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Abstract. In this paper, a new pseudo-spectral (PS) method is developed for solving op-
timal control problems governed by the non-linear Volterra integral equation (VIE). The
novel method is based upon approximating the state and control variables by the hybrid
of block pulse functions and Legendre polynomials. The properties of hybrid functions
are presented. The numerical integration and collocation method is utilized to discretize
the continuous optimal control problem and then the resulting large-scale finite-dimensional
non-linear programming (NLP) is solved by the existing well-developed algorithm in Math-
ematica software. A set of sufficient conditions is presented under which optimal solutions
of discrete optimal control problems converge to the optimal solution of the continuous
problem. The error bound of approximation is also given. Numerical experiments con-
firm efficiency of the proposed method especially for problems with non-sufficiently smooth
solutions belonging to class C

1 or C2.
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1. Introduction

Consider the following formulation of the optimal control problem governed by non-
linear VIE:
Problem B: Specify the real valued continuous optimal control u∗(t) and the corre-
sponding optimal state x∗(t), t ∈ [0, 1], that maximize (or minimize) the functional

J(x, u) =

∫ 1

0

F (t, x(t), u(t))dt, (1)

subject to state dynamics

x(t) = y(t) +

∫ t

0

k(s, t, x(s), u(s))ds. (2)

It is assumed that F , k and y are real valued and continuously differentiable with
respect to their arguments and both x and u belong to Sobolev space W l,∞ (with
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l ≥ 2) [6]. The interval [0, 1] can be transformed to the interval [x0, xf ] via an affine
transformation. It is also supposed that optimal control of this problem is unique.
Analytical discussions about the existence and uniqueness for optimal control of
systems governed by non-linear VIE (2) can be found in [1, 10] and references therein.

The controlled VIE (2) appears in modelling many classes of phenomena [18].
Several authors have considered solving problem B with different methods, e.g., Vi-
nokurov [26], Medhin [16], Schmidt [23, 24], and Belbas [2, 3, 4]. Some of them
have obtained optimal control by using the Pontryagin’s maximum principle and
dynamic programming [2, 3]. Due to the difficulties in getting an analytical solution
of these problems, the numerical methods are usually of interest. In [4], Belbas in-
troduced iterative methods with their convergence for obtaining optimal control of
a non-linear VIE by considering some conditions on the kernel of integral equation.
Schmidt [24] proposed some direct and indirect numerical methods for solving opti-
mal control problems governed by ODEs as well as integral equations. In [17], the
authors introduced some hybrid methods based on steepest descent and two-step
Newton methods for obtaining optimal control and the corresponding optimal state.
Recently, orthogonal functions have also been used for solving optimal control of
Volterra integral equations, e.g., in [12], a numerical iterative method is presented
for calculating optimal control via triangular functions. In [18], Tohidi and Samadi
investigated the use of Lagrange polynomials in optimal control problems for systems
governed by the VIE and also surveyed the convergence of their proposed method.
Their method has high efficiency, especially for problems with smooth solutions. In
[13], a collocation method based on rationalized Haar wavelets was utilized to ap-
proximate optimal control and state variables. The numerical results of [13] are also
compared with those obtained in this paper.

In recent years, the hybrid functions have been shown to be a powerful tool for
the discretization of selected problems [9, 15, 21]. Among these hybrid functions,
the hybrid function of block-pulse and Legendre polynomials has been shown to be
computationally more effective [9]. The main advantage of these hybrid functions
is their efficiency and simple applicability. The other advantage of these hybrid
functions is that the orders of block pulse functions and Legendre polynomials are
adjustable to obtain highly accurate numerical solutions. The approximations by
hybrid functions have especially good accuracy for non-sufficiently smooth solutions
belonging to class C1 and C2. We could increase the order of block pulse functions
or degree of Legendre polynomials for achieving high precision. As a result of this,
the dimension of the discrete problem, computational cost and CPU time become
greater.

In this paper, we have introduced a PS method for obtaining optimal control of
systems governed by the VIE. PS techniques have been shown to provide effective
and flexible methods for solving different problems [19, 20, 22]. Our method consists
of reducing the optimal control problem to a NLP by first expanding the state and
control functions in terms of hybrid functions with unknown coefficients. The hybrid
of block-pulse functions and Legendre polynomials is utilized for discretization by
using the numerical integration and collocation method. After obtaining the finite
dimensional programming problem, many well-developed constrained optimization
methods can be used to dissolve this problem. In this article, we also provide the
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conditions for the convergence of the pseudo-spectral method for problem B.
This paper is organized as follows: In Section 2, we state some properties of

hybrid functions. Section 3 is devoted to the application of the PS method to the
optimal control problem. In Section 4, we analyze the convergence of the numerical
technique applied to problem B. Section 5 contains numerical examples that show
the efficiency and accuracy of the method. Section 6 ends this paper with a brief
conclusion.

2. Properties of hybrid functions

2.1. Hybrid of block-pulse and Legendre polynomials

The orthogonal hybrid functions bnm(t), n = 1, 2, . . . , N and m = 0, 1, . . . ,M − 1
are described on the interval [0, 1) as

bnm(t) =

{
Pm

(
2Nt− 2n+ 1

)
, t ∈

[
n−1
N

, n
N

)
,

0, otherwise,

where n and m are the order of block-pulse functions and Legendre polynomials,
respectively [15]; here, Pm(t) , m = 0, 1, . . . ,M − 1, are the Legendre polynomials
which satisfy the following recursive formula [15]:

P0(t) = 1, P1(t) = t,

Pm+1(t) =
(2m+ 1

m+ 1

)
tPm(t)−

( m

m+ 1

)
Pm−1(t), m = 1, 2, 3, . . . . (3)

2.2. Function approximation

A function f(t), t ∈ [0, 1], may be expanded in terms of hybrid functions as follows
[15]:

f(t) ≃ f0(t) =

N∑

n=1

M−1∑

m=0

cnmbnm(t) = CTB(t),

where B(t) and C are column vectors given by:

B(t) = [b10(t), . . . , b1M−1(t), b20(t), . . . , b2M−1(t), . . . , bN0(t), . . . , bNM−1(t)]
T , (4)

C = [c10, . . . , c1M−1, c20, . . . , c2M−1, . . . , cN0, . . . , cNM−1]
T .

3. The proposed method

In this section, we consider the discretization process of problem B. The approxima-
tion process of the considered problem includes the discretization of both the cost
function and the controlled integral equation constraint. For the approximation of
problem B, the basic idea is to expand x(t) and u(t) in terms of hybrid functions

x(t) ≃ x(t) = XTB(t), u(t) ≃ u(t) = UTB(t), (5)
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where X , U and B(t) are defined similarly to (4). By substituting (5) in (2), we
obtain

x(t) = y(t) +

∫ t

0

k(s, t, x(s), u(s))dt. (6)

We discretize the VIE that exists in (6) by using the set of collocation nodes as
follows:

x(tp) = y(tp) +

∫ tp

0

k(s, tp, x(s), u(s))dt, (7)

where tp, p = 1, 2, . . . ,MN, can be Gauss-Chebyshev (GC) [14], Gauss-Legendre
(GL), zeros of Legendre polynomials, or equidistant nodes. If we use GL or GC
nodes as collocation nodes, firstly these points should be transformed into the inter-
val [0, 1]. The GL quadrature formula is utilized to approximate the integral term in
(7). For this purpose, linear transformation must be made with the following form

cp(τ) =
tp

2
(τ + 1). (8)

Then, (7) is converted to

x(tp) = y(tp) +
tp

2

∫ 1

−1

k(cp(τ), tp, x(cp(τ)), u(cp(τ)))dτ, p = 1, 2, . . . ,MN. (9)

By applying the GL quadrature for approximating the integral involved in (9), we
obtain

x(tp) = y(tp) +
tp

2

MN∑

j=1

wjk(c
j
p, tp, x(c

j
p), u(c

j
p)), p = 1, 2, . . . ,MN, (10)

where cjp = cp(τj), and τjs are the GL nodes, zeros of Legendre polynomial PMN (t)
in [−1, 1], and wjs are the corresponding weights. The quadrature weights, wj , can
be obtained by the following relation

wj =
2

(1 − τ2j )[P
′
MN (τj)]2

, j = 1, . . . ,M. (11)

Finally, the controlled Volterra integral (2) is reduced to MN non-linear algebraic
equations given in (10).

For approximating the cost function stated in (1), we utilize the GL quadrature
after the proper interval transformation

∫ 1

0

F (t, x(t), u(t)) =
1

2

∫ 1

−1

F (
τ + 1

2
, x(

τ + 1

2
), u(

τ + 1

2
))dτ (12)

≈
MN∑

j=1

w′
jF (τ ′j , x(τ

′
j), u(τ

′
j)),
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where w′
j = 1

2wj and τ ′j =
τj+1
2 , and τj and wj are GL nodes and weights stated

in (11).

Finally, problem B is approximated by the following NLP

min J(X,U) (13)

subject to

kp(X,U) = −y(tp), q p = 1, 2, . . . ,MN, (14)

where X = (x10, x11, . . . , xNM−1) and U = (u10, u11, . . . , uNM−1) are the unknown
parameters of our discrete problem, and

J(X,U) =
1

2

MN∑

j=1

wjF (
τj + 1

2
, x(

τj + 1

2
), u(

τj + 1

2
)) =

MN∑

j=1

w′
jF (τ ′j , x(τ

′
j), u(τ

′
j)),

and

kp(X,U) =
tp

2

MN∑

j=1

wjk(c
j
p, tp, x(c

j
p), u(c

j
p))− x(tp), p = 1, 2, . . . ,MN.

Following [8], we propose the following relaxation to guarantee the feasibility of
discretization

|kp(X,U) + y(tp)| ≤ (M − 2)
3

2
−l, p = 1, 2, . . . ,MN. (15)

In (15), note that with a given N , the order of the block pulse function, when M

tends to infinity, the difference between (15) and (14) vanishes, because l is greater
than or equal to 2. Thus, the optimal control problem B is approximated by a NLP
with (13) as the objective function and (15) as constraints. This is summarized as:

Problem B: Find (X,U) that minimize

J(X,U) =

MN∑

j=1

F (τ ′j , x(τ
′
j), u(τ

′
j))w

′
j , (16)

subject to

|kp(X,U) + y(tp)| ≤ (M − 2)
3

2
−l, p = 1, 2, . . . ,MN. (17)

When the continuous problem B is discretized, the infinite dimensional problem B
is reduced to the finite dimensional non-linear optimization problem B. Many well-
developed NLP techniques can be used to solve this problem [11]. The method used
to solve the non-linear constrained optimization problem is based on the sequential
quadratic programming (SQP) algorithm. It is an iterative method for non-linear
optimization [11].



422 K.Maleknejad and A. Ebrahimzadeh

4. Convergence analysis

Theorems 1 and 2 indicate the uniform convergence and accuracy estimation of the
hybrid expansion. The proofs are given in [25].

Theorem 1 (See [25]). If a continuous function f(t) defined on [0, 1] has a bounded
second derivative, then the hybrid expansion of the function converges uniformly to
the function f .

Theorem 2 (See [25]). Let f(t) be a continuous function defined on [0, 1], with
the second derivative |f

′′

(t)| bounded by M1. Then we have the following accuracy
estimation:

||f(t)− CTB(t)||2 ≤
3

8
M1

2
( ∞∑

i=n+1

∞∑

j=m

1

i5(2j − 3)4

)
.

The convergence analysis of the proposed PS method lies at the intersection of
approximation theory, control theory and optimization. To examine the convergence
analysis, we need to answer a few questions. For example, does the discretized
problem B have a feasible solution if a solution to the continuous-time problem B
exists? Does a sequence of optimal solutions of discrete problems B converge to
continuous-time optimal solution of problem B? In Theorem 3, the feasibility of
discretized problem B will be proved. First, we need the following definition and
lemmas.

Definition 1 (See [6]). A function f : [0, 1] → ℜ belongs to Sobolev space W l,s, if
its jth distributional derivative, f (j), lies in Ls[0, 1] for all 0 ≤ j ≤ l with the norm

||f ||W l,s =

l∑

j=0

||f (j)||Ls , (18)

where ||f ||Ls denotes the usual Lebesgue norm defined for 1 ≤ s < ∞ as follows:

‖f‖Ls =
(∫ 1

0

|f(t)|sdt
) 1

s

,

and for s = ∞

‖f‖L∞ = inf{C ≥ 0 : |f(t)| ≤ C for almost every t ∈ [0, 1]}.

Lemma 1 (See [6]). Given any function f ∈ W l,∞, there is a polynomial QM of
degree M or less, such that

|f(t)−QM (t)| ≤ CC0M
−l, ∀t ∈ [0, 1],

where C is a constant independent of M , l is the order of smoothness of f and
C0 = ||f ||W l,∞ . ( QM (t) with the smallest norm ||f − QM ||L∞ is called the M th
order best polynomial approximation of f(t) in the norm of L∞).
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Proof. The proof is given in [6].

Remark 1. The computational interval can be transformed from [0, 1] to [x0, xf ]
via an affine transformation.

Lemma 2 (See [6]). Let tp, 1 ≤ p ≤ MN , be LG nodes and wp the LG weights.
Assume f(t) is Rimann integrable. Then

∫ 1

−1

f(t)dt = lim
MN→∞

MN∑

p=1

f(tp)wp.

We have developed the basic idea of [18] for proving the next two theorems.

Theorem 3. Given any feasible solution (x(t), u(t)) for problem B. Suppose x(t)
and u(t) belong to W l,∞ with l ≥ 2. Then, there exists a positive integer M ′ such
that for any M ≥ M ′ problem B has a feasible solution (xp, up) = (x(tp), u(tp)),
such that for tp ∈ In = [n−1

N
, n
N
), n = 1, 2, . . . , N, the feasible solutions satisfy

|x(tp)− xp| ≤
1

N
Cn

1 (M − 2)1−l, p = 1, . . . ,MN,

and

|u(tp)− up| ≤
1

N
Cn

2 (M − 2)1−l, p = 1, . . . ,MN,

where tp are GC or GL nodes and Cn
1 and Cn

2 are positive constants independent
of M .

Proof. Assume that pnM−2(t) and qnM−2(t) are the (M − 2)th order best polynomial

approximations of x′(t) and u′(t) in the interval In = [n−1
N

, n
N
] and norm of L∞.

By utilizing Lemma 1, there exist positive constants Cn
1 and Cn

2 independent of M
such that for n = 1, . . . , N we possess

|x′(t)− pnM−2(t)| ≤ Cn
1 (M − 2)1−l, ∀t ∈ In,

and

|u′(t)− qnM−2(t)| ≤ Cn
2 (M − 2)1−l, ∀t ∈ In.

Define

x(t) =

∫ t

n−1

N

pnM−2(τ)dτ + x(
n− 1

N
), t ∈ In, n = 1, . . . , N, (19)

u(t) =

∫ t

n−1

N

qnM−2(τ)dτ + u(
n− 1

N
), t ∈ In, n = 1, . . . , N. (20)



424 K.Maleknejad and A. Ebrahimzadeh

For n = 1, . . . , N , we have

|x(t) − x(t)| =
∣∣
∫ t

n−1

N

(
x′(τ) − pnM−2(τ)

)
dτ

∣∣ ≤ 1

N
Cn

1 (M − 2)1−l, t ∈ In, (21)

|u(t)− u(t)| = |

∫ t

n−1

N

(
u′(τ) − qnM−2(τ)

)
dτ | ≤

1

N
Cn

2 (M − 2)1−l, t ∈ In. (22)

The VID system dynamics (2) of problem B can be written in the form

x′(t) = k1(t, x(t), u(t)) +

∫ t

0

k2(t, s, x(s), u(s))ds, (23)

in which

k1(t, x(t), u(t)) = y′(t) + k(t, t, x(t), u(t))

and

k2(t, s, x(s), u(s)) =
∂k

∂t
(t, s, x(s), u(s)).

From (21) and (22), it follows that both x(tp) and xp (also u(tp) and up) are con-
tained in some compact set. On this compact set, because partial derivatives of k
are continuous, they are then Lipschitz continuous (i.e., k1 and k2 are jointly Lips-
chitz with respect to their variables x(.) and u(.) in the interval In, 1 ≤ n ≤ N). In
the approximation of system dynamics with the proposed method, we overlook the
approximation of the integral involved in the constraint, and just consider the collo-
cation process and approximation of state and control variables in terms of hybrid
functions, so we obtain

x′(tp) = k1(tp, x(tp), u(tp)) +

∫ tp

0

k2(tp, s, x(s), u(s))ds. (24)

According to (15), we relax (24) to the form

|x′(tp)− k1(tp, x(tp), u(tp))−

∫ tp

0

k2(tp, s, x(s), u(s))ds| ≤ (M − 2)
3

2
−l. (25)

Now, we demonstrate that x(tp) and u(tp) are feasible solutions of (25). For tp ∈ In,
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we have

|x′(tp)− k1 (tp, x(tp), u(tp))−

∫ tp

0

k2(tp, s, x(s), u(s))ds|

≤ |x′(tp)− x′(tp)|+ |k1(tp, x(tp), u(tp))− k1(tp, x(tp), u(tp))|

+|

∫ tp

0

k2(tp, s, x(s), u(s))ds−

∫ tp

0

k2(tp, s, x(s), u(s))ds|

+

Since x(t) and u(t) are feasible solutions of (23) equal to zero︷ ︸︸ ︷
|x′(tp)− k1(tp, x(tp), u(tp))−

∫ tp

0

k2(tp, s, x(s), u(s))|

≤ |pnM−2(tp)− x′(tp)|+ Ln
k1
{|x(tp)− x(tp)|+ |u(tp)− u(tp)|}

+Ln
k2

∫ tp

0

(|x(s) − x(s)|+ |u(s)− u(s)|)ds

≤ {Cn
1 + Ln

k1

1

N
(Cn

1 + Cn
2 ) + Ln

k2

n

N2
( max
1≤i≤n

Ci
1 + max

1≤i≤n
Ci

2)}(M − 2)1−l,

where Ln
k1

and Ln
k2

are Lipschitz constants of k1 and k2 in the interval In, respectively.
There exists a positive integer Mn such that for all M > Mn we have

{Cn
1 + Ln

k1

1

N
(Cn

1 + Cn
2 ) + Ln

k2

n

N2
max
1≤i≤n

(Ci
1 + Ci

2)}(M − 2)1−l ≤ (M − 2)
3

2
−l
.

By assuming
M ′ = max

1≤n≤N
Mn,

it is sufficient to take
M ′ = max

1≤n≤N
Mn.

Thus, it follows that x(tp) and u(tp) are feasible solutions of (25).

Let X∗ = [x∗
10, x

∗
11, . . . , x

∗
NM−1]

T and U∗ = [u∗
10, u

∗
11, . . . , u

∗
NM−1]

T be the opti-

mal solutions of problem B. The approximate optimal control and state are

x∗(t) =

N∑

n=1

M−1∑

m=0

x∗
nmbnm(t), u∗(t) =

N∑

n=1

M−1∑

m=0

u∗
nmbnm(t).

In the next theorem, we will prove the convergence of the sequence

{(x∗(tp), u
∗(tp)) : (1 ≤ p ≤ MN) and (N ∈ N)}∞M=M ′ .

Assume that the following conditions are satisfied:

H1: The function sequence {(x′∗(t), u′∗(t))}∞M=M ′ has a subsequence that uni-
formly converges to the continuous functions {(p(t), q(t))} on each interval
In for 1 ≤ n ≤ N.
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H2: Define

x̂(t) =

∫ t

n−1

N

p(τ)dτ + x̂(
n− 1

N
), t ∈ In, 1 ≤ n ≤ N, (26)

û(t) =

∫ t

n−1

N

q(τ)dτ + û(
n− 1

N
), t ∈ In, 1 ≤ n ≤ N. (27)

For 1 ≤ n ≤ N it is presumed

lim
M→∞

x∗(
n− 1

N
) = x̂(

n− 1

N
), lim

M→∞
u∗(

n− 1

N
) = û(

n− 1

N
). (28)

Theorem 4. Let

{(x∗(tp), u
∗(tp)) : (1 ≤ p ≤ MN) and (N ∈ N)}∞M=M ′

be a sequence of optimal solutions to problem B. Assume that the conditions H1 and
H2 are satisfied. Then the pair of (x̂(t), û(t)) is the optimal solution of problem B.

Proof. For a simpler notation, we presume that the sequence {(x′∗(t), u′∗(t))}∞M=M ′

uniformly converges to the continuous functions {(p(t), q(t))}∞M=M1
on the interval

In for 1 ≤ n ≤ N . By using

|x∗(t)− x̂(t)| ≤

∫ t

n−1

N

|x′∗(τ) − p(τ)|dτ + |x∗(
n− 1

N
)− x̂(

n− 1

N
)|, t ∈ In. (29)

It is clear that limM→∞ x∗(t) = x̂(t) uniformly on In. By a similar argument, one
can get limM→∞ u∗(t) = û(t) for t ∈ In. The proof of this theorem is divided into
three parts. First, we represent that (x̂(t), û(t)) is a feasible solution of problem B.
Then, we prove the convergence of the cost function J(X∗, U∗) to the cost function
J(x̂, û), and finally show that (x̂(t), û(t)) is an optimal solution of problem B.

Step 1: To prove that (x̂(t), û(t)) is a feasible solution of problem B, we must
indicate that (x̂(t), û(t)) for t ∈ In , 1 ≤ n ≤ N , satisfies the state constraint (2).
By the contradiction argument, we presume that (x̂(t), û(t)) is not a solution of
integral (2). Then, there is a time t′ so that

x̂(t′)− y(t′)−

∫ t′

0

k(s, t′, x̂(s), û(s))ds 6= 0. (30)

Let t′ ∈ In. Since the zeros of orthogonal polynomials are dense [7] with increasing
M , there exists a sequence {ti} of LG or CG that satisfies

lim
i→∞

ti = t′. (31)

Because x∗(t), u∗(t), y(t) and k(s, t, x∗(s), u∗(s)) are continuous on In with respect
to their arguments, with increasing i which implies M → ∞, we have x∗(t) → x̂(t),
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u∗(t) → û(t) and k(s, t, x∗(s), u∗(s)) → k(s, t, x̂(s), û(s)). So we obtain

0 = lim
i→∞

=0︷ ︸︸ ︷
(x∗(ti)− y(ti)−

∫ ti

0

k(s, ti, x
∗(s), u∗(s))) ds (32)

= x̂(t′)− y(t′)−

∫ t′

0

k(s, t′, x̂(s), û(s))ds.

This contradicts (30). Therefore, (x̂(t), û(t)) must be a feasible solution of prob-
lem B.
Step 2: In this step, we will show that

lim
MN→∞

J(X∗, U∗) = J(x̂(t), û(t)), (33)

where

J(X∗, U∗) =

MN∑

j=1

w′
jF (τ ′j , x

∗(τ ′j), u
∗(τ ′j)), (34)

J(x̂(t), û(t)) =

∫ 1

0

F (t, x̂(t), û(t))dt, (35)

and τ ′j and w′
j are introduced in Section (3). Since {(x∗(t), u∗(t))}∞M=M ′ converges

uniformly to {(x̂(t), û(t))} on the interval In for 1 ≤ n ≤ N , we obtain

lim
M→∞

|x∗(τ ′j)− x̂(τ ′j)| = 0, lim
M→∞

|u∗(τ ′j)− û(τ ′j)| = 0. (36)

Because F is a continuously differentiable function, it is jointly Lipschitz with respect
to its variables x and u in the interval In, 1 ≤ n ≤ N. By assuming that τ ′j ∈ In, we
have

|F (τ ′j , x̂(τ
′
j), û(τ

′
j))− F (τ ′j , x

∗(τ ′j), u
∗(τ ′j))|

≤ Ln
F

(
|x̂(τ ′j)− x∗(τ ′j)|+ |û(τ ′j)− u∗(τ ′j)|

)
,

(37)

where Ln
F is a Lipschitz constant of F on the interval In for 1 ≤ n ≤ N . Since

F (t, x̂(t), û(t)) is the continuous function on In, we can conclude from Lemma 2
that

∫ 1

0

F (t, x̂(t), û(t))dt =
1

2

∫ 1

−1

F (
τ + 1

2
, x̂(

τ + 1

2
), û(

τ + 1

2
))dτ (38)

=
1

2

N∑

n=1

∫ 2( n
N

)−1

2(n−1

N
)−1

F (
τ + 1

2
, x̂(

τ + 1

2
), û(

τ + 1

2
))dτ

=
1

2

N∑

n=1

lim
kn→∞

kn∑

j=1

F (
τnj + 1

2
, x̂(

τnj + 1

2
), û(

τnj + 1

2
))wn

j

= lim
MN→∞

MN∑

j=1

F (τ ′j , x̂(τ
′
j), û(τ

′
j))w

′
j ,
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where
∑N

n=1 kn = MN , τnj are the LG nodes, zeros of Legendre polynomial PNM ,

that are in the interval [2(n−1
N

) − 1, 2( n
N
) − 1), and wn

j are the LG weights corre-
sponding to τnj . It is worth mentioning that kn is the number of LG nodes located

in the interval [2(n−1
N

)− 1, 2( n
N
)− 1). According to [7], since the zeros of Legendre

polynomials are dense, when NM tends to infinity, each kn, 1 ≤ n ≤ N , goes to
infinity and so the last equality of (38) is satisfied.

Therefore,

∫ 1

0

F (t, x̂(t), û(t))dt = lim
M→∞

(MN∑

j=1

F (τ ′j , x
∗(τ ′j), u

∗(τ ′j))w
′
j (39)

+

MN∑

j=1

[
F (τ ′j , x̂(τ

′
j), û(τ

′
j))− F (τ ′j , x

∗(τ ′j), u
∗(τ ′j))

]
w′

j

)
.

From (36), (37) and
∑MN

j=1 wj = 2, we have

lim
M→∞

∣∣∣
MN∑

j=1

[F (τ ′j , x̂(τ
′
j), û(τ

′
j))− F (τ ′j , x

∗(τ ′j), u
∗(τ ′j))]w

′
j

∣∣∣ (40)

≤

N∑

n=1

lim
kn→∞

kn∑

j=1

|F (τ ′j
n
, x̂(τ ′j

n
), û(τ ′j

n
))− F (τ ′j

n
, x∗(τ ′j

n
), u∗(τ ′j

n
))|w′

j

n

≤

N∑

n=1

Ln
F lim

kn→∞

kn∑

j=1

(|x̂(τ ′j
n
)− x∗(τ ′j

n
)|) + |û(τ ′j

n
)− u∗(τ ′j

n
)|)w′

j

n
= 0.

By using (39) and (40), we get

∫ 1

0

F (t, x̂(t), û(t))dt = lim
MN→∞

MN∑

j=1

F (τ ′j , x
∗(τ ′j), u

∗(τ ′j))w
′
j , (41)

which confirms (33).
Step 3: Now let x∗(t) and u∗(t) be the optimal solutions of problem B, where both
of them belong to W l,∞, l ≥ 2. According to Theorem 3, there exists a sequence of
a feasible solution,

{(x(tp), u(tp)), 1 ≤ p ≤ MN}∞M=M ′ ,

for problem B which converges to

{(x∗(tp), u
∗(tp)), 1 ≤ p ≤ MN}.

Let

J(x∗(t), u∗(t)) =

∫ 1

0

F (t, x∗(t), u∗(t))dt

and

J(X,U) =
MN∑

j=1

F (τ ′j , x(τ
′
j), u(τ

′
j))w

′
j .
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By

J(x̂(t), û(t)) = lim
MN→∞

MN∑

j=1

F (τ ′j , x
∗(τ ′j), u

∗(τ ′j))w
′
j

and the property of an optimal solution, we have

J(x∗, u∗) ≤ lim
MN→∞

MN∑

j=1

F (τ ′j , x
∗(τ ′j), u

∗(τ ′j))w
′
j (42)

≤ lim
MN→∞

MN∑

j=1

F (τ ′j , x(τ
′
j), u(τ

′
j))w

′
j .

By using the same logic as in Step 2, it is easy to demonstrate that

J(x∗(t), u∗(t)) = lim
MN→∞

J(X,U). (43)

Since {(x(tp), u(tp))}
∞
M=M ′ converges to {(x∗(tp), u

∗(tp))}, (42) and (43) imply that

J(x∗, u∗) = J(x̂, û).

Thus, (x̂, û) is an optimal solution to problem B.

5. Illustrative examples

We give three examples to demonstrate the applicability, efficiency and accuracy of
our method. The numerical experiments are implemented in Mathematica 7. In
order to analyze the error of the method, the following notations are introduced:

‖ Ex ‖∞= max
1≤p≤MN

|Ex(tp)|, |Eu‖∞ = max
1≤p≤MN

|Eu(tp)|,

where

Ex(t) = x∗(t)− x∗(t),

Eu(t) = u∗(t)− u∗(t),

EJ = |J∗ − J
∗
|

and tp for 1 ≤ p ≤ MN are collocation nodes. We have utilized different collocation
points. The choice of Legendre collocation points has given superior results to the
ones obtained from equidistant or Chebyshev points. For ease of reference, we use
the following notations in this section:

HCM: Hybrid collocation method (the proposed method in this paper),

LCM: Lagrange collocation method (the presented method in [18]).
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5.1. Example 1

Find the optimal control function u∗(t) and the corresponding optimal state x∗(t)
which minimizes

J =

∫ 1

0

(
x(t)− (t−

1

2
)|t−

1

2
|
)2

+
(
u(t)− (t−

1

2
)|t−

1

2
|
)2

dt, (44)

subject to

x(t) = y(t) + t

∫ t

0

(x(s) + s2u(s))ds, (45)

where

y(t) = −
t

32
+ (t−

1

2
)|t−

1

2
|.

The exact optimal control and state functions are

u∗(t) = (t−
1

2
)|t−

1

2
|

and

x∗(t) = (t−
1

2
)|t−

1

2
|.

Trivially, the optimal value of the cost functional is J∗ = 0.

M ||Eu||∞ ||Ex||∞ EJ EJ [18]
2 3.4983E-05 6.0019E-05 3.2876E-09 5.4794E-05
3 3.8740E-06 5.8651E-06 1.4796E-11 1.1056E-06
4 1.2695E-06 1.9143E-06 1.5638E-12 8.2445E-08
5 5.3148E-07 7.9997E-07 2.7207E-13 1.7443E-08
6 2.5490E-07 3.9125E-07 6.4955E-14 3.2877E-09

Table 1: Numerical results of Example 1

Figure 1: Efficiency comparison of HCM and LCM for Example 1
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It should be mentioned that optimal control and state in this example belong
to class C1. Table 1 exhibits numerical results of this example by using HCM for
different values of M and N = 4. In Table 1, one can compare the absolute errors in
values of the objective function by utilizing HCM with those acquired from LCM. We
used various values ofM such as 2, 3, 4, 5 and 6 and obtained log10

1
EJ for each of the

selective values of M in some CPU times and plotted Figure 1. The horizontal and
vertical axes of this figure display CPU time and log10

1
EJ , respectively. By adverting

to Figure 1, we know that for the same CPU time in both graphs, HCM has better
accuracy with respect to LCM. Although HCM requires more computational time,
its absolute error is less.

5.2. Example 2

Consider the minimization of the functional

J =

∫ 1

0

(x(t) − sin(t))2 + (u(t)− t)2dt (46)

subject to [5]

x(t) = y(t) +

∫ t

0

u(s)(x(s) + t)ds, (47)

where

y(t) = t cos(t)−
1

2
t3.

The optimal value of the cost functional is J∗ = 0. Optimal control u∗(t) and
the corresponding optimal state x∗(t) are as follows:

{
x∗(t) = sin(t),
u∗(t) = t.

Solutions of this problem in this case are smooth.

M ||Eu||∞ ||Ex||∞ EJ EJ [18]
1 8.9932E-02 1.0318E-01 1.1054E-02 3.1560E-05
2 3.8865E-04 7.1106E-04 2.3296 E-07 5.9668E-06
3 7.9314E-05 1.0310E-04 5.6973E-09 4.9400E-08
4 2.2525E-06 3.0010E-06 3.3217E-12 4.2260E-11
5 1.1730E-07 8.5603E-08 6.8699E-15 1.9397E-13
6 1.1095E-09 4.0778E-10 1.2832E-17 8.2905E-17

Table 2: Numerical results of Example 2

Table 2 gives the results obtained by HCM and LCM. The approximate solutions
(for N = 2 and M = 5) for both state and control functions together with the exact
solutions are depicted in Figure 2. For comparing the efficiency of HCM and LCM
proposed in [18], we plot Figure 3 in the same way as explained for Figure 1 in
Example 1. In this figure, the horizontal axis is CPU time and the vertical axis is
Log10

1
EJ . Although absolute errors for HCM listed in Table 2 have smaller values

with respect to LCM, computing time for HCM is more. A sharp slope of LCM with
respect to a low slope of HCM shows that LCM has better accuracy.



432 K.Maleknejad and A. Ebrahimzadeh

u(t)

x(t)

Solid line®Exact solution

æ®Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8
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Figure 2: The exact and approximate optimal control and state for Example 2

Figure 3: Efficiency comparison of HCM and LCM for Example 2

5.3. Example 3

Consider the minimization of the cost functional

J =

∫ 1

0

(x(t) − e−t2)2 + (u(t)− t)2dt

subject to the controlled Volterra integral

x(t) = y(t)−

∫ t

0

u(s)tx(s)ds,

where

y(t) = e−t2 +
t(1− e−t2)

2
.
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This problem has optimal solutions u∗(t) = t and x∗(t) = e−t2 . The results of solving
this example by HCM and LCM are given in Table 3. Figure 4 shows the exact and
approximate optimal control and state for N = 2 and M = 5. The absolute errors
of examples 5.2 and 5.3 are compared with those obtained by the method [13] in
Table 4, in which p is the number of rationalized Haar wavelets.

M ||Eu||∞ ||Ex||∞ EJ EJ [18]
1 2.2010E-03 8.6413E-03 4.9698E-05 1.3600E-03
2 3.2213E-04 1.6130E-03 9.6934E-07 5.8680E-06
3 1.2791E-04 4.6045E-04 6.4649E-08 5.2080E-07
4 6.1710E-06 1.9625E-05 2.0778E-10 1.1391E-09
5 3.3455E-06 4.5577E-06 8.5037E-12 1.1597E-10
6 4.0963E-06 3.0045E-07 3.4206E-14 2.0071E-13
7 1.8362E-08 3.4903E-08 2.0262E-16 1.5714E-14

Table 3: Numerical results of Example 3

x(t)

u(t)

Solid line®Exact solution 

æ®Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The exact and approximate optimal control and state

Methods EJ (Example2) EJ (Example3)
Method of [13]

p = 8 4.3214E − 04 4.3033E − 05
p = 16 1.1927E − 04 1.2303E − 05

Present method
M = 4, N = 2 3.3217E − 12 2.07781E − 10
M = 8, N = 2 1.4554E − 18 2.02621E − 16

Table 4: Comparison of EJ for HCM and the method presented in [13]
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6. Conclusion

In this paper, we proposed an advanced numerical PS method for solving optimal
control of Volterra integral equation by means of hybrid functions via the collocation
method. The problem has been reduced to a finite dimensional parametric optimiza-
tion and there exist many effective algorithms which can be applied to solve the NLP.
Illustrative examples have shown the validity, applicability and efficiency of the pro-
posed method especially for solutions belonging to class C1 and C2. The method is
in the case of optimal control of systems governed by the VIE which is applicable
in the field of practical science and engineering [13]. We believe that the proposed
approach can be extended to solving optimal control of Volterra integro-differential
systems by using an operational matrix of integration or derivative.
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