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Abstract. In this article, we study the existence of infinitely many nontrivial solutions for
a class of superlinear p-Laplacian equations

−∆pu+ V (x)|u|p−2
u = f(x, u),

where the primitive of the nonlinearity f is of subcritical growth near ∞ in u and the weight
function V is allowed to be sign-changing. Our results extend the recent results of Zhang
and Xu [Q. Y. Zhang, B. Xu, Multiplicity of solutions for a class of semilinear Schrödinger

equations with sign-changing potential, J. Math. Anal. Appl 377(2011), 834–840].
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1. Introduction

In this paper, we are concerned with the study of the p-Laplacian equation

{

−∆pu+ V (x)|u|p−2u = f(x, u),

u ∈ W 1,p(RN ),
(P )

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator with p > 1. With the
aid of variational methods, the existence and multiplicity of nontrivial solutions
for problem (P ) have been extensively investigated in the literature over the past
several decades. (P ) with a constant sign potential V (x) was considered in [7]. More
precisely, if the potential is periodic or bounded and of constant sign, the author
proved the existence of ground states of (P ). In [13], the authors considered (P )
with a potential V (x) that may change the sign.
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For p = 2, (P ) turns into a kind of Schrödinger equation of the form

{

−∆u+ V (x)u = f(x, u)

u ∈ H1(RN )
, (P1)

which has been studied extensively. For more results, we refer the reader to [2, 9,
10, 11, 12, 14] (for constant sign potential) and [3, 15, 16, 17] (for sign-changing
potential).

The quasilinear case 1 < p < N appears in a variety of applications, such as
non-Newtonian fluids, image processing, nonlinear elasticity and reaction -diffusion;
for more details see [4].

In the present paper, we will study the existence of infinitely many nontrivial
solutions of (P ) under suitable conditions. Precisely, we assume that the potential
V (x) and the nonlinearity f(x, u) satisfy the following conditions:

H(V) :

(V1) V ∈ C(RN ,R) is bounded from below.

(V2) There exists r > 0 such that for any b > 0

lim
|y|→∞

µ({x ∈ R
N : V (x) ≤ b} ∩Br(y))) = 0,

where µ is the Lebesgue measure on R
N .

H(f) :

(f1) f ∈ C(RN ,R) and there exist constants c1 > 0 and p < α < p∗ such that

|f(x, u)| ≤ c1(|u|p−1 + |u|α−1), ∀ (x, u) ∈ R
N × R,

where p∗ denotes the critical Sobolev exponent, i.e., p∗ = Np
N−p

for p < N

and p∗ = +∞ for p ≥ N.

(f2) F (x, 0) = 0, F (x, u) ≥ 0 for all (x, u) ∈ R
N × R, and

lim
|u|→∞

F (x, u)

|u|p = +∞

uniformly in R
N , where F (x, t) :=

∫ t

0
f(x, s)ds.

(f3) There exists a constant θ ≥ 1 such that

θF(x, u) ≥ F(x, su), ∀ (x, u) ∈ R
N × R s ∈ [0, 1],

where F(x, t) := uf(x, u)− pF (x, u).

(f4) f(x,−u) = −f(x, u), ∀ (x, u) ∈ R
N × R.

Our main result reads as follows.

Theorem 1. Suppose that H(V) and H(f) are satisfied. Then problem (P ) pos-
sesses infinitely many nontrivial solutions.
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Remark 1. Condition H(V) is due to [17]. The condition (f3) was introduced in
[8], and then was used by many authors, for example, [7]. In addition, we note that
the usual condition f(x, u) = o(|u|p−1) as |u| → 0 is not needed in our Theorem 1.1.
Let V be a zig-zag function with respect to |x| defined by

V (x) = n sin
[

(

|x| − (n− 1)
)

π
]

− 1, n− 1 ≤ |x| ≤ n, n ∈ N.

It is easy to check that V satisfy H(V) in our Theorem 1.1.

Remark 2. The following condition used in [1] is even stronger than (V2): (V3)
µ({x ∈ R

N : V (x) ≤ M}) < +∞, ∀M > 0. Note that for any M > 0, (V3) implies
{x ∈ R

N : V (x) ≤ M} is a bounded set. Thus for |y| large, {x ∈ R
N : V (x) ≤

M} ∩ Br(y) = ∅. Hence, Theorem 1 generalizes the main results of [13]. On the
other hand, our main result extends a result for (P ) when p = 2 given by Zhang and
Xu in [17] to the general problem (P ) where p > 1. The approach of this paper is
similar to that of [17], but our proof is much more complex and more delicate than
that of the main result in [17].

2. Preliminaries

Firstly, by (V1), there exists a constant V0 > 0 such that V (x) := V (x) + V0 ≥ 1
for all x ∈ R

N . Let f(x, u) := f(x, u) + V0|u|p−2u. Then it is easy to verify the
following lemma.

Lemma 1. Problem (P ) is equivalent to the following problem

{

−div(|∇u|p−2∇u) + V (x)|u|p−2u = f(x, u),

u ∈ W 1,p(RN ).
(P2)

Proof. Obviously, V satisfies H(V), and f(x,−u) = −f(x, u). Furthermore, we
choose c1 = c0 + V0. It results in

|f(x, u)| ≤|f(x, u)|+ V0|u|p−1

≤c0(|u|p−1 + |u|α−1) + V0|u|p−1

≤c1(|u|p−1 + |u|α−1),

so condition (f1) holds.

We clearly have F (x, u) = F (x, u) + V0

p
|u|p, F (x, 0) = 0, F (x, u) ≥ 0 for all

(x, u) ∈ R
N × R, and

lim
|u|→∞

F (x, u)

|u|p = lim
|u|→∞

F (x, u)

|u|p +
V0

p
= +∞.

So, condition (f2) holds.
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Meanwhile, we have

F(x, u) =uf(x, u)− pF (x, u)

=u(f(x, u) + V0|u|p−1u)− p(F (x, u) +
V0

p
|u|p)

=uf(x, u)− pF (x, u)

=F(x, u).

Thus, we have
θF(x, u) =θF(x, u) ≥ F(x, su) = F(x, su).

So, condition (f3) holds.

Therefore, all the assumptions of Theorem 1 have been verified. Hence, we can
assume without loss of generality that V (x) ≥ 1 for all x ∈ R

N . Hence, we consider
the following function space

E =
{

u ∈ W 1,p(RN ) :

∫

R

(|∇u|p + V (x)|u|p)dx < +∞
}

endowed with the norm

‖u‖ =

[
∫

RN

(|∇u|p + V (x)|u|p)dx
]

1

p

.

Clearly, E is a reflexive, separable Banach space. Evidently, E is continuously
embedded into W 1,p(RN ) and hence continuously embedded into Lq(RN ) for p ≤
q ≤ p∗, i.e., there exists c > 0 such that

|u|p ≤ c‖u‖, ∀u ∈ E, (1)

where |u|q denotes the usual norm in Lq(RN ) for p ≤ q < p∗. In fact, we further
have the following lemma due to [6].

Lemma 2 (see [6], Theorem 2.1). The embedding from E into Lq(RN ) is compact
for p ≤ q < p∗.

Lemma 3 (see [15], Lemma 2.2). Assume that p1, p2 > 1, r ≥ 1 and Ω ⊆ R
N . Let

g(x, t) be a Carathéodory function on Ω× R and satisfy

|g(x, t)| ≤ a1|t|
p1−1

r + a2|t|
p2−1

r , ∀ (x, t) ∈ Ω× R,

where a1, a2 ≥ 0. If un → u in Lp1(Ω) ∩ Lp2(Ω), and un → u a.e. x ∈ Ω, then

lim
n→∞

∫

Ω

|g(x, un)− g(x, u)|r|un − u|dx.

To prove Theorem 1, we consider the C1 functional ϕ : E → R defined by

ϕ(u) =
1

p

∫

RN

(|∇u|p + V (x)|u|p)dx − λ

∫

RN

F (x, u)dx. (2)
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It is clear that critical points of ϕ are weak solutions of (P ). In order to find a
critical point of this functional, we will use the following variant fountain theorem.

Let X be a Banach space with the norm ‖ ·‖ and X = ⊕j∈NXj with dimXj < ∞
for any j ∈ N. Set Yk = ⊕k

j=1Xj and Zk = ⊕∞
j=kXj. Consider the following C1

-functional ϕλ(u) := A(u)− λB(u), λ ∈ [1, 2]. Then we have

Theorem 2 (see [18], Theorem 2.1). Assume that the above functional ϕλ satisfies:

(1) ϕλ maps bounded sets to bounded sets for λ ∈ [1, 2], and ϕλ(−u) = ϕλ(u) for
all (λ, u) ∈ [1, 2]× E.

(2) B(u) ≥ 0 for all u ∈ E, and A(u) → ∞ as ‖u‖ → ∞.

(3) There exist rk > ρk > 0 such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) > bk(λ) := inf
u∈Yk,‖u‖=rk

ϕλ(u), ∀λ ∈ [1, 2].

Then
ak(λ) ≤ ζk(λ) := inf

γ∈Γk

max
u∈Bk

ϕλ(γ(u)), ∀λ ∈ [1, 2],

where Bk := {u ∈ Yk : ‖u‖ ≤ rk} and Γk := {γ ∈ C(Bk, X) : γ is odd, γ|∂Bk
= id}.

Moreover, for a.e. λ ∈ [1, 2], there exists a sequence {uk
m(λ)}∞k such that

sup
m

‖uk
m(λ)‖ < ∞, ϕ′

λ(u
k
m(λ)) → 0 and ϕλ(u

k
m(λ)) → ζk(λ) as m → ∞.

3. Proof of Theorem 1.1

In order to apply Theorem 2 to prove our main result, we define the functionals A,B
and ϕλ on our working space E by

A(u) =
1

p

∫

RN

(|∇u|p + V (x)|u|p)dx,

B(u) =

∫

RN

F (x, u)dx,

ϕλ(u) = A(u)− λB(u),

(3)

for all u ∈ E and λ ∈ [1, 2]. By condition (f1), we have

|F (x, u)| ≤ c1

p
|u|p + c1

α
|u|α ≤ c1(|u|p + |u|α), ∀ (x, u) ∈ R

N × R. (4)

Consequently, from H(V) ,(f1) and proposition 2.3 in [13], we know that ϕλ ∈
C1(E,R) for all λ ∈ [1, 2]. Moreover, we have

〈A′(u), v〉 =
∫

RN

(|∇u|p−2∇u∇v + V (x)|u|p−2uv)dx

〈B′(u), v〉 =
∫

RN

f(x, u)vdx,

(5)
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for all u, v ∈ E. Furthermore, we know that (see [5]), A′ : E → E∗ is a mapping of
(S+)-type, i.e., if un ⇀ u in E and lim sup

n→∞
〈A′(un), un − u〉 ≤ 0, then un → u in E.

As E is a separable and reflexive Banach space, there exist {en}∞n=1 ⊂ E and
{fn}∞n=1 ⊂ E∗ such that

fn(em) =

{

1, if n = m,

0, if n 6= m,

E = span{en : n = 1, 2, · · · , } and E∗ = span{fn : n = 1, 2, · · · , }. For k = 1, 2, · · · ,
denote Xk = span{ek}, Yk = ⊕k

j=1Xj and Zk = ⊕∞
j=kXj .

Claim 3.1. Let lp(k) := sup
u∈Zk,‖u‖=1

|u|p → 0 and lα(k) := sup
u∈Zk,‖u‖=1

|u|α → 0.

Then lp(k) → 0 and lα(k) → 0, as k → ∞.
It is obvious that lp(k) ≥ lp(k+1) ≥ 0 and lα(k) ≥ lα(k+1) ≥ 0, so lp(k) → lp ≥ 0

and lα(k) → lα ≥ 0 as k → ∞. For each k = 1, 2, · · · , we take uk ∈ Zk, ‖uk‖ = 1
such that

0 ≤ lp(k)− |uk|p <
1

k
and 0 ≤ lα(k)− |uk|α <

1

k
.

As E is reflexive, {uk} has a weakly convergent subsequence, and without loss
of generality, we can suppose that uk ⇀ u. We claim that u = 0. In fact, for any
fm ∈ {fn : n = 1, 2, · · · }, we have fm(uk) = 0 when k > m, so fm(uk) → 0 as
k → ∞, this concludes fm(u) = 0 for any fm ∈ {fn : n = 1, 2, · · · }, therefore u = 0.
Since E is compactly embedded to both Lp(RN ) and Lα(RN ), we have that uk → 0
in Lp(RN ) and uk → 0 in Lα(RN ). This implies lp(k) → 0 and lα(k) → 0 as k → ∞.
This proves Claim 3.1.

Claim 3.2. There exists a positive integer k1 and a sequence ρk → ∞ as k → ∞
such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) > 0, ∀ k ≥ k1. (6)

By (3) and (4), we have

ϕλ(u) =A(u)− λB(u)

≥1

p
‖u‖p − 2

∫

RN

F (x, u)dx

≥1

p
‖u‖p − 2c1(|u|pp + |u|αα)

≥1

p
‖u‖p − 2c1(l

p
p(k)‖u‖p + lαα(k)‖u‖α), ∀ (λ, u) ∈ [1, 2]× Zk.

(7)

By Claim 3.1, there exists a positive integer k1 such that

2c1l
p
p(k) ≤

1

2p
, ∀ k ≥ k1. (8)

For each k ≥ k1, choose

ρk := [8pc1l
α
α(k)]

1

p−α . (9)
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Then ρk → +∞ as k → ∞, since α > p. Using (8) and (9) in (7), for each k ≥ k1,
we have

ak(λ) = inf
u∈Zk,‖u‖=ρk

ϕλ(u) ≥
1

4p
ρ
p
k > 0,

which concludes the proof of Claim 3.2.
Claim 3.3. For each k ≥ k1, there exist rk > ρk such that

bk(λ) := inf
u∈Yk,‖u‖=rk

ϕλ(u) < 0, ∀ k ≥ k1. (10)

We first prove that for any finite dimensional subspace F ⊂ E there exists a
constant ε > 0 such that

meas({x ∈ R
N : |u(x)| ≥ ε‖u‖}) ≥ ε, ∀u ∈ F\{0}. (11)

Suppose that this is not true. Then for any n ∈ N there exists un ∈ F\{0} such
that

meas({x ∈ R
N : |un(x)| ≥

‖un‖
n

}) < 1

n
.

Set vn = un

‖un‖
∈ F for all n ∈ N. Then ‖vn‖ = 1 for all n ∈ N, and

meas
({

x ∈ R
N : |vn(x)| ≥

1

n

})

<
1

n
, ∀n ∈ N. (12)

Passing to a subsequence if necessary, we may assume vn → v0 in E for some v0 ∈ F ,
since F is of finite dimension. Evidently, ‖v0‖ = 1. In view of Lemma 2 and the
equivalence of any two norms on F , we have

∫

RN

|vn − v0|pdx → 0, as n → ∞. (13)

Since v0 6= 0, there exists a constant δ0 > 0 such that

meas(Ω0) := meas({x ∈ R
N : |v0(x)| ≥ δ0}) ≥ δ0. (14)

For n ∈ N, let

Ωn :=
{

x ∈ R
N : |vn(x)| <

1

n

}

and Ωc
n := R

N\Ωn =
{

x ∈ R
N : |vn(x)| ≥

1

n

}

.

Then for n large enough, by (12) and (14), we have

meas(Ω0 ∩ Ωn) ≥ meas(Ω0)−meas(Ωc
n) ≥ δ0 −

1

n
≥ δ0

2
.

Consequently, for n large enough, there holds
∫

RN

|vn − v0|pdx ≥
∫

Ω0∩Ωn

|vn − v0|pdx

≥
∫

Ω0∩Ωn

(|v0| − |vn|)pdx

≥
(

δ0 −
1

n

)p

meas(Ω0 ∩ Ωn)

≥
[δ0

2

]p+1

.
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This contradicts (13). Therefore, (11) holds. Note that Yk is finite dimensional for
each k ∈ N. Then by (11), for each k ∈ N, there exists a constant εk > 0 such that

meas({x ∈ R
N : |u(x)| ≥ εk‖u‖}) ≥ εk, ∀u ∈ Yk\{0}. (15)

By (f2), for each k ∈ N, there exists a constant ηk > 0 such that

F (x, u) ≥ |u|p
ε
p+1
k

, ∀x ∈ R
N and |u| ≥ ηk. (16)

Combining (3), (15), (16) and (f2), for any k ∈ N and λ ∈ [1, 2], we have

ϕλ(u) =A(u)− λB(u)

≤1

p
‖u‖p −

∫

RN

F (x, u)dx

≤1

p
‖u‖p −

∫

{x∈RN :|u(x)|≥εk‖u‖}

F (x, u)dx

≤1

p
‖u‖p −

∫

{x∈RN :|u(x)|≥εk‖u‖}

|u|p
ε
p+1
k

dx

≤1

p
‖u‖p − ε

p
k‖u‖p

meas({x ∈ R
N : |u(x)| ≥ εk‖u‖})
ε
p+1
k

≤1

p
‖u‖p − ‖u‖p

=− p− 1

p
‖u‖p,

(17)

for all u ∈ Yk with ‖u‖ ≥ ηk

εk
. Choose rk > max{ρk, ηk

εk
} for all k ≥ k1. Then (17)

implies

bk(λ) := inf
u∈Yk,‖u‖=rk

ϕλ(u) ≤ −p− 1

p
‖rk‖p < 0, ∀ k ≥ k1.

This proves Claim 3.3.
From (1), (3) and (4), it follows that ϕλ maps bounded sets to bounded sets

uniformly for λ ∈ [1, 2]. By (f4), ϕλ(−u) = ϕλ(u) for all (λ, u) ∈ [1, 2] × E.
Therefore, condition (1) of Theorem 2 holds. On the other hand, by (3) and (f2),
condition (2) of Theorem 2 holds. In addition, Claim 3.2 and Claim 3.3 imply that
condition (3) of Theorem 2 holds. Therefore, by Theorem 2, we have that for each
k ≥ k1 and λ ∈ [1, 2], there exists a sequence {uk

m(λ)}∞m=1 ⊂ E such that

sup
m

‖uk
m(λ)‖ < ∞, ϕ′

λ(u
k
m(λ)) → 0 and ϕλ(u

k
m(λ)) → ζk(λ), as m → ∞, (18)

where
ζk(λ) = inf

γ∈Γk

max
u∈Bk

ϕλ(γ(u)), ∀λ ∈ [1, 2],

with Bk := {u ∈ Yk : ‖u‖ ≤ rk} and Γk := {γ ∈ C(Bk, X) : γ is odd, γ|∂Bk
= id}.

Furthermore, it follows from the proof of Claim 3.2 that ζk(λ) ∈ [ck, dk] for all
k ≥ k1 and λ ∈ [1, 2], where dk := max

u∈Bk

ϕ1(u) and ck := 1
4pρ

p
k.
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In view of (18), for each k ≥ k1, we can choose λn → 1 (depending on k) and
get the corresponding sequences satisfying

sup
m

‖uk
m(λn)‖ < ∞ and ϕ′

λn
(uk

m(λn)) → 0, as m → ∞. (19)

Claim 3.4. For each λn given above, the sequence {uk
m(λn)}∞m=1 has a strongly

convergent subsequence. Furthermore, if we assume that lim
m→∞

uk
m(λn) = uk

n ∈ E

for all n ∈ N and k ≥ k1, then the sequence {uk
n}∞n=1 is bounded.

In fact, by (19), without loss of generality, we may assume

uk
m(λn) ⇀ uk

n in E, as m → ∞ (20)

for some uk
n ∈ E. By Lemma 2, we have

uk
m(λn) → uk

n in Lp(RN ), as m → ∞;

uk
m(λn) → uk

n in Lα(RN ), as m → ∞.
(21)

From the choice of the sequence {uk
m(λn)}∞m=1, we have

|〈ϕ′
λn

(uk
m(λn)), u

k
m(λn)〉| ≤ εm, εm ↓ 0, (22)

which implies that

|〈A′(uk
m(λn)), u

k
m(λn)− uk

n〉| − λn

∫

RN

f(x, uk
m(λn))(u

k
m(λn)− uk

n)dx ≤ εm, (23)

for all m ≥ 1.
From Lemma 3, hypothesis H(f)(f1) and (21), we obtain

lim
m→∞

∫

RN

f(x, uk
m(λn))(u

k
m(λn)− uk

n)dx = 0. (24)

Using (22) (23) and (24), we obtain

lim sup
m→∞

〈A′(uk
m(λn)), u

k
m(λn)− uk

n〉 ≤ 0. (25)

Because A′ is a mapping of (S+)-type, from (25), it follows that

uk
m(λn) → uk

n in E, as m → ∞. (26)

It remains to prove that the sequence {uk
n}∞n=1 is bounded. Suppose that this is

not true. Then passing to a subsequence is necessary, we can assume that ‖uk
n‖ → ∞

as n → ∞. Set wk
n =

uk
n

‖uk
n‖

, n ≥ 1.

We may assume that

wk
n ⇀ wk

0 in E;

wk
n → wk

0 in Lp(RN );

wk
n → wk

0 in Lα(RN );

wk
n(x) → wk

0 (x) a.e. on R
N .

(27)
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If wk
0 = 0, we choose a sequence {tn}∞n=1 ⊂ [0, 1] such that

ϕλn
(tnw

k
n) = max

t∈[0,1]
ϕλn

(twk
n). (28)

For any R > 0, we set wk
n = p

√
pRwk

n. Combining (3), (4), (27) and (f2), we have

0 ≤
∫

RN

F (x,wk
n)dx ≤ c1

∫

RN

(|wk
n|p + |wk

n|α)dx → 0 as n → ∞. (29)

Thus, for sufficiently large n, we have

ϕλn
(tnu

k
n) ≥ϕλn

(wk
n)

=
1

p
‖wk

n‖p − λn

∫

RN

F (x,wk
n)dx

=R− λn

∫

RN

F (x,wk
n)dx

≥R

2
,

which implies that

lim
n→∞

ϕλn
(tnu

k
n) = +∞.

On the one hand, it is clear from (18) (19) and (26) that

ϕ′
λn

(uk
n) = 0, ϕλn

(uk
n) ∈ [ck, dk], ∀n ∈ N and k ≥ k1. (30)

On the other hand, from (28) it follows that

0 = tn
d

dt

∣

∣

∣

∣

t=tn

ϕλn
(tuk

n) = 〈ϕ′
λn

(tnu
k
n), tnu

k
n〉. (31)

So from (3), (5), (28) and condition (f3), we conclude that

ϕλn
(uk

n) =ϕλn
(uk

n)−
1

p
〈ϕ′

λn
(uk

n), u
k
n〉

=
λn

p

∫

RN

F(x, uk
n)dx

≥λn

θp

∫

RN

F(x, tnu
k
n)dx

=
1

θ
ϕλn

(tnu
k
n)−

1

θp
〈ϕ′

λn
(tnu

k
n), tnu

k
n〉

=
1

θ
ϕλn

(tnu
k
n) → +∞ as n → ∞.

This provides a contradiction to (30).
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If wk
0 6= 0, then Θ := {x ∈ R

N : wk
0 (x) 6= 0} has a positive Lebesgue measure.

Thus for x ∈ Θ, we have uk
n(x) → ∞. This, together with (3), (27) and (f2), implies

1

p
− ϕλn

(uk
n)

‖uk
n‖p

=λn

∫

RN

F (x, uk
n)

‖uk
n‖p

dx

≥λn

∫

Θ

|wk
n|p

F (x, uk
n)

|uk
n|p

dx → ∞, as n → ∞,

which is a contradiction to (30) again. Therefore, the sequence {uk
n}∞n=1 is bounded.

This proves that Claim 3.4 is true.
In view of Claim 3.4 and (30), for each k ≥ k1, using similar arguments in

the proof of Claim 3.4, we can also prove that the sequence {uk
n}∞n=1 has a strong

convergent subsequence with the limit uk being just a critical point of ϕ1 = ϕ. We
already know that ϕ(uk) ∈ [ck, dk] for all k ≥ k1. Recalling that ck → +∞ as
k → ∞, we deduce the existence of infinitely many nontrivial critical points of ϕ.
Therefore, problem (P ) possesses infinitely many nontrivial solutions. The proof of
Theorem 1 is complete. ✷
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