumptions (f0), (f3) − (f4), and M
satisfies (M0)− (M1). Then problem (1) has a sequence of nontrivial weak solutions
{uk} for k ∈ N large.

Remark 1. When M ≡ 1, the existence of infinitely many solutions via the sym-
metric mountain pass Theorem was proved in [4].

For proving our main results, the following mountain pass Theorem and sym-
metric mountain pass Theorem are our main tools, which can be found in [19, 11],
respectively. We present them as follows.

Theorem 4 (See [19]). Let X be a real Banach space. Suppose Φ ∈ C1(X,R)
satisfies the (PS) condition. Assume that

(1) Φ(0) = 0;

(2) there exists ρ > 0 and α > 0 such that Φ(u) ≥ α for all ∥u∥ = ρ;

(3) there exists e ∈ X such that Φ(e) < α for ∥e∥ > ρ.

Then
c = inf

γ∈Γ
max
t∈[0,1]

Φ(γ(t)) ≥ α

is a critical value, where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} .

Theorem 5 (See [11]). Let X be an infinite dimensional Banach space. Suppose
Φ ∈ C1(X,R) satisfies the following condition:

(1) Φ is even, bounded from below, Φ(0) = 0 and Φ satisfies the (PS) condition;

(2) For each k ∈ N, there exists Ak ∈ Γk such that supu∈Ak
Φ(u) < 0, where

Γk = {A : A closed symmetric subset of X and 0 ̸∈ A, γ(A) ≥ k}

and γ(A) is a genus of a closed symmetric set A.

Then Φ admits a sequence of critical points {uk} such that Φ(uk) ≤ 0, uk ̸= 0 and
∥uk∥ → 0 as k → +∞.
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3. Proof of Theorem 2

Since we intend to find a positive solution for problem (1), in this paper, let us
assume that

f(x, t) = 0, for all x ∈ Ω and t ≤ 0.

By the assumption of M , we obviously have

a <
µm0

2
, and θmax

{
a

2−p+q
p−2 , a

2
p−2

}
≤ t0. (15)

First we show that the functional Φa has a structure of mountain pass geometry.

Lemma 2. Suppose that (M0)− (M1) and (f0)− (f2) hold. Then

(i) there exist two constants ρ, α > 0 independent of a such that

Φa(u) ≥ α > 0,

for any u ∈ Xs
0(Ω) with ∥u∥ = ρ;

(ii) there exists e ∈ Xs
0(Ω) such that Φa(e) < 0 for ∥e∥ > ρ.

Proof. (i): By hypothesis (f0) and (f1), for any ε > 0, there exists Cε > 0 such
that

|F (x, t)| ≤ ε

2
|t|2 + Cε|t|p, for all x ∈ Ω and t ∈ R. (16)

From (16) and the Sobolev equality, we have

Φa(u) =
1

2
M̃a(∥u∥2)−

∫
Ω

F (x, u(x))dx

≥ m0

2
∥u∥2 − ε

2
∥u∥22 − Cε∥u∥pp

≥ (
m0

2
− ε

2
C1)∥u∥2 − C2Cε∥u∥p,

where C1, C2 > 0 are two constants. Choosing ε < m0

2C1
, we can find two constants

α, ρ > 0 so that part (i) holds.
(ii): By hypotheses (f0) and (f2), by a standard argument, there exist two

constants C3, C4 > 0 such that

F (x, t) ≥ C3|t|µ − C4, for all x ∈ Ω and t ∈ R. (17)

Taking u0 ∈ Xs
0(Ω) such that ∥u0∥ = 1 and u0(x) ≥ 0 a.e. in RN . By (17), we have

Φa(tu0) =
1

2
M̃a(t

2)−
∫
Ω

F (x, tu0(x))dx

≤ a

2
t2 − C3t

µ

∫
Ω

|u0(x)|µdx+ C4|Ω|.

Obviously, Φa(tu0) → −∞ as t → +∞. Therefore, we can choose t0 large enough
such that e = t0u0 with ∥e∥ ≥ ρ so that part (ii) holds.
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Lemma 3. The functional Φa satisfies the (PS) condition, that is, if a sequence
{un} ⊂ Xs

0(Ω) satisfies Φa(un) bounded and Φ′
a(un) → 0 as n → ∞, then {un} has

a convergence subsequence.

Proof. Let {un} be a sequence such that

Φa(un) bounded and Φ′
a(un) → 0 (18)

as n → ∞. By hypothesis (f2) and (18), we have

µΦa(un)− ⟨Φ′
a(un), un⟩ =

µ

2
M̃a(∥un∥2)−Ma(∥un∥2)∥un∥2

+

∫
Ω

[
f(x, un(x))un(x)− µF (x, un(x))

]
dx

≥ (
µ

2
m0 − a)∥un∥2 +

∫
{x∈Ω:|un(x)|≥R}

[
f(x, un(x))un(x)

−µF (x, un(x))
]
dx

+

∫
{x∈Ω:|un(x)|≤R}

[
f(x, un(x))un(x)− µF (x, un(x))

]
dx

≥ (
µ

2
m0 − a)∥un∥2 +

∫
{x∈Ω:|un(x)|≤R}

[
f(x, un(x))un(x)

−µF (x, un(x))
]
dx

≥ (
µ

2
m0 − a)∥un∥2 − C5,

which implies that {un} is bounded in Xs
0(Ω) (using (18)). Since Xs

0(Ω) is reflexive,
by Sobolev embedding, up to a subsequence, there exists u ∈ Xs

0(Ω) such that
un ⇀ u in Xs

0(Ω), un → u in Lq(RN ) for q ∈ [1, 2∗s) and un → u a.e. in RN . By
hypothesis (f0) and Hölder’s inequality, we get∫

Ω

f(x, un(x))(un(x)− u(x))dx ≤ c
(
∥un − u∥1 + ∥un − u∥pp

)
→ 0

and combing with (18), we deduce that

m0|⟨un, un − u⟩Xs
0 (Ω)| ≤ Ma(∥un∥2)|⟨un, un − u⟩Xs

0 (Ω)| =
∣∣∣⟨Φ′

a(un), un − u⟩

+

∫
Ω

f(x, un(x))(un(x)− u(x))dx
∣∣∣.

Therefore, lim
n→∞

∥un∥ = ∥u∥ and so

lim
n→∞

∥un − u∥2 = lim
n→∞

(
∥un∥2 + ∥u∥2 − 2⟨un, u⟩Xs

0 (Ω)

)
= 0.
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Proof of Theorem 2. From Lemma 2 and Lemma 3, applying the mountain pass
Theorem 4, we obtain that problem (12) has a non-negative solution u ∈ Xs

0(Ω)
such that

c = Φa(u) = inf
γ∈Γ

max
t∈[0,1]

Φa(γ(t)) ≥ α > 0.

By Proposition 1, we see that u > 0 in Ω, that is, this solution is positive. Now, we
prove that ∥u∥2 ≤ t0. If not, then ∥u∥2 > t0 and this implies that Ma(∥u∥2) = a.
By Lemma 1, we see that

∥u∥2 ≤ max
{
Ma(∥u∥2)

2−p+q
p−2 ,Ma(∥u∥2)

2
p−2

}
θ.

This implies that

t0 < max
{
a

2−p+q
p−2 , a

2
p−2

}
θ

which contradicts with (15). Therefore, ∥u∥2 ≤ t0, in this case, we have Ma(t)
= M(t), this implies that u ∈ Xs

0(Ω) is a positive solution of problem (1). This ends
the proof of Theorem 2.

4. Proof of Theorem 3

For proving Theorem 3, we observe that for given m0 < a < µm0

2 , by the hypothesis
(M0)− (M1), there exists t0 > 0 such that M(t0) = a. Now the truncation function
Ma(t) may be well defined.

Let h ∈ C∞([0,∞),R) such that 0 ≤ h(t) ≤ 1 for t ∈ [0,+∞) and for above
defined t0 > 0, h(t) = 1 for 0 ≤ t ≤ t0

2 and h(t) = 0 for t ≥ t0. Let φ(u) = h(∥u∥).
We consider the truncation functional

Ia(u) =
1

2
M̃a(∥u∥2)− φ(u)

∫
Ω

F (x, u(x))dx.

Clearly, Ia ∈ C1(Xs
0(Ω),R).

For ∥u∥ ≥ t0, we have Ia(u) = a
2∥u∥

2, which implies that Ia(u) → +∞ as
∥u∥ → +∞. Hence Ia is coercive on Xs

0(Ω). Thus Ia is bounded from below and
satisfies the (PS) condition.

From the hypothesis (f4), we see that Ia(u) is even and Ia(0) = 0. By (f3), for
every ε > 0, there exists δ > 0 such that

F (x, t) ≥ 1

2
ε−1t2, for |t| ≤ δ. (19)

Given any k ∈ N, let Ek ⊂ Xs
0(Ω) be a finite dimensional subspace with dimension

k, (the existence of such finite subspace can be referred to [21]). Then there exists a
constant αk > 0 such that |u| ≤ αk∥u∥ for u ∈ Ek. Therefore, for any u ∈ Ek with

∥u∥ = ρ ≤ min
{

δ
αk

, t0
2

}
and ε small enough, we have

Ia(u) ≤
a

2
ρ2 − 1

2
ε−1C9ρ

2 = (
a

2
− 1

2
ε−1C9)ρ

2 < 0
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where C9 > 0 is a constant such that ∥u∥2 ≥ C9∥u|| according to u ∈ Ek. Therefore,
we obtain {

u ∈ Ek : ∥u∥ = ρ
}
⊂
{
u ∈ Ek : Ia(u) < 0

}
.

Since γ(
{
u ∈ Ek : ∥u∥ = ρ

}
) = k, hence by the monotonicity of genus γ(A), we get

γ
(
{u ∈ Ek : Ia(u) < 0}

)
≥ k.

Choosing Ak =
{
u ∈ Ek : Ia(u) < 0

}
, then Ak ∈ Γk and sup

u∈Ak

Ia(u) < 0. Conse-

quently, all the conditions of Theorem 5 are verified, and as a result, there exists a
sequence {uk} such that

Ia(uk) ≤ 0, I ′a(uk) = 0 and ∥uk∥ → 0, as k → ∞.

Hence, we can take k large enough such that ∥uk∥ ≤ t0
2 , and such {uk} is a solution

of problem (1).
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