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1. Introduction

An overview

Symmetric positive systems of first-order linear partial differential equations were introduced
by Friedrichs (1958) in order to treat the equations that change their type, like the equations
modelling the transonic fluid flow.

Friedrichs showed that this class of problems encompasses a wide variety of classical and neo-
classical initial and boundary value problems for various linear partial differential equations, such
as boundary value problems for some elliptic systems, the Cauchy problem for linear symmetric
hyperbolic systems, mixed initial and boundary value problem for hyperbolic equations, and, last
but not the least, boundary value problems for equations of mixed type, such as the Tricomi
equation. Friedrichs’ main goal was to systematically derive the type of conditions that have to
be imposed on various parts of the boundary, such as it was done by Cathleen Synge Morawetz
[M] in the case of Tricomi’s equation.

Inclusion of such a variety of different problems, each with technical peculiarities of its own,
into a single framework naturally requires all different characteristics to be included as well. A
good theory which would incorporate natural discontinuities for hyperbolic problems simultane-
ously with the poles in the corners for elliptic problems, remains a challenge even today, and
it is still an open problem. Many authors have since tried to surmount these difficulties, like
Morawetz, Lax, Rauch, Phillips and Sarason [M, FL, Ra, LP, PS].

Already Friedrichs considered the numerical solution of such systems, by a finite difference
scheme. We understand that, based on the needs to adapt the finite element method to these
problems, there has been a renewed interest in the theory of Friedrichs’ systems during the last
decade. Here we just mention [HMSW], the Ph.D. thesis of Max Jensen [J] and, most recently,
[EGC, EG]. Ern, Guermond and Caplain reformulated the Friedrichs theory such that the traces
on the boundary are not explicitly used. They expressed the theory in terms of operators acting
in abstract Hilbert spaces, and represented the boundary conditions in an intrinsic way, thus
avoiding ad-hoc matrix-valued boundary fields. In this paper we try to answer the questions that
were left open there.

Our interest in this theory was originally motivated by the need for a better formulation of
initial and boundary value problems for equations that change their type, in order to extend the
results of [A] to the non-hyperbolic region, making use of some recent advances initiated in [AL,
AL1].

In the remaining part of the Introduction we first recall the classical (i.e. Friedrichs’) setting,
and formulate the three equivalent sets of classical boundary conditions. Then we recall the basic
definitions and results concerning the indefinite inner product spaces, and in particular the Krĕın
spaces. We also make a number of simple conclusions, based on the precisely cited results, which
will be used later in the paper.

In the second section we introduce the abstract setting, as it was done in [EGC]. While in
the first subsection we mostly follow their presentation [EGC, Section 2] (except that in the
Example we refer to [AB1]), in the second subsection we reformulate their results and definitions
in the terms of indefinite inner product spaces, reducing some of their proofs to simple well-known
results in that theory. Finally, we formulate the abstract analogues of the above mentioned three
sets of boundary conditions.

The main results are contained in the last section, where we start by proving the properties
of the quotient of an inner product space by its isotropic part; most important is the fact that
the quotient is a Krĕın space. Then we can easily prove the equivalence of (V) and (X); in [EGC]
it was only shown that (V) implies (X). The proof of the other equivalence, between (V) and
(M), is more delicate. We first show by an example that some additional assumptions proposed
in [EGC] are not always fulfilled, and then provide another approach, that allows us to complete
the proof.
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The classical setting
Let d, r ∈ N, and let Ω ⊆ Rd be an open and bounded set with Lipschitz boundary Γ. If real

matrix functions Ak ∈ W1,∞(Ω;Mr), k ∈ 1..d, and C ∈ L∞(Ω;Mr) satisfy:

(F1) Ak is symmetric:Ak = A>
k ,

(F2) (∃µ0 > 0) C + C> +
d∑

k=1

∂kAk > 2µ0I (a.e. on Ω) ,

then the first-order differential operator L : L2(Ω;Rr) −→ D′(Ω;Rr) defined by

Lu :=
d∑

k=1

∂k(Aku) + Cu

is called the Friedrichs operator or the positive symmetric operator, while (for given f ∈ L2(Ω;Rr))
the first-order system of partial differential equations

Lu = f

is called the Friedrichs system or the positive symmetric system.
In fact, the above can be extended [FL] to the complex case, by replacing the transpose of a

matrix with the Hermitian conjugation; e.g. in (F1) one would require Ak = A∗
k.

Kurt Otto Friedrichs [F] also introduced an interesting way for representing the boundary
conditions via matrix valued boundary fields. First define

Aν :=
d∑

k=1

νkAk ∈ L∞(Γ;Mr) ,

where ν = (ν1, ν2, · · · , νd) is the outward unit normal on Γ, and let M : Γ −→ Mr be a given
matrix field on the boundary. The boundary condition is then prescribed by

(Aν −M)u|Γ = 0 ,

and by choosing different M one can enforce different boundary conditions. For the matrix field
M Friedrichs required the following two conditions (for a.e. x ∈ Γ) to hold:

(FM1) (∀ ξ ∈ Rr) M(x)ξ · ξ > 0 ,

(FM2) Rr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
;

such an M he called an admissible boundary condition.
The boundary value problem thus reads: for given f ∈ L2(Ω;Rr) find u ∈ L2(Ω;Rr) such

that {Lu = f

(Aν −M)u|Γ = 0
.

Instead of imposing admissible boundary conditions, after [F] some authors have required
different, but equivalent, boundary conditions.

For example, Peter Lax proposed the maximal boundary condition—we say that a family
N = {N(x) : x ∈ Γ} of subspaces of Rr defines the maximal boundary condition if (for a.e.
x ∈ Γ) N(x) is maximal nonnegative with respect to Aν(x), i.e. if

(FX1) N(x) is nonnegative with respect to Aν(x): (∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,
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and

(FX2) there is no nonnegative subspace with respect to Aν(x), which is larger than N(x) .

Now the boundary value problem takes the form
{Lu = f

u(x) ∈ N(x) , x ∈ Γ
.

Instead of the above condition imposed on family N , in literature one can also find a different
set of conditions [PS]: it is required that N(x) and Ñ(x) := (Aν(x)N(x))⊥ satisfy

(FV1)
N(x) is nonnegative with respect to Aν(x): (∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,

Ñ(x) is nonpositive with respect to Aν(x): (∀ ξ ∈ Ñ(x)) Aν(x)ξ · ξ 6 0 ,

(FV2) Ñ(x) = (Aν(x)N(x))⊥ and N(x) = (Aν(x)Ñ(x))⊥ ,

for a.e. x ∈ Γ. Note that the first condition in (FV2) is actually the definition of Ñ , and it is
stated here for the sake of completeness.

We have three sets of boundary conditions for the Friedrichs system, and are going to define
three more in the abstract setting below. In order to simplify the notation, when referring to
e.g. (FM1)–(FM2) we shall simply write only (FM) in the sequel. However, in order to keep a
clear distinction with other conditions, like (F1)–(F2), such abbreviations will be reserved only
for various forms of boundary conditions.

It is well known that these three sets of conditions: (FM), (FX) and (FV) are in fact equivalent
[B], with N(x) := ker(Aν(x)−M(x)). It is also well known that for a weak existence result one
needs some additional assumptions—see [Ra] for additional details on assumptions (FX), and [J]
for (FM). In this paper our goal is to resolve the question of equivalence for the abstract versions
of these conditions.

Krĕın spaces
The theory of linear operators on the spaces with an indefinite metric was initiated by Lev

S. Pontryagin in 1944. Despite a number of books on the topic (we have primarily used [Bo] and
[AI]), this theory is not well known in the mathematical community. For the convenience of the
reader, here we summarise some basic notions and properties of indefinite inner product spaces,
and in particular of Krĕın spaces (named in honour of Mark Grigor’evič Krĕın).

By W we denote an indefinite inner product space, i.e. a complex (or real) vector space
equipped with a sesquilinear functional [ · | · ] : W ×W −→ C, i.e. the one satisfying

(∀λ1, λ2 ∈ C)(∀x1, x2, y ∈W ) [λ1x1 + λ2x2 | y ] = λ1[x1 | y ] + λ2[x2 | y ] ,

(∀x, y ∈W ) [ y | x ] = [x | y ] .

Such a functional is called the indefinite inner product on W .
We say that two vectors x, y ∈W are [ · | · ]-orthogonal (and write x[⊥]y) if [x | y ] = 0. Two

sets K,L ⊆W are [ · | · ]-orthogonal if x[⊥]y, for each x ∈ K, y ∈ L. We then write K[⊥]L.
[ · | · ]-orthogonal complement of set L ⊆W is defined by

L[⊥] := {y ∈W : (∀x ∈ L) [x | y ] = 0} .

One can easily see that L[⊥] is a subspace of W , and that K ⊆ L implies L[⊥] 6 K [⊥].
A vector x ∈ L 6 W is isotropic in L if x ∈ L[⊥]. The set of all isotropic vectors in L is

denoted by L0 := L ∩ L[⊥], and one can easily see that W 0 6 L[⊥], for any subspace L of W . If
L0 = {0} we say that L is a non-degenerate space, while otherwise we say that it is degenerate.
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The quotient space of W by the subspace of its isotropic vectors is denoted by Ŵ := W/W 0,
and its elements by x̂ := x+W 0. One can easily check that

[ x̂ | ŷ ]̂ := [x | y ]

defines an indefinite inner product on Ŵ (see [AI, pp. 7–8]).
We say that a vector x ∈W is positive if [x | x ] > 0, and that a subspace L 6 W is positive

if its each nonzero vector is positive. In the same way we define negative (<), nonnegative (>),
nonpositive (6), and neutral (=) vectors and subspaces.

A subspace L of W is maximal positive, if it is positive and there exists no positive subspace
M 6= L, such that L ⊂ M . In the same way we define maximal negative, maximal nonnegative,
maximal nonpositive, and maximal neutral subspaces. We use the term maximal definite for max-
imal positive or maximal negative, while maximal semidefinite is used for maximal nonnegative
or maximal nonpositive.

Lemma I. [Bo, p. 13] [ · | · ]-orthogonal complement of a maximal nonnegative (nonpositive)
subspace is nonpositive (nonnegative).

Lemma II. [AI, p. 7] Each maximal semidefinite subspace contains all isotropic vectors of the
space W .

Direct sum K+̇L of subspaces K,L 6 W , which are also [ · | · ]-orthogonal, we denote by
K[+̇]L.

Each pair consisting of a positive subspace W+ and a negative subspace W−, such that
W = W+[+̇]W− is called a canonical decomposition of space W . If W is a direct sum of a
positive and a negative subspace, then it is also non-degenerate [AI, p. 8].

If (W, 〈 · | · 〉) is a Hilbert space and G is a bounded hermitian (G = G∗) operator on W , then

[x | y ] := 〈Gx | y 〉 , x, y ∈W ,

defines an indefinite inner product on W . The operator G is called the Gramm operator of the
space (W, [ · | · ]), and the isotropic part W 0 of W is equal to kerG.

Whenever the indefinite inner product is defined by a Gramm operator, we can use the
corresponding Hilbert topology on that space. While the choice of the Gramm operator and the
Hilbert scalar product is not unique, the resulting topologies are equivalent [Bo, p. 63].

It is of interest to note that L[⊥] is closed in the mentioned topology for any subset L of W .
An indefinite inner product space that allows a canonical decomposition W = W+[+̇]W−,

such that (W+, [ · | · ]) and (W−,−[ · | · ]) are Hilbert spaces, is called the Krĕın space.
It is a well known fact that the indefinite inner product on any Krĕın space can be expressed

by a Gramm operator in some Hilbert scalar product on that space [Bo, p. 101]. As this topology
does not depend on the choice of the Gramm operator and the Hilbert scalar product, it is usually
considered as the standard topology on the Krĕın space.

Theorem I. [AI, p. 40] Let G be the Gramm operator of the space W . The quotient space
Ŵ := W/kerG is then a Krĕın space if and only if imG is closed.

Theorem II. [Bo, p. 106] If L is a nonnegative (nonpositive) subspace of a Krĕın space, such that
L[⊥] is nonpositive (nonnegative), then its closure ClL is a maximal nonnegative (nonpositive)
subspace of the Krĕın space.

Theorem III. [Bo, p. 105] Each maximal semidefinite subspace of a Krĕın space is closed.

Theorem IV. [Bo, pp. 69, 101–102] Subspace L of a Krĕın space is closed if and only if L =
L[⊥][⊥].

Theorem V. [AI, p. 44] For a subspace L of a Krĕın space W it holds

L ∩ L[⊥] = {0} ⇐⇒ Cl (L+ L[⊥]) = W .
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Theorem VI. [Bo, p. 112] For each maximal nonnegative (nonpositive) subspace L1 of a Krĕın
space W there is a nonpositive (nonnegative) subspace L2, such that L1+̇L2 = W . One of the
possible choices for L2 is the space W− (W+) from the canonical decomposition of W .

2. An abstract setting

Abstract Hilbert space formalism
Let L be a real Hilbert space, which we identify with its dual L′; this identification will be

kept throughout the paper. Furthermore, let D ⊆ L be a dense subspace, and T, T̃ : D −→ L
unbounded operators satisfying

(T1) (∀ϕ,ψ ∈ D) 〈Tϕ | ψ 〉L = 〈ϕ | T̃ψ 〉L ,

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(T + T̃ )ϕ‖L 6 c‖ϕ‖L ,

(T3) (∃µ0 > 0)(∀ϕ ∈ D) 〈 (T + T̃ )ϕ | ϕ 〉L > 2µ0‖ϕ‖2
L .

By (T1) the operators T and T̃ have densely defined formal adjoints, and thus are closable. The
closures we denote by T̄ and ¯̃T , and the corresponding domains by D(T̄ ) and D( ¯̃T ).

The graph inner product 〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L defines the graph norm ‖ · ‖T , and
it is immediate that (D, 〈 · | · 〉T ) is an inner product space, whose completion we denote by W0.
Analogously we could have defined 〈 · | · 〉T̃ which, by (T2), leads to a norm that is equivalent to
‖ · ‖T . W0 is continuously imbedded in L (as T is closable); the image of W0 being D(T̄ ) = D( ¯̃T ).
Moreover, when equipped with the graph norm, these spaces are isometrically isomorphic.

As T, T̃ : D −→ L are continuous, each can be extended by density to a unique operator from
L(W0;L) (i.e. a continuous linear operator from W0 to L). These extension coincide with T̄ and
¯̃T (take into account the isomorphism between W0 and D(T̄ )). For simplicity, we shall drop the
bar from notation and simply write T, T̃ ∈ L(W0;L), prompted by the fact that (T1)–(T3) still
hold for ϕ,ψ ∈W0.

We have the Gelfand triple (the imbeddings are dense and continuous)

W0 ↪→ L ≡ L′ ↪→W ′
0 .

The adjoint operator T̃ ∗ ∈ L(L;W ′
0) defined by

(∀u ∈ L)(∀ v ∈W0) W ′
0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L

satisfies T = T̃ ∗|W0

, as (T1) implies

W ′
0
〈 T̃ ∗u, v 〉W0 = 〈Tu | v 〉L = W ′

0
〈Tu, v 〉W0 , u ∈W0 .

Therefore, T : W0 −→ L ↪→ W ′
0 is a continuous linear operator from (W0, ‖ · ‖L) to W ′

0, whose
unique continuous extension to the whole L is the operator T̃ ∗ (the same holds for T ∗ and T̃
instead of T and T̃ ∗). In order to further simplify the notation we shall use T and T̃ also to
denote their extensions T̃ ∗ and T ∗. By using this convention, for u ∈ L and ϕ ∈W0 we have

W ′
0
〈Tu, ϕ 〉W0 = 〈u | T̃ϕ 〉L and W ′

0
〈 T̃ u, ϕ 〉W0 = 〈u | Tϕ 〉L .

Note that the above construction of operators T, T̃ ∈ L(L;W ′
0) has been achieved independently

of the validity of (T3).
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Lemma 1. ([EGC, Lemma 2.2]) The properties (T1)–(T2) imply T+T̃ ∈ L(L;L) and (T+T̃ )∗ =
T + T̃ . In particular, (T2)–(T3) hold for ϕ ∈ L.

By
W := {u ∈ L : Tu ∈ L} = {u ∈ L : T̃ u ∈ L} ,

we denote the graph space which, equipped with the graph norm, is an inner product space,
containing W0. Furthermore, for u ∈W and ϕ ∈W0 we have

〈Tu | ϕ 〉L = 〈u | T̃ϕ 〉L and 〈 T̃ u | ϕ 〉L = 〈u | Tϕ 〉L .

Lemma 2. ([EGC, Lemma 2.1]) Under the assumptions (T1)–(T2), (W, 〈 · | · 〉T ) is a Hilbert
space.

The goal is to solve the following problem:
for given f ∈ L find u ∈W such that Tu = f .

To be more precise, the goal is to find sufficient conditions on subspace V ⊆ W , such that
the operator T|V : V −→ L is an isomorphism. In order to find such sufficient conditions, we first
introduce a boundary operator D ∈ L(W ;W ′) defined by

W ′〈Du, v 〉W := 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W .

The following lemma justifies the usage of the term boundary operator.

Lemma 3. ([EGC, Lemmas 2.3 and 2.4]) Under assumptions (T1)–(T2), the operator D satisfies

(∀u, v ∈W ) W ′〈Du, v 〉W = W ′〈Dv, u 〉W ,

kerD = W0 and imD = {g ∈W ′ : (∀u ∈W0) W ′〈 g, u 〉W = 0} .

In particular, imD is closed in W ′.

Example. (Friedrichs’ operator) As in the Introduction, let d, r ∈ N, and Ω ⊆ Rd be
an open and bounded set with Lipschitz boundary Γ. Furthermore, assume that the matrix
functions Ak ∈ W1,∞(Ω;Mr), k ∈ 1..d, and C ∈ L∞(Ω; Mr) satisfy (F1)–(F2). If we denote
D := C∞c (Ω;Rr), L = L2(Ω;Rr), and define operators T, T̃ : D −→ L by formulaæ

Tu :=
d∑

k=1

∂k(Aku) + Cu ,

T̃u :=−
d∑

k=1

∂k(A>
k u) + (C> +

d∑

k=1

∂kA>
k )u ,

where ∂k stands for the classical derivate, then one can easily see that T and T̃ satisfy (T1)–(T3)
(T̃ is defined so that (T1) holds, (F1) implies (T2), and (T3) follows from (F2)). Therefore, T
and T̃ can be uniquely extended to respective operators from L(L;W ′

0).
Note that the classical Friedrichs operator L was defined (cf. Introduction) in a slightly

different way than the operator T above: L was formally defined by the same formula as T ,
but with distributional derivatives instead of classical ones, and it was considered as a conti-
nuous linear operator from L2(Ω;Rr) to D′(Ω;Rr). However, as W ′

0 is continuously imbedded
in D′(Ω;Rr) (because C∞c (Ω;Rr) with the strict inductive limit topology is continuously and
densely imbedded in W0 with the graph norm topology), we can consider T as an operator from
L(L2(Ω;Rr);D′(Ω;Rr)). As such, it is equal to the operator L, because they coincide on a dense
subspace D = C∞c (Ω;Rr) (to conclude that, we use the fact that the classical derivative of a
Lipschitz function equals its distributional derivative almost everywhere).
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The graph space W in this example is given by

W =
{

u ∈ L2(Ω;Rr) :
d∑

k=1

∂k(Aku) + Cu ∈ L2(Ω;Rr)
}
,

where we have to take the distributional derivatives in the above formula. If we denote by
ν = (ν1, ν2, . . . , νd) ∈ L∞(Γ;Rd) the unit outward normal on Γ, and define a matrix field on Γ by

Aν :=
d∑

k=1

νkAk ,

then for u, v ∈ C∞c (Rd;Rr) the boundary operator D is given by

W ′〈Du, v 〉W =
∫

Γ
Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

Thus we can say that, in the abstract setting, the operator D plays the role of the matrix function
Aν in the classical Friedrichs theory. To be more precise, it replaces the trace operator defined
on the graph space; for the details concerning the definition and properties of the trace operator
on graph spaces see [AB1].

Formulation in terms of indefinite inner product spaces
Before we write down sufficient conditions on a subspace V that ensure the well-posedness

result, still following the main ideas from [EGC], which they baptised the cone formalism, we shall
introduce a new notation which is more appropriate for describing the desired subspace V . The
conditions on V [EGC, EG] can naturally be written in terms of an indefinite inner product on
W , defined by the Gramm operator G = J ◦D, where J : W ′ −→W is the canonical isomorphism
(cf. the proof of Lemma 8 below):

[u | v ] := 〈Gu | v 〉T = W ′〈Du, v 〉W = 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W .

Note that the isotropic part W 0 of W is just kerG = kerD = W0. The usage of basic geometric
properties in indefinite inner product spaces can simplify (in some cases even trivialise) many
proofs from [EGC] (such as Lemma 3.3 there).

Let us denote
C+ :={u ∈W : [u | u ] > 0} ,
C− :={u ∈W : [u | u ] 6 0} ,
C0 :=C+ ∩ C− ,

i.e. C+ is the nonnegative, while C− the nonpositive cone in (W, [ · | · ]). Further, let V and Ṽ
be subspaces of W satisfying the following conditions

(V1) V ⊆ C+ , Ṽ ⊆ C− ;

(V2) V = Ṽ [⊥] , Ṽ = V [⊥] ,

where by [⊥] we denote the [ · | · ]-orthogonal complement.

Remark. If we write down the above conditions using the operator D, as in [EGC], then (V1)
reads

(∀u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

while (V2) becomes (note that here 0 stands for the annihilator)

V = D(Ṽ )0 , Ṽ = D(V )0 .

The analogy with conditions (FV) in the classical Friedrichs’ system theory is obvious.
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The following lemma is then immediate.

Lemma 4. If (T1)–(T2) and (V2) hold, then V and Ṽ are closed, and kerD = W0 ⊆ V ∩ Ṽ .

The proof of well-posedness result uses the coercivity property of T and T̃ stated in the
following lemma.

Lemma 5. ([EGC, Lemma 3.2]) Under assumptions (T1)–(T3) and (V), the operators T and T̃
are L–coercive on V and Ṽ , respectively; in other words:

(∀u ∈ V ) 〈Tu | u 〉L > µ0‖u‖2
L ,

(∀ v ∈ Ṽ ) 〈Tv | v 〉L > µ0‖v‖2
L .

Theorem 1. ([EGC, Theorem 3.1]) If (T1)–(T3) and (V) hold, then the restrictions of operators
T|V : V −→ L and T̃|Ṽ : Ṽ −→ L are isomorphisms.

The above theorem gives sufficient conditions on subspaces V and Ṽ that ensure well-
posedness of the following problems:
1) for given f ∈ L find u ∈ V such that Tu = f ;
2) for given f ∈ L find v ∈ Ṽ such that T̃ v = f .

Its importance also arises from relative simplicity of geometric conditions (V), which do not
involve the question of trace for functions in the graph space.

Different formulations of boundary conditions
We have already seen that properties (V) in the abstract setting are related to (FV) for the

Friedrichs system. It is only natural to search for appropriate analogues of (FX) and (FM) in
the abstract setting. Actually, the notion of the maximal nonnegative subspace is well known in
the theory of indefinite inner product spaces: we say that subspace V of (W, [ · | · ]) is maximal
nonnegative if

(X1) V is nonnegative in (W, [ · | · ]), i.e V ⊆ C+ ,

(X2) there is no nonnegative subspace of (W, [ · | · ]) which is true superset of V .

The analogy of (FX) and (X) is obvious.
It remains to write down the conditions corresponding to (FM) (see [EGC, EG]): let M ∈

L(W ;W ′) be an operator satisfying

(M1) (∀u ∈W ) W ′〈Mu, u 〉W > 0 ,

(M2) W = ker(D −M) + ker(D +M) .

The equivalence of (FV), (FX) and (FM) motivates the investigation of the correspondence
between the properties (V), (X) and (M), which is the subject of the next section. First we write
down some properties of operator M (having strong analogy with properties of matrix boundary
field M in the case of Friedrichs’ system). In the rest we assume that (T1)–(T3) hold.

Let M∗ ∈ L(W ;W ′) be the adjoint of operator M (with identification of spaces W and W ′′),
given by

(∀u, v ∈W ) W ′〈M∗u, v 〉W = W ′〈Mv, u 〉W .

Lemma 6. ([EGC, Lemma 4.1]) If M satisfies (M), then

kerD = kerM = kerM∗ , and

imD = imM = imM∗ .

Remark. Since kerM = kerD = W0, it makes sense to call M the boundary operator as well.
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3. On equivalence of various boundary conditions

Quotient as a Krĕın space
We have already mentioned that in the case of Friedrichs’ systems it is known that the

conditions (FM), (FV) and (FX) are mutually equivalent. In this section we shall investigate
the relationship between conditions (M), (V) and (X), mainly using the well known geometric
properties of Krĕın spaces. These spaces have a structure that is close enough to that of the
Hilbert space, which leads to many similar properties. However, the space (W, [ · | · ]) is not a
Krĕın space (as it is degenerated), which motivates us to look at the quotient space of W and
its isotropic part W0. We will show that this quotient space is a Krĕın space (the closedness of
imD appears to be crucial in this conclusion), and use its properties to investigate the relations
among (M), (V) and (X). As far as we know, such an approach is novel in the theory of indefinite
inner product spaces.

As the indefinite inner product on W is defined by a Gram operator, W can be considered
also as a Hilbert space, and we can define its quotient by W0 in the framework of Hilbert spaces.
More precisely, let us denote by Q : W −→W⊥

0 the orthogonal projector on the subspace W⊥
0 of

W . W⊥
0 is unitary isomorphic to the quotient space Ŵ := W/W0 (the isomorphism being given

by x̂ 7→ Qx, for x ∈ W , where x̂ = x+W0). Thus Ŵ is a Hilbert space; by closedness of W0 in
W , we have the following lemma (see [K, p. 140]).

Lemma 7. A subspace V of W , containing W0, is closed in W if and only if V̂ := {v̂ : v ∈ V }
is closed in the quotient space Ŵ .

The closedness of imD in the dual space W ′ implies the following result.

Lemma 8. The space (Ŵ , [ · | · ]̂ ), where [ · | · ]̂ : Ŵ × Ŵ −→ R denotes the quotient indefinite
inner product defined by

[ û | v̂ ]̂ := [u | v ] , u, v ∈W ,

is a Krĕın space.

Dem. Let J : W ′ −→ W stand for the isomorphism (which exists by the Riesz representation
theorem) satisfying

(∀ f ∈W ′)(∀u ∈W ) W ′〈 f, u 〉W = 〈J(f) | u 〉T .
Then G := J ◦D : W −→W is a continuous linear operator, and for u, v ∈W we have

[u | v ] = W ′〈Du, v 〉W = 〈J(Du) | v 〉T = 〈Gu | v 〉T .
As [u | v ] = [ v | u ], it follows that G = G∗, which implies that G is the Gramm operator for
the space (W, [ · | · ]). Furthermore, kerG = kerD = W0, and imG = J(imD) is closed (imD is
closed and J is an isomorphism of Hilbert spaces), so Theorem I implies that (Ŵ , [ · | · ]̂ ) is a
Krĕın space.

Q.E.D.

In the next two lemmas we address how the properties of orthogonality and maximality
transfer from W to Ŵ and vice versa.

Lemma 9. For any subspace U of W we have

(Û)[⊥]̂ = Û [⊥] .

Dem. Let v̂ ∈ Û [⊥] for some v ∈ U [⊥]; the following equivalences hold:

v ∈ U [⊥] ⇐⇒ (∀u ∈ U) [u | v ] = 0

⇐⇒ (∀ û ∈ Û) [ û | v̂ ]̂ = 0 ⇐⇒ v̂ ∈ (Û)[⊥]̂ .

Q.E.D.
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To appear in Comm. Partial Diff. Eq. Intrinsic boundary conditions for Friedrichs systems

Lemma 10. For any subspace V of W :
a) if V is maximal nonnegative (nonpositive) inW , then V̂ is maximal nonnegative (nonpositive)

in Ŵ ;
b) if W0 ⊆ V and V̂ is maximal nonnegative (nonpositive) in Ŵ , then V is maximal nonnegative

(nonpositive) in W .

Dem. a) Let V be a maximal nonnegative subspace of W . Then for û ∈ V̂ (for some u ∈ V ) we
have

[ û | û ]̂ = [u | u ] > 0 ,

which implies that V̂ is nonnegative in Ŵ . Suppose that V̂ is not maximal nonnegative. Then
there exists v̂ ∈ Ŵ \ V̂ (for some v /∈ V ), such that for arbitrary α, β ∈ R and u ∈ V we have

[αû+ βv̂ | αû+ βv̂ ]̂ > 0 .

As ̂(αu+ βv) = αû+ βv̂, we get

[αu+ βv | αu+ βv ] = [ ̂(αu+ βv) | ̂(αu+ βv) ]̂ = [αû+ βv̂ | αû+ βv̂ ]̂ > 0 ,

which implies that the subspace [v] + V ⊃ V is nonnegative in W , which contradicts the maxi-
mality.

In an analogous way one can prove the statement when V is maximal nonpositive subspace
of W .

b) Let now V̂ be a maximal nonnegative subspace of the quotient space Ŵ and W0 ⊆ V . For
any u ∈ V we have

[u | u ] = [ û | û ]̂ > 0 ,

which implies the non-negativity of V in W . If V were not maximal nonnegative, then there
would exist a v ∈W \ V , such that for arbitrary α, β ∈ R and u ∈ V it would be

[αu+ βv | αu+ βv ] > 0 .

Then from

[αû+ βv̂ | αû+ βv̂ ]̂ = [ ̂(αu+ βv) | ̂(αu+ βv) ]̂ = [αu+ βv | αu+ βv ] > 0 ,

it would follow that [v̂] + V̂ ⊇ V̂ is nonnegative in W . However, V̂ being maximal nonnegative
gives us the equality V̂ = [v̂] + V̂ or, in other words, that v̂ ∈ V̂ . Then there exists u ∈ V , such
that v ∈ u+W0. Since W0 ⊆ V , we have v ∈ V , which is a contradiction.

In an analogous way one can prove the statement when V̂ is maximal nonpositive.
Q.E.D.

Remark. From the proof of previous lemma it follows that a subspace V of W is nonnegative
(nonpositive) if and only if V̂ is nonnegative (nonpositive) in Ŵ .

Conditions (V) are equivalent to (X)

In [EGC, Theorem 3.3] it has been shown that the conditions (V) imply that V is a maximal
nonnegative subspace of W . In this subsection we shall give a quite different (and simpler) proof
of that statement and prove the converse as well.

Theorem 2.
a) Let subspaces V and Ṽ of W satisfy (V). Then V is maximal nonnegative in W (i.e. it satisfies

(X)) and Ṽ is maximal nonpositive in W .
b) Let a subspace V be maximal nonnegative in W . Then V and Ṽ := V [⊥] satisfy (V).
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Dem. a) From (V1) it follows that V̂ is nonnegative and ̂̃V nonpositive in Ŵ , while (V2) and
Lemma 9 imply

̂̃V = V̂ [⊥] = V̂ [⊥]̂ .

An application of Theorem II gives that its closure Cl V̂ is maximal nonnegative in Ŵ . Since V
is closed and W0 ⊆ V , from Lemma 7 it follows that V̂ is closed in Ŵ . Therefore, V̂ = Cl V̂ ,
and it is maximal nonnegative in the quotient, so by Lemma 10(b) V is a maximal nonnegative
subspace of W . The proof that Ṽ is maximal nonpositive is analogous.
b) By Lemma I the orthogonal complement of a maximal nonnegative subspace is nonpositive,
which proves (V1). Lemma 10(a) implies then that V̂ is maximal nonnegative in Ŵ , and therefore
by theorems III and IV it is closed and equal to (V̂ [⊥]̂)[⊥]̂. Now we apply Lemma 9 and obtain

V̂ = (V̂ [⊥]̂)[⊥]̂ = (V̂ [⊥])[⊥]̂ = ̂(V [⊥][⊥]) .

Since W0 ⊆ V (V is maximal nonnegative and therefore contains the isotropic part of W , by
Lemma II), and also W0 ⊆ V [⊥][⊥], it follows that V = V [⊥][⊥] = Ṽ [⊥], which proves (V2).

Q.E.D.

As a consequence of theorems 1 and 2 we have the following well-posedness result.

Corollary 1. If (T1)–(T3) hold, V is a maximal nonnegative subspace of W , and if we define
Ṽ := V [⊥], then the operators

T|V : V −→ L and T̃|Ṽ : Ṽ −→ L

are isomorphisms.

Interdependence between (V) and (M)

Theorem 3. ([EGC, Theorem 4.2]) Let (T1)–(T3) hold and let M ∈ L(W ;W ′) satisfy (M).
Then the subspaces

V := ker(D −M) and Ṽ := ker(D +M∗)

satisfy (V).

As a direct consequence, we have

Corollary 2. Under assumptions of previous theorem. the restrictions of operators

T|ker(D−M)
: ker(D −M) −→ L i T̃|ker(D+M∗)

: ker(D +M∗) −→ L

are isomorphisms.

The above theorem states that the conditions (M) imply (V) (with V := ker(D −M) and
Ṽ := ker(D +M∗)). The question of the converse: For given V and Ṽ that satisfy (V), is there
an operator M ∈ L(W ;W ′) satisfying (M) and such that V = ker(D −M)? appears to be more
challenging. The following results give only a partial answer.

Theorem 4. ([EGC, Theorem 4.3]) Let V and Ṽ be two subspaces of W satisfying (V), and let
us assume that there exist operators P ∈ L(W ;V ) and Q ∈ L(W, Ṽ ) such that

(∀ v ∈ V ) D(v − Pv) = 0 ,

(∀ v ∈ Ṽ ) D(v −Qv) = 0 ,
DPQ = DQP .

If we define M ∈ L(W ;W ′) by

W ′〈Mu, v 〉W =W ′〈DPu, Pv 〉W − W ′〈DQu,Qv 〉W
+ W ′〈D(P +Q− PQ)u, v 〉W − W ′〈Du, (P +Q− PQ)v 〉W ,

for u, v ∈W , then V = ker(D −M), Ṽ = ker(D +M∗) and M satisfies (M).
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The proof of the above theorem was inspired by Friedrichs’ proof of the corresponding result
in the finite-dimensional (i.e. the classical) case. However, while in the finite-dimensional case the
existence of operators P and Q is guaranteed, here it cannot be taken for granted (see [EGC]).
One simple situation when those operators do exist is given by the following lemma.

Lemma 11. [EGC, Lemma 4.4] Suppose additionally that V + Ṽ is closed in W . Then there
exist projectors P : W −→ V and Q : W −→ Ṽ such that PQ = QP , and M ∈ L(W ;W ′) can be
constructed as in the previous theorem.

In general, the question of closedness of V + Ṽ , as well as a more general question of existence
of operators P and Q from the above lemma was left open in [EGC]. However, in a number of
examples we either have V + Ṽ = W or V = Ṽ , and the closedness of V + Ṽ is then fulfilled (see
[B, EGC]).

On closedness of V + Ṽ

Using some well-known properties of Krĕın spaces we shall construct an example that shows
that V + Ṽ does not need to be closed in W , and briefly discuss some cases when it is closed.

One can easily see that any two subspaces V1, V2 ⊆W satisfy

̂(V1 + V2) = {u+ v +W0 : u ∈ V1, v ∈ V2} = V̂1 + V̂2 .

Therefore, if additionally W0 ⊆ V1 + V2, by Lemma 7 it follows that V1 + V2 is closed if and only
if V̂1 + V̂2 is closed.

Theorem 5. Let subspaces V and Ṽ of W satisfy (V), V ∩ Ṽ = W0 and W 6= V + Ṽ . Then
V + Ṽ is not closed in W .

Dem. From V ∩ Ṽ = W0 it follows that V̂ ∩ ˆ̃V = {0̂}, while by using (V2) and Lemma 9 we

get ˆ̃V = V̂ [⊥] = (V̂ )[⊥]̂. By Theorem V we have that Cl (V̂ + ˆ̃V ) = Ŵ . From W 6= V + Ṽ and

V ∩ Ṽ = W0, it is immediate that V̂ + ˆ̃V 6= Ŵ , which implies V̂ + ˆ̃V 6= Cl (V̂ + ˆ̃V ), and therefore

V̂ + ˆ̃V is not closed in Ŵ . Thus V + Ṽ is not closed in W , by Lemma 7.
Q.E.D.

The above theorem gives a basis for construction of an example of subspaces satisfying (V)
whose sum is not closed. We shall use the same elliptic equation as in [EGC, 5.3], but with the
Robin boundary condition, instead of the Dirichlet one. In our case we do not get V = Ṽ . We
choose to work out the details, in order to illustrate the use of indefinite inner product space
formalism.

Example. (elliptic equation) Let Ω ⊆ Rd (d > 1) be an open and bounded set with Lipschitz
boundary Γ, and function µ ∈ L∞(Ω) away from zero (i.e. |µ(x)| > α0 > 0 (a.e. x ∈ Ω) ). A
scalar elliptic equation

−4u+ µu = f ,

where f ∈ L2(Ω) is given, can be written as an equivalent first order system
{

p +∇u = 0
µu+ divp = f

,

which is a Friedrichs system (i.e. (T1)–(T3) hold) with the following choice of matrix functions
Ak (k ∈ 1..d) and C:

(Ak)ij =

{
1, (i, j) ∈ {(k, d+ 1), (d+ 1, k)}
0, otherwise

,

(C)ij =





µ(x), i = j = d+ 1

1, i = j 6= d+ 1

0, otherwise

.
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If we define (for more details v. [AB1]) the spaces:

L2
div(Ω) := {u ∈ L2(Ω;Rd) : div u ∈ L2(Ω)} ,

L2
div,0(Ω) := Cl L2

div(Ω)C
∞
c (Ω;Rd) ;

then one can easily see [EGC] that

W = L2
div(Ω)×H1(Ω) ,

W0 = L2
div,0(Ω)×H1

0(Ω) = Cl W C∞c (Ω;Rd+1) ,

and
[ (p, u)> | (r, v)> ] =

H−
1
2 (Γ)

〈 Tdivp, TH1v 〉
H

1
2 (Γ)

+
H−

1
2 (Γ)

〈 Tdivr, TH1u 〉
H

1
2 (Γ)

,

where Tdiv : L2
div(Ω) −→ H−

1
2 (Γ) and TH1 : H1(Ω) −→ H

1
2 (Γ) are the trace operators [AB1].

For a fixed α > 0 we define subspaces V and Ṽ defining the Robin boundary condition for
the original elliptic equation:

V := {(p, u)> ∈W : Tdivp = αTH1u} ,
Ṽ := {(r, v)> ∈W : Tdivr = −αTH1v} .

Let us show that these subspaces satisfy the conditions of the above theorem. We need to prove:
a) V and Ṽ satisfy (V);
b) V ∩ Ṽ = W0;
c) V + Ṽ 6= W .

a) For (p, u)> ∈ V we have

[ (p, u)> | (p, u)> ] = 2
H−

1
2 (Γ)

〈 Tdivp, TH1u 〉
H

1
2 (Γ)

= 2α
H−

1
2 (Γ)

〈 TH1u, TH1u 〉
H

1
2 (Γ)

= 2α
∫

Γ
(TH1u)2dS > 0 ,

which implies V ⊆ C+. In the same way one can prove that Ṽ ⊆ C−, which completes the proof
of (V1).

Let us show that Ṽ = V [⊥]: the condition (r, v)> ∈ V [⊥] is by definition

(∀ (p, u)> ∈ V ) [ (p, u)> | (r, v)> ] = 0 ,

which is equivalent to

(∀ (p, u)> ∈ V )
H−

1
2 (Γ)

〈αTH1u, TH1v 〉
H

1
2 (Γ)

+
H−

1
2 (Γ)

〈 Tdivr, TH1u 〉
H

1
2 (Γ)

= 0 .

Since

H−
1
2 (Γ)

〈αTH1u, TH1v 〉
H

1
2 (Γ)

=
∫

Γ
αTH1uTH1vdS =

H−
1
2 (Γ)

〈αTH1v, TH1u 〉
H

1
2 (Γ)

,

it follows

(r, v)> ∈ V [⊥] ⇐⇒ (∀ (p, u)> ∈ V )
H−

1
2 (Γ)

〈 Tdivr + αTH1v, TH1u 〉
H

1
2 (Γ)

= 0

⇐⇒ (∀ z ∈ H
1
2 (Γ))

H−
1
2 (Γ)

〈 Tdivr + αTH1v, z 〉
H

1
2 (Γ)

= 0

⇐⇒ Tdivr + αTH1v = 0 ⇐⇒ (r, v)> ∈ Ṽ .

In an analogous way one could see that V = Ṽ [⊥], which proves (V2).
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b) By Lemma 4 W0 ⊆ V ∩ Ṽ . Vice versa, if (p, u)> ∈ V ∩ Ṽ , then from the system

Tdivp = αTH1u

Tdivp = −αTH1u

we easily get Tdivp = TH1u = 0, or in other words (p, u)> ∈ L2
div,0(Ω)×H1

0(Ω) = W0.

c) Let (s, w)> ∈W be such that Tdivs ∈ H−
1
2 (Γ) \L2(Γ) (since im Tdiv = H−

1
2 (Γ) and d > 1, such

s does exist). If there exist (p, u)> ∈ V and (r, v)> ∈ Ṽ such that (s, w)> = (p, u)>+(r, v)>, then
from

Tdivs = Tdivp + Tdivr = α(TH1u− TH1v) ∈ L2(Γ) ,

we have contradiction with choice of s.
Theorem 5 implies that for such V and Ṽ the space V +Ṽ is not closed. Therefore, in general,

the properties (V1)–(V2) do not imply closedness of V + Ṽ . However, we will see that in this
example the operator M that satisfy (M1)–(M2) and V = ker(D −M) still exist. Such operator
M ∈ L(W ;W ′) can be defined with following expression:

W ′〈M(p, u)>, (r, v)> 〉W =−
H−

1
2 (Γ)

〈 Tdivp, TH1v 〉
H

1
2 (Γ)

+
H−

1
2 (Γ)

〈 Tdivr, TH1u 〉
H

1
2 (Γ)

+ 2α
∫

Γ
TH1uTH1vdS .

Let us prove that statement: from

W ′〈M(p, u)>, (p, u)> 〉W = 2α
∫

Γ
(TH1u)2dS > 0

we have that property (M1) holds.
In order to check (M2), we have to first identify the spaces ker(D −M) and ker(D + M).

From
W ′〈 (D −M)(p, u)>, (r, v)> 〉W = 2

H−
1
2 (Γ)

〈 Tdivp− αTH1u, TH1v 〉
H

1
2 (Γ)

one can easily see that

(D −M)(p, u)> = 0 ⇐⇒ Tdivp− αTH1u = 0 ⇐⇒ (p, u)> ∈ V ,
which means that ker(D −M) = V . We also have

W ′〈 (D +M)(p, u)>, (r, v)> 〉W = 2
H−

1
2 (Γ)

〈 Tdivr + αTH1v, TH1u 〉
H

1
2 (Γ)

,

and then get (having in mind that imTdiv = H−
1
2 (Γ))

(D +M)(p, u)> = 0 ⇐⇒ TH1u = 0 ⇐⇒ u ∈ H1
0(Ω) ,

which implies ker(D +M) = L2
div(Ω)×H1

0(Ω).
Let us now show that W = V + L2

div(Ω)× H1
0(Ω). Indeed, for an arbitrary (s, w)> ∈ W , we

choose u = 0, v = w, r ∈ L2
div(Ω) such that Tdivr = αTH1v, and p = s − r. Now one can easily

check that (s, w)> = (p, u)> + (r, v)>, and (r, v)> ∈ V , (p, u)> ∈ L2
div(Ω) × H1

0(Ω), which proves
(M2).

It remains to show that ker(D +M∗) = Ṽ . Since

W ′〈M∗(p, u)>, (r, v)> 〉W = W ′〈M(r, v)>, (p, u)> 〉W
= −

H−
1
2 (Γ)

〈 Tdivr, TH1u 〉
H

1
2 (Γ)

+
H−

1
2 (Γ)

〈 Tdivp, TH1v 〉
H

1
2 (Γ)

+ 2α
∫

Γ
TH1vTH1udS ,

it follows

W ′〈 (D +M∗)(p, u)>, (r, v)> 〉W = 2
H−

1
2 (Γ)

〈 Tdivp + αTH1u, TH1v 〉
H

1
2 (Γ)

,

and now, as before, we easily get ker(D +M∗) = Ṽ .
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The above example shows that neither (V), nor (M) is sufficient to imply that V +Ṽ is closed.
One particular situation when V + Ṽ is closed is in the case of finite codimension of W0 in

W . For classical Friedrichs’ systems this appears when d = 1, i.e. when dealing with a system of
ordinary differential equations (see [AB2] for details).

The question of existence for P and Q

We shall show that the closedness of V + Ṽ is actually equivalent to the existence of operators
P and Q from Theorem 4. As a first step in that direction we first show that, although looking
more general at a first glance, the existence of operators P and Q is actually equivalent to
existence of certain projectors on V and Ṽ (see the theorem below). In other words we can say
that conditions on operators P and Q from Theorem 4 can be simplified.

Our original approach was indirect: we first noticed that the existence of operators P and Q
implies the existence of certain projectors in the quotient Krĕın space; more precisely, by formulæ:

P̂ ŵ := P̂w , Q̂ŵ := Q̂w , w ∈W

the projectors P̂ , Q̂ : Ŵ −→ Ŵ are defined, satisfying

P̂ 2 = P̂ and Q̂2 = Q̂ ,

im P̂ = V̂ and im Q̂ = ˆ̃V ,

P̂ Q̂ = Q̂P̂ .

Then, in the second step, this allowed us to prove the existence of corresponding projectors on
W .

However, we are providing a direct (and simpler) proof below.

Theorem 6. If V and Ṽ are two closed subspaces of W that satisfy W0 ⊆ V ∩ Ṽ , then the
following statements are equivalent:
a) There exist operators P ∈ L(W ;V ) and Q ∈ L(W ; Ṽ ), such that

(3.1)

(∀ v ∈ V ) D(v − Pv) = 0 ,

(∀ v ∈ Ṽ ) D(v −Qv) = 0 ,
DPQ = DQP .

b) There exist projectors P ′, Q′ ∈ L(W ;W ), such that

(3.2)
P ′2 = P ′ and Q′2 = Q′ ,

imP ′ = V and imQ′ = Ṽ ,

P ′Q′ = Q′P ′ .

Dem. The second statement trivially implies the first one, and it remains to show the converse.
Let us denote by Q0 : W −→W⊥

0 the orthogonal projector on W⊥
0 , and define P ′ and Q′ by

P ′ := I −Q0 +Q0PQ0 , Q′ := I −Q0 +Q0QQ0 .

It is clear that P ′, Q′ ∈ L(W ;W ), and we want to prove that they satisfy (3.2). Most of the
statements will be proved only for the operator P ′, as the proofs for the operator Q′ are similar.

Let us first show that P ′u = u, for u ∈ V : as I −Q0 is an orthogonal projector on W0 and
W0 ⊆ V , it follows (I −Q0)u ∈ V , and therefore

(3.3) Q0u = u− (I −Q0)u ∈ V .
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By (3.11) is then Q0u−PQ0u ∈W0, which implies existence of z ∈W0 such that PQ0u = Q0u+z.
Using that Q2

0 = Q0 and kerQ0 = W0 we finally get

(3.4) P ′u = (I −Q0)u+Q0PQ0u = u−Q0u+Q0(Q0u+ z) = u−Q0u+Q0u = u .

We now prove that imP ′ = V : from (3.4) it follows that V ⊆ imP ′. In order to prove
converse inclusion note that imP ⊆ V , which together with (3.3) imply that imQ0PQ0 ⊆ V . As
im (I −Q0) = W0 ⊆ V , from the definition of P ′ we get imP ′ ⊆ V .

Using (3.4) and imP ′ = V we easily get P ′2 = P ′, and it remains to prove P ′Q′ −Q′P ′ = 0.
In order to do that let us first show that

(3.5) Q0PQ0 = Q0P and Q0QQ0 = Q0Q .

As before, we only prove the statement for the operator P : since

Q0Pw = Q0P (I −Q0)w +Q0PQ0w , w ∈W ,

it is sufficient to show that Q0P (I − Q0) = 0. As (I − Q0)w ∈ W0 ⊆ V , by (3.11) there exist
z ∈W0, such that P (I −Q0)w − (I −Q0)w = z. This implies

Q0P (I −Q0)w = Q0(I −Q0)w +Q0z = 0 .

Using (3.5) and im (PQ−QP ) ⊆W0, we finally get

P ′Q′ −Q′P ′ = (I −Q0 +Q0PQ0)(I −Q0 +Q0QQ0)− (I −Q0 +Q0QQ0)(I −Q0 +Q0PQ0)
= (I −Q0)2 +Q0PQ

2
0QQ0 − (I −Q0)2 −Q0QQ

2
0PQ0

= Q0PQ0QQ0 −Q0QQ0PQ0

= Q0PQQ0 −Q0QPQ0

= Q0(PQ−QP )Q0 = 0 ,

which completes the proof.
Q.E.D.

We have already noted that the closedness of V + Ṽ implies the existence of operators P and
Q. Using the above theorem we can now easily prove the converse statement.

Theorem 7. If V and Ṽ are two closed subspaces of W , then the following statements are
equivalent:
a) V + Ṽ is closed;
b) There exist projectors P ′, Q′ ∈ L(W ;W ) such that

(3.6)
P ′2 = P ′ and Q′2 = Q′ ,

imP ′ = V and imQ′ = Ṽ ,

P ′Q′ = Q′P ′ .

Dem. It has already been proved in [EGC, Lemma 4.4] that the first statement implies the second
one. We briefly repeat the construction of P ′ and Q′ for completeness: let V3 := (V + Ṽ )⊥,
V0 := V ∩ Ṽ , and we denote by V1 and V2 the orthogonal complement of V0 in V and Ṽ ,
respectively. By closedness of V , Ṽ and V + Ṽ we have

W = V0+̇V1+̇V2+̇V3 .

If we denote by w = w0 +w1 +w2 +w3 decomposition of w ∈W that corresponds to above direct
sum and define operators P ′ and Q′ with

P ′w := w0 + w1 , Q′w := w0 + w2 ,
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one can easily check that those P ′ and Q′ satisfy required properties.
In order to prove the other implication, let us assume that projectors P ′ and Q′ do exist,

while V + Ṽ is not closed in W . Then there exist w ∈ Cl (V + Ṽ ) \ (V + Ṽ ) and sequence (wn)
in V + Ṽ , such that wn −→ w in W . For each n ∈ N, there exist un ∈ V and vn ∈ Ṽ , such that
wn = un + vn. Since, by (3.61,2), P ′un = un and Q′vn = vn we get

(3.7)
(P ′ +Q′)wn = P ′un + P ′vn +Q′un +Q′vn

= un + P ′vn +Q′un + vn

= wn + P ′vn +Q′un .

Using again P ′un = un and (3.63) we have

Q′un = Q′P ′un = P ′Q′un ∈ imP ′ = V .

As imQ′ = Ṽ , it follows Q′un ∈ V ∩ Ṽ . Analogously we could prove that P ′vn ∈ V ∩ Ṽ , and
therefore zn := P ′vn +Q′un ∈ V ∩ Ṽ . Now (3.7) becomes

(3.8) (P ′ +Q′)wn = wn + zn ,

and from convergence of (wn) and (P ′ + Q′)wn (the operator P ′ + Q′ is continuous) it follows
that zn converges to some limit z which belongs also to V ∩ Ṽ by closedness. Using this fact and
imP ′ = V , imQ′ = Ṽ , after passing to the limit in (3.8) we achieve

w = P ′w +Q′w − z ∈ V + Ṽ ,

which is a contradiction.
Q.E.D.

As we have already constructed an example where V + Ṽ is not closed, this implies that
operators P and Q do not always exist. However, we have also seen that in this example the
operator M does exist. Therefore, the construction of operator M from Theorem 4 is not the
only possible way to do that, and the question of equivalence of conditions (V) and (M) is still
open.

Another approach to the equivalence of (V) and (M)
We now present a slightly different approach to the question of existence of operator M

(under the assumptions (V)), and reduce it to some geometric conditions in the graph space. We
shall actually prove that the existence of operator M is equivalent to the existence of a closed
nonpositive subspace that, together with V , spans the whole graph space. If such a space is given,
we show how to explicitly construct an operator M .

Theorem 8.
a) If V and Ṽ are two subspaces of W that satisfy (V), and if there exists a closed subspace

W2 ⊆ C− of W , such that V +̇W2 = W , then there exist an operator M ∈ L(W ;W ′) that
satisfy (M) and V = ker(D−M). If we define W1 as orthogonal complement of W0 in V , so
that W = W1+̇W0+̇W2, and denote by R1, R0, R2 projectors that correspond to above direct
sum, then one such operator is given with M = D(R1 −R2).

b) Let M ∈ L(W ;W ′) be an operator that satisfy (M1)–(M2), and denote V = ker(D −M). If
we denote by W2 the orthogonal complement of W0 in ker(D+M), then W2 ⊆ C− is closed,
V +̇W2 = W , and M coincide with the operator constructed as in (a).

Dem. a) Let w = w1 + w0 + w2 denotes decomposition of an arbitrary w ∈ W that corresponds
to W1+̇W0+̇W2. Let us first prove that M satisfy (M1): Using symmetry of D, w1 ∈ C+, and
w2 ∈ C− we get

W ′〈Mw,w 〉W = W ′〈D(R1 −R2)w,w 〉W = W ′〈Dw, (R1 −R2)w 〉W
= W ′〈Dw1 +Dw2, w1 − w2 〉W = [w1 | w1 ]− [w2 | w2 ] > 0 .
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Let us now prove that V = ker(D −M): for given w = w1 + w0 ∈ V we have

(D −M)(w1 + w0) = D(w1 + w0)−D(R1 −R2)(w1 + w0) = Dw1 −Dw1 = 0 ,

which proves one inclusion. In order to prove the second one we first note that

D −M = D(I −R1 +R2) = D(I −R1 −R2 + 2R2) = D(R0 + 2R2) = 2DR2 .

Therefore, for w ∈ ker(D−M) we have DR2w = 0, which implies R2w ∈W0. Since imR2 = W2

and W0 ∩W2 = {0} it follows R2w = 0, or in other words w ∈ kerR2 = V .
In order to prove (M2) it is sufficient to show that W2 ⊆ ker(D +M): for w2 ∈W2 we have

(D +M)w2 = Dw2 +DR1w2 −DR2w2 = Dw2 −Dw2 = 0 ,

which completes the proof of statement (a).
b) First we note that ker(D −M) ∩ ker(D +M) = W0: indeed, from

Dw −Mw = 0
Dw +Mw = 0

we easily get Dw = 0, meaning that w ∈ W0, while the second inclusion follows from kerD =
kerM = W0. Let W1 and W2 be the orthogonal complements of W0 in V = ker(D − M)
and ker(D + M), respectively. Then by (M2) it holds W1+̇W0+̇W2. Let, as before, R1, R0, R2

stand for projectors associated to this direct sum of closed subspaces, and w = w1 + w0 + w2

corresponding decomposition of an arbitrary w ∈ W . Let us first show that M = D(R1 − R2):
since w1 + w0 ∈ ker(D −M) and w0 + w2 ∈ ker(D +M) it follows

(D −M)w = (D −M)w2

(D +M)w = (D +M)w1
.

Subtracting these equations (and having in mind that kerM = W0) we get

2Mw = Dw1 −Dw2 +Mw1 +Mw2 = Dw1 −Dw2 +Mw ,

which imply
Mw = D(w1 − w2) = D(R1 −R2)w ,

and therefore M = D(R1 −R2).
It remains to show that W2 ⊆ C−: using (M1) and symmetry of D for arbitrary w2 ∈W2 we

get
0 6 W ′〈Mw2, w2 〉W = W ′〈D(R1 −R2)w2, w2 〉W

= W ′〈Dw2, (R1 −R2)w2 〉W = W ′〈Dw2,−w2 〉W = −[w2 | w2 ] ,

which completes the proof.
Q.E.D.

By the above theorem, under assumptions (V), the existence of an operator M ∈ L(W,W ′)
that satisfy (M) and V = ker(D−M) is equivalent to the existence of a closed subspace W2 ⊆ C−

that satisfies W2+̇V = W . Next we prove that conditions on W2 can be reduced. In the rest we
assume that conditions (V) hold (or, equivalently, that V is a maximal nonnegative subspace of
W ).

Lemma 12. Let a subspace W ′′
2 of W satisfies W ′′

2 ⊆ C− and W ′′
2 + V = W . Then there is a

closed subspace W2 of W , such that W2 ⊆ C− and W2+̇V = W .

Dem. Let us denote by W ′
2 a maximal nonpositive subspace that contains W ′′

2 (such exists by
Zorn’s lemma), and note that W0 ⊆ W ′

2 (Lemma II). From Lemma 10 it follows that Ŵ ′
2 is

maximal nonpositive in Ŵ , and therefore closed, as Ŵ is a Krĕın space (Theorem III). Lemma 7
implies that W ′

2 is closed, and so is W ′
2 ∩ V . If we denote by W2 the orthogonal complement of

W ′
2 ∩ V in W ′

2, then it easily follows that W2 is closed, W2 ⊆ C− and W2+̇V = W .
Q.E.D.
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The question of equivalence between (V) and (M) is therefore reduced to the question of
existence of a nonpositive subspace W2 such that W2 + V = W , for given maximal nonnegative
subspace V . We do not know the answer to this question in a general indefinite inner product
space, but we do know that the existence of such W2 is ensured in the case of a Krĕın space
(Theorem VI). Since W is not a Krĕın space, we would once more use the same idea and try to
interpret our question in terms of the quotient Krĕın space. First we prove one technical lemma.

Lemma 13. If U1+U2 = W for some subspaces U1 ⊆ C+ and U2 ⊆ C− of W , then U1∩U2 ⊆W0.
If additionally U1 is maximal nonnegative and U2 maximal nonpositive, then U1 ∩ U2 = W0.

Dem. In order to prove the first statement, let us suppose that there is v ∈ (U1 ∩ U2) \ W0.
Next we prove that v[⊥]U1: for an arbitrary u ∈ U1 and λ ∈ R we have u + λv ∈ U1. Using
non-negativity of U1 and v ∈ C0 we derive

0 6 [u+ λv | u+ λv ] = [u | u ] + 2λ[u | v ] .

Since λ ∈ R is arbitrary, we easily get [u | v ] = 0, which proves that v[⊥]U1. Similarly one can
prove that v[⊥]U2, and therefore v[⊥](U1 + U2) = W . Then from v ∈ W ∩W [⊥] = W0 we have
contradiction with assumption, which proves the first statement.

The second statement now easily follows from Lemma II.
Q.E.D.

Theorem 9. For a maximal nonnegative subspace V of W , the following statements are equiv-
alent:
a) There is a maximal nonpositive subspace W2 of W , such that W2 + V = W ;
b) There is a nonpositive subspace W2̂ of Ŵ , such that W2̂ + V̂ = Ŵ .

Dem. First we prove that the first statement implies the second one: clearly Ŵ2 + V̂ = ̂W2 + V =
Ŵ , and Ŵ2 is nonpositive.

Let us now prove the converse implication: first we define a subspace

W2 := {v ∈W : ŵ ∈W2̂}

of W , so that W2 ∈ C−, Ŵ2 = W2̂ and ̂W2 + V = Ŵ2 + V̂ = Ŵ . Since W0 ⊆ W2 + V it follows
that W2 + V = W . Finally, we extend W2 to maximal nonpositive subspace, which then satisfies
our requirements.

Q.E.D.

The above theorem reduces the question of equivalence between (V) and (M) to the question
of existence of a nonpositive subspaceW2̂ such thatW2̂+V̂ = Ŵ , for a given maximal nonnegative
subspace V̂ of the quotient Krĕın space Ŵ . As existence of such W2̂ is ensured by Theorem VI,
we have the following corollary.

Corollary 3. The conditions (V) and (M) are equivalent.

Concluding remarks

Significant advance to the theory of Friedrichs’ systems has been made in [EGC], and our
contribution is mostly in answering the questions they left open. The next step in this research
would be an attempt to better connect the abstract results to those in the classical Friedrichs
setting [Ra, J].

We have also indirectly proved that a number of properties of Krĕın spaces is shared by
general indefinite inner product spaces whose quotient by its degenerate part is also a Krĕın
space. As much as we know, such an approach is new, and we hope that some experts on the
Krĕın space theory might find our results a starting point for further research, either on general
theory of such spaces, or in the direction of its potential further application to Friedrichs’ systems.
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[AB1] Nenad Antonić, Krešimir Burazin: Graph spaces of first-order linear partial differential opera-
tors, Math. Communications 14(1) (2009) 135–155.
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[AL1] Nenad Antonić, Martin Lazar: A parabolic variant of H-measures, Annali Univ. Ferrara 54
(2008) 183–201.
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