GORDAN PARADŽIK

DEMONSTRACIJSKI POKUSI U MAGNETIZMU

Diplomski rad

Osijek, 2015.
DEMONSTRACIJSKI POKUSI U MAGNETIZMU

Diplomski rad

Predložen Odjelu za fiziku Sveučilišta Josipa Jurja Strossmayera u Osijeku

radi stjecanja akademskog naziva MAGISTRA EDUKACIJE FIZIKE I INFORMATIKE

Osijek, 2015.
"Ovaj diplomski rad je izrađen u Osijeku pod vodstvom doc. dr. sc. Denisa Stanića u sklopu Sveučilišnog diplomskog studija Fizike i informatike na Odjelu za fiziku Sveučilišta Josipa Jurja Strossmayera u Osijeku".
Sadržaj

1. Uvod ... 1

2. Povijest magnetizma ... 2

3. Magnetostatika .. 4
 3.1. Magneti .. 4
 3.2. Zemljin magnetizam .. 6
 3.3. Djelovanje sile na nabijenu česticu ... 8
 3.4. Hall-ov efekt ... 11
 3.5. Sila na vodič kroz koji teče električna struja ... 12
 3.6. Djelovanje električne struje na električnu struju ... 14
 3.7. Magnetska svojstva materijala .. 15
 3.7.1. Magnetizacija .. 15
 3.7.2. Dijamagnetizam .. 17
 3.7.3. Paramagnetizam ... 18
 3.7.4. Feromagnetizam. Krivulja magnetiziranja .. 19
 3.7.5. Antiferomagnetizam ... 23
 3.7.6. Ferimagnetizam .. 25

4. Pokusi u nastavi fizike ... 26
 4.1. Demonstracijski pokusi ... 27
 4.1.1. Magneti koji padaju jedan kroz drugi .. 29
 4.1.2. Čudnovati novčići ... 31
 4.1.3. Čudnovati novčići ... 32
 4.1.4. Čudnovato kotrljanje ... 33
 4.1.5. Djelovanje električne struje na električnu struju ... 34
 4.1.6. Pokusi s magnetima ... 35
 4.1.7. Djelovanje električne struje na magnet (Oerstedov pokus) 38
4.1.8. Djelovanje magneta na električnu struju .. 39
5. Priprema za izvođenje nastave .. 40
6. Zaključak ... 49
7. Literatura .. 50
Životopis .. 52
DEMONSTRACIJSKI POKUSI U MAGNETIZMU

GORDAN PARADŽIK

Sažetak

(52 stranice, 35 slika, 1 tablica, 29 literатурна navода)

Rad je pohranjen u knjižnici Odjela za fiziku

Ključne riječi: magnetostatika/ demonstracijski pokusi/ nastava fizike

Mentor: doc. dr. sc. Denis Stanić

Ocjenjivači: izv. prof. dr. sc. Ramir Ristić, predsjednik
doč. dr. sc. Denis Stanić, mentor

Rad prihvaćen: 05.02.2015.
DEMONSTRATION EXPERIMENTS IN MAGNETISM

GORDAN PARADŽIK

Abstract

Theory of magnetism or magnetostatics is described in the first part of this bachelor thesis. Historical overview, magnets, magnetic force up to the magnetic properties of materials are included. The main part of this thesis contains the key demonstration experiments that can be taught in classroom and thus make the class more interesting. Necessary equipment, set-up and procedure as well as the conclusion which reveals the physical background of the experiment are described. The final part of this thesis contains the teaching preparation in the field of magnetism for elementary school.

(52 pages, 35 figures, 1 tables, 29 references)

Thesis deposited in Department of Physics library

Keywords: magnetostatic/ demonstration experiments/ instruction physics

Supervisor: doc. dr. sc. Denis Stanić

Reviewers: izv. prof. dr. sc. Ramir Ristić, predsjednik
doc. dr. sc. Denis Stanić, mentor
mr. sc. Slavko Petrinšak, član

Thesis accepted: 05.02.2015.
1. Uvod

Ljudi su prema prirodi znatiželjni i spremni istraživati da bi došli do željenih otkrića, bilo da se to odnosi na život koji živimo ili samu znanost. Znanost nam pomaže da razumijemo funkcioniranje svijeta, a jedna od njih je i fizika koja je temeljna prirodna znanost. Fizika se temelji na brojim područjima kao što je mehanika, toplina, elektromagnetizam, fizika atoma itd. Svako područje možemo raščlaniti na manje teme pa tako u području elektromagnetizma govorimo o magnetizmu.

Magnetizam je fizikalna pojava gdje sila privlačenja ili odbijanja djeluje između predmeta. Magnetizam je zapažen još kod drevnih civilizacija, ali prvi pravi zabilježen zapis vezan je za Talesa gdje piše o magnetu koji privlači željezo. Magneti su česti predmeti s kojima se ljudi susreću na svom radom mjestu i kućanstvu. Uporabe magneta su različite, od magneta koje najčešće stavljamo na hladnjak, medija za pohranu podataka, kreditnih kartica, televizora pa sve do elektromotora i generatora. Većina ljudi upoznata je s općim svojstvima magneta, odnosno da su to materijali koji privlače željezne predmete. Budući da se svakodnevno susrećemo s magnetizmom svoje mjesto pronašao je i u školstvu.

U današnje vrijeme nastava fizike još uvijek se održava na tradicionalan način. Učitelj izlaže, a učenici nisu uključeni u nastavu. Takav način je uglavnom monoton i nepristupačan. Da bi se to promijenilo potrebno je da nastavnici promjene nastavni sustav i pristup nastavi, ali da se i učenici potrude uključiti u nastavu. Postoje brojni pokusi koji se mogu uklopiti i fiziku učiti zanimljivijom i razumljivijom. U osnovnoj školi magnetizam i njegovi temelji principi proučavaju se u 8. razredu.

Cilj rada je objasniti pojavu magnetizma, povezati samu teoriju s praksom te poticati znatiželju kod učenika o znanstvenoj pozadini svijeta koji ih okružuje.
2. Povijest magnetizma

Još u doba starih Grka znalo se za postojanje magnetita i njegovih svojstava. Nazivali su ga „Herkulovim kamenom“, dok su ga Kinezi zvali „Kamen ljubavi“. Ako poslušamo priče, one nam govore da je magnetske pojave prvi uočio pastir Magnes s otoka Krete. Kako je prolazio planinom Idom, kamen koji je bio u blizini njegove noge privukao je čavle iz njegovih sandala. Bio je zadivljen tim čudesnim kamenom i njegovom moći na što ukazuje i činjenica da je svima ispričao što mu se dogodilo tijekom putovanja planinom. Bio je to početak jedne od mnogih priča o tom čudesnom kamenu [1][2].

Kasnije imamo Talesa iz Mileta koji je proučavao magnetite i njihova djelovanja. On je rekao da magnet ima „dušu“, ali se nije odnosila na dušu koju imaju ljudi i životinje. On je mislio da je duša pokretačka sila zbog koje magnet privlači željezo. Također je poznavao razliku između privlačne sile magneta i mehaničkog djelovanja među tijelima. Nakon njega imamo Demokrita koji je smatrao da su atomi magneta istovrsni s atomima željeza te je to razlog zašto se oni privlače. U to vrijeme, njegovo razmišljanje je bilo prihvaćeno [1].

U srednjem vijeku je ponovo oživjelo zanimanje za magnetskim pojavama jer se tada počeo koristit kompas s kojim su nastale jasnije predodžbe o zemaljskom magnetizmu i magnetskim djelovanjima, a izumili su ga Kinezi. 1269.g. pojavljuje se Pierre de Maricourt koji znao da se istoimeni magneti odbijaju, a raznoimeni da se privlače. Podijelio je magnet na dva dijela i uočio da svaki dio postaje novi magnet s dva pola. Time je dokazao da ne postoji magnet samo s jednim polom [1].

1600. godine, engleski fizičar i liječnik William Gilbert je napisao svoje najznačajnije djelo pod nazivom „De Magnete“ što u prijevodu znači „O Magnetu“. Vjeruje se da je Gilbert potrošio 17 godina i 5000 funti u pripremi svog remek djela o magnetizmu. „De Magnete“ predstavlja najvažniju knjigu koja je ikada obavljena o povijesti magnetizma, a ujedno predstavlja i početak moderne znanosti o elektricitetu. Nadalje, to je bila prva znanstvena knjiga koja je imala određenu važnost, a da je objavljena u Engleskoj. Smatrana je prvom knjigom koja je napisana u duhu moderne znanosti, jer postavlja nove osnove u uporabi zapažanja i pokusa. Djelo se pojavljuje u vrijeme kada je eksperimentiranje bilo rizičan posao za prirodne filozofe jer nije bilo pouzdano. Sama Gilbertova eksperimentalna metoda nije ona metoda koju mi danas poznajemo kada kažemo eksperimentalno, više je bila kvalitativna nego kvantitativna. Upravo je njegova eksperimentalna metoda, metoda razmišljanja po analogiji demonstracije s pojavom.
Ideja je bila da se demonstrira rezultat koristeći model koji predstavlja pojavu te raspravlja na takav način da rezultat pokazuje željeni zaključak.

„De Magnete“ se sastoji od šest knjiga podijeljenih u poglavlja. Svaka knjiga se odnosi na određenu temu. U tom djelu, Gilbert je postavio temelje današnjih saznanja o magnetizmu. Navodi sve izvođene eksperimente i prvi spominje da je Zemlja jedan veliki magnet [3][4].

Tek u 18. i 19. stoljeću dolazi do boljeg razumijevanja na području magnetizma. 1820. godine H.C. Oersted otkriva da električna struja utječe na magnetsku iglu koja se nalazi u blizini te je time uspostavljena veza između elekriciteta i magnetizma koji su se do tada promatrali odvojeno. Kasnije nam se pojavljuje Ampère koji je matematički formulirao vezu između jakosti struje i magnetskog polja. On je zaključio da ne postoji nikakva magnetska supstancija - magnetske sile posljedica su postojanja „kružnih struja“ na molekulskoj razini, a time je ujedno objasnio zašto se sjeverni i južni polovi magneta ne mogu razdvojiti [1][2].

Do razvoja mikroskopske teorije magnetizma došlo je tek u 20. stoljeću. Iako su se od tada mnoge pojavе u svijetu magnetskih materijala mogle objasniti, još uvijek postoje i one pojavе koje ne razumijemo u cijelosti, pa je tako i dan danas magnetizam još uvijek područje intenzivnog istraživanja.
3. Magnetostatika

3.1. Magneti

Materijali koje imaju svojstvo da privlače predmete od željeza, nikla, kobalta i njihovih legura nazivamo magnetima i najčešće imaju oblik štapa, potkove ili igle [5]. Osim što imamo prirodne magnetne (željezne rude – nikal, kobalt i njihove legure), imamo i umjetne magnetne koji se dijele na permanentne (stalne) magnetske (tvrđi feromagnetski materijali) i elektromagnete. Permanentni magneti se izrađuju od posebnih željeznih legura koji trajno zadržavaju magnetska svojstva dok elektromagnete čine zavojnice kroz koje protječe električna struja [5].

![Slika 1. Oblici magneta. [21]](image)

Magnetizirana čelična igla privlači željeznu piljevinu, a čeličnu iglu možemo namagnetizirati tako da ju prevlačimo permanentnim magnetom ili da ju postavimo u zavojnicu kroz koju teče istosmjerna električna struja. Magnetska igla oslonjena u težištu jednim se krajem okreće prema sjeveru, a drugim prema jugu. Kraj magneta okrenut prema sjeveru nazivamo sjevernim polom (N) i najčešće je označen plavom ili zelenom bojom, a kraj koji je okrenut prema jugu, južnim polom (S) koji je najčešće označen s crvenom bojom. Ako sjeverni pol jednog magneta približimo sjevernom polu drugog magnetskog, primijetit ćemo da se oni
međusobno odbijaju, isto se opaža i za južne polove. Odnosno, sjeverni pol jednog magneta privlači južni pol drugog magneta, i obratno. Možemo zaključiti da se raznoimeni polovi magneta privlače, a istoimeni polovi magneta se odbijaju [5][6]. Prerežemo li magnet po spoju polova, dobit ćemo dva magneta sa sjevernim i južnim polom. Daljnjim dijeljenjem možemo dobiti sve manje magnetne te koliko god mi te magneti dijelili na manje komadiće, nikad ne bi uspjeli odvojiti magnetske polove. To je poznati Peregrinusov pokus koji pokazuje da ne postoje izolirani magnetski polovi ni magnetski naboji. To je bitna razlika između magnetizma i elektriciteta [7].

Komad mekog željeza u blizini nekog magneta postaje magnetičan te će ono privlačiti željezne predmete, ali čim odmaknemo magnet, tada to meko željezo gubi magnetska svojstva, odnosno prestaje privlačiti predmete. Tu pojavu nazivamo magnetskom influencijom. Ako umjesto mekog željeza upotrijebimo čelik i nakon otklanjanja uzroka magnetiziranja, on će u znatnoj mjeri zadržati magnetska svojstva. Time uočavamo da magnetskom influencijom nastaje magnetski dipol [7].

Kao što električno djelovanje opisujemo električnim poljem, tako ćemo magnetsko djelovanje opisivati magnetskim poljem.

Slika 2. Razdvajanje magneta. [10]

Slika 3. Silnice magnetskog polja. [22]
Magnetsko polje je prostor oko i unutar magneta u kojem djeluju magnetske sile, a predočujemo ga magnetskim silnicama [8]. Za smjer silnice u nekoj točki magnetskog polja uzimamo smjer koji zauzme sjeverni pol magnetske igle postavljene u tu točku.

Prema tom dogovoru silnice izlaze iz sjevernog magnetskog pola i ulaze u južni magnetski pol. Silnice su zatvorene krivulje, što znači da izlaze iz sjevernog pola magneta, prolaze vanjskim prostorom u zatvorenim linijama, ulaze u magnet na južnom polu te se unutar magneta zatvaraju od južnog do sjevernog magnetskog pola i na taj način čine zatvoren magnetski krug. Jače magnetsko polje prikazujemo gušćim silnicama [6]. Ako je magnetsko djelovanje u svim točkama polja jednako i istoga smjera, tada to polje nazivamo homogenim i predočujemo ga silnicama koje su svuda jednake gustoće i istoga smjera [6].

![Slika 4. Homogeno magnetsko polje između polova ravnog magneta. [10]](image)

3.2. Zemljin magnetizam

Na svakom mjestu na Zemlji, magnetska igla će se orijentirati u određenom smjeru. Iz toga možemo zaključiti da se oko Zemlje nalazi polje sila koje nazivamo Zemljino magnetsko polje. Magnetski i zemljopisni polovi Zemlje se ne nalaze u istoj točki što znači da magnetska igla neće pokazivati geografski, već magnetski sjever – jug, a odstupanje geografskog pravca sjever - jug i pravca koji pokazuje magnetska igla nazivamo magnetskom deklinacijom, a kut što
ga smjer magnetskog polja zatvara s horizontalnom ravninom nazivamo inklinacijom. Južni magnetski pol nalazi se u sjevernoj Kanadi, dok je sjeverni magnetski pol na jugu (istočni Antarktik). Ako malo promotrimo Zemljino magnetsko polje, primijetit ćemo da ima oblik magnetskog štapa te je otklonjeno za oko 11° od Zemljine osi rotacije [7].

Pošto magnetsko polje nastaje pri protjecanju električne struje, smatra se da je podrijetlo samog Zemljinog magnetskog polja u kružnim strujama u Zemljinoj tekućoj metalnoj kori. Također i Zemljina rotacija ima ulogu stvaraњa struja za koje smatramo da su izvor magnetskog polja.

3.3. Djelovanje sile na nabijenu česticu

Poznato nam je da električna sila na naboj u električnom polju prema Coulombovom zakonu razmjerena jakosti polja

$$\vec{F}_e = Q \cdot \vec{E}.$$

Međutim, magnetsko polje ne može izazvati silu na mirujući naboj jer magnetsko polje stvaraju naboji koji se gibaju pa i sila može djelovati na naboj samo ako se taj naboj giba. Ta magnetska sila ovisi o magnetskom polju, količini naboja, brzini naboja te o smjeru brzine s obzirom na smjer magnetskog polja. Budući da su magnetska sila, brzina i magnetska indukcijska vektorske veličine slijedi:

$$\vec{F} = q(\vec{v} \times \vec{B}) [7].$$

Smjer magnetske sile određen je pravilom desne ruke koje glasi: „Ako je palac u smjeru brzine \vec{v}, ispruženi prsti u smjeru magnetskog polja \vec{B}, tada okomito iz dlana djeluje sila \vec{F}_1. Ako je naboj negativan, tada je smjer sile suprotan“.

Slika 6. Pravilo desne ruke. [23]
Ako nabijena čestica ulazi okomito u homogeno magnetsko polje kao što je to slučaj na
gornjoj lijevoj slici (Slika 7), tada će ta čestica imati kružnu putanju. Kruženje nastaje jer djeluje
Lorentzova sila kao centripetalna sila i uzrokuje centripetalnu akceleraciju. Budući da se ta sila
uvijek nalazi u istoj ravnini i okomita je na brzinu \vec{v}, tada postoji samo radijalna akceleracija pa
slijedi da je:

$$\frac{mv^2}{r} = qvB$$

iz čega slijedi polumjer kruženja nabijene čestice:

$$r = \frac{mv}{qB}$$

gdje je polumjer kružnice r proporcionalan količini gibanja p, a obrnuto proporcionalan umnošku
naboja čestice q i magnetskoj indukciji B [7][10].

Donja desna slika (Slika 7) nam prikazuje negativno nabijenu česticu koja ulijeće u
homogeno magnetsko polje. Nakon što nabijena čestica opiše polukružnu putanju, ona se vraća
istom brzinom u suprotnom smjeru tijekom izlijetanja iz homogenog magnetskog polja. Ako
nabijena čestica naleti na homogeno magnetsko polje u smjeru paralelnom s magnetskim poljem,
tada se ona giba jednoliko po pravcu. U tom slučaju magnetsko polje ne utječe na gibanje
čestice. Ako nabijena čestica upada ukoso na homogeno magnetsko polje tada ta čestica ima
putanju u obliku spirale čiji je polumjer dan izrazom:

$$r = \frac{mv_\perp}{qB}$$

gdje je v_\perp komponenta brzine u smjeru okomitom na magnetske silnice.
Ako na naboj osim magnetskog polja djeluje i električno polje, tada je ukupna sila koju nazivamo Lorentzovom silom jednaka vektorskom zbroju električne i magnetske sile:

\[\vec{F}_i = q\vec{E} + q\vec{v}\times\vec{B} . \]

Svojstvo magnetskog polja da utječe na gibanje nabijenih čestica primjenjuje se u različitim uređajima kao što su npr. ciklotron, katodna cijev i drugi [7][10].

![Slika 7. Sila na nabijenu česticu u magnetskom polju: pozitivnu (gore), negativnu (dolje). [10]]

<table>
<thead>
<tr>
<th>Električna sila</th>
<th>Magnetska sila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djeluje u smjeru električnog polja</td>
<td>Djeluje okomito na smjer magnetskog polja</td>
</tr>
<tr>
<td>Djeluje uvijek na naboj, bez obzira miruje li ili se gibva</td>
<td>Djeluje samo na naboj u gibanju</td>
</tr>
<tr>
<td>Vrši rad pri pomicanju naboja</td>
<td>Ne vrši rad jer djeluje okomito na pomak naboja(samo ga zakreće)</td>
</tr>
</tbody>
</table>

Tablica 1. Usporedba električne i magnetske sile.
3.4. Hall-ov efekt

Ako uzmemo vodljivu pločicu i ako kroz nju pustimo električnu struju I te ju unesemo u magnetsko polje, tada će magnetska sila otklanjati slobodne nosioce naboja u poprečnom smjeru pa će se jedna strana pločice nabiti pozitivno, a druga negativno. To pojavu nazivamo Hallovim efektom.

$$B = \frac{E}{v} = \frac{U_H}{d} = \frac{nq}{j} U_H$$

Mjereći Hallov napon, uz poznatu jakost (gustoću) električne struje i gustoću naboja nq, može se odrediti magnetska indukcija B [7][10].

3.5. Sila na vodič kroz koji teče električna struja

Promatrat ćemo slučaj kada se u homogenom magnetskom polju nalazi ravna žica (vodič) kojom teče električna struja. Neka je vodič smješten tako da je okomit na homogeno magnetsko polje. To homogeno magnetsko polje će na vodič djelovati silom koja je okomita i na smjer električne struje i na smjer polja, a tu magnetsku silu kojom magnetsko polje djeluje na električnu struju nazivamo Ampèreova sila i označavamo ju sa \(\vec{F}_m \). Smjer Ampèreove sile određujemo pravilom desne ruke koje glasi:

“Ako ispruženi prsti pokazuju smjer magnetskog polja, a ispruženi palac smjer struje, magnetska sila djeluje okomito u smjeru iz dlana.“ [10].

Slika 10. Sila na vodič kroz koji teče električna struja. [10]
Struja koja teče vodičem nastaje gibanjem slobodnih elektrona i na svaki elektron djeluje sila koja je dana izrazom \(\vec{F}_1 = -e\vec{v}_d \times \vec{B} \). Neka je \(S \) presjek vodiča, \(n \) gustoća slobodnih elektrona, tada je ukupni broj elektrona u vodiču duljine \(l \) jednak \(nSl \) te je ukupna sila dana izrazom:

\[
\vec{F}_m = N\vec{F}_1 = nSl(-e)\vec{v}_d \times \vec{B}.
\]

Gustoća struje je dana izrazom \(\vec{J} = -ne\vec{v}_d \), te sada dobivamo:

\[
\vec{F}_m = S\vec{J} \times \vec{B}
\]
ili

\[
\vec{F}_m = I\vec{l} \times \vec{B}.
\]

Vektor \(\vec{F}_m \) iznosi:

\[
F_m = BIl \sin \alpha
\]
gdje je \(\alpha \) kut između \(\vec{l} \) i \(\vec{B} \). Smjer vektora \(\vec{l} \) je u smjeru struje, tj. u smjeru gibanja pozitivnih naboja [7].

Sila će nam biti minimalna ako se poklapaju položaj vodiča i vektor magnetske indukcije. Ako vodič postavimo okomito na vektor magnetske indukcije, odnosno da nam je \(\alpha = 90^\circ \), tada sila ima maksimalnu vrijednost, a za sve ostale položaje \(0^\circ < \alpha < 90^\circ \) sila se računa po formuli:

\[
F_m = BIl \sin \alpha. \ [7].
\]

U slučaju da vodič nije ravan, odnosno ako polje nije homogeno, tada uzimamo elementarne dijelove vodiča \(d\vec{s} \), jer u tom slučaju možemo pretpostaviti da je svaki taj element ravan i da je na tako malim dužinama magnetsko polje homogeno. Tada je naša jednadžba sljedećeg oblika:

\[
d\vec{F}_m = Id\vec{s} \times \vec{B}
\]
gdje je \(d\vec{F}_m \) sila na element struje \(Id\vec{s} \). Tada je ukupna sila jednaka zbroju svih \(d\vec{F}_m \), tj. integralu preko cijelog vodiča:

\[
\vec{F}_m = I \int d\vec{s} \times \vec{B}.
\]
Ukupna magnetska sila koja djeluje na zatvorenu petlju u homogenom magnetskom polju jednaka je nuli što možemo primijetiti iz sljedeće relacije: \[\Phi \, d\vec{l} = 0. \]

3.6. Djelovanje električne struje na električnu struju

Promatrat ćemo dva vodiča kroz koje teče električna struja te se između ta dva vodiča pojavljuje sila. Pretpostavimo da su vodiči dugi, ravni i da su međusobno paralelni na nekoj udaljenosti \(d \). Promatramo li sliku, možemo primijetiti da će sila \(F_1 \) kojom magnetsko polje \(H_1 \) djeluje na vodič kroz koji teče struja \(I_2 \), biti jednaka [11]:

\[F_1 = B \times I_2 \times l = \mu_0 \times H_1 \times I_2 \times l = \frac{\mu_0 \times I_1 \times I_2 \times l}{2 \pi d} \quad [N]. \]
Koristimo li pravilo desnog vijka i pravilo desnog ruka za Ampèreovu silu, zaključujemo da se dva paralelna vodiča privlače ako im električne struje teku u istim smjerovima, dok će se ti vodiči međusobno odbijati ako im struje teku u suprotnim smjerovima. Pomoću gornje relacije za silu F_1 možemo definirati osnovnu mjernu jedinicu fizikalne veličine jakosti električne struje – ampera. „Jedan je amper jakost one stalne struje koja, prolazeći kroz dva ravna, usporedna i neizmerno dugačka vodiča, zanemarivo maloga kružnog presjeka, u vakuumu, međusobno udaljena jedan metar uzrokuje između njih silu od $2 \times 10^{-7} \text{N/m}$.“ [11][7]

3.7. Magnetska svojstva materijala

3.7.1. Magnetizacija

Do promjene magnetske indukcije dolazi kada u magnetsko polje, na primjer unutar zavojnice unesemo neki materijal. Ako magnetska indukcija zavojnice bez jezgre ima oblik:

$$B_0 = \mu_0 \frac{N \cdot I}{l}.$$ Tada ta ista zavojnica s jezgrom ima magnetsku indukciju oblika $B = \mu_r \cdot B_0$ gdje je μ_r relativna permeabilnost materijala te je ona jednaka omjeru magnetske indukcije u materijalu B i magnetske indukcije bez materijala B_0:

$$\mu_r = \frac{B}{B_0}.$$ Kao što se vektorom polarizacije opisuje ponašanje materijala u električnom polju, tako se magnetizacijom \vec{M} opisuje utjecaj sredstva na magnetsko polje:

$$\vec{M} = \frac{\vec{B} - \vec{B}_0}{\mu_0} = \frac{\vec{B}}{\mu_0} - \vec{H}.$$
Povezanost između vektora magnetske indukcije \vec{B}, jakosti magnetskog polja \vec{H} i magnetizacije \vec{M} dana je relacijom:

\[
\vec{B} = \mu_0\vec{H} + \mu_0\vec{M}
\]

\[
\vec{M} = x_m\vec{H}
\]

\[
\vec{B} = \mu_0(\vec{H} + \vec{M})
\]

\[
\vec{B} = \mu_0(\vec{H} + x_m\vec{H})
\]

\[
\vec{B} = \mu_0(1 + x_m)\vec{H}
\]

\[
\vec{B} = \mu_m\vec{H}
\]

gdje je μ_m magnetska permeabilnost tvari, a konstanta proporcionalnosti x_m naziva se magnetska susceptibilnost materijala.

\[
\mu_m = \mu_0(1 + x_m)
\]

\[
(1 + x_m) = \mu_r
\]

\[
x_m = \mu_r - 1
\]

Za vakuum je $\mu_r = 1$ (gotovo je isti kao i za zrak), pa iz toga slijedi da je $x_m = 0$. S obzirom na magnetska svojstva, materijale možemo podijeliti u tri skupine:

a) Materijali čija je permeabilnost μ_r mnogo veća od jedinice ($x_m \gg 0$) i zovemo ih feromagnetici. Npr. to su željezo, kobalt, nikal i njihove legure.

b) Materijali čija je relativna permeabilnost μ_r nešto malo veća od jedinice ($x_m > 0$), zovemo ih paramagnetici. Npr to su aluminij, platina, tantal, volfram itd.

c) Materijali čija je relativna permeabilnost μ_r nešto manja od jedinice, pa je ($x_m < 0$), zovemo ih dijamagnetici. Na primjer to su bizmut, olovo, vodik, bakar itd. [7]
3.7.2. Dijamagnetizam

Dijamagnetizam je jako slab oblik magnetizma koji se može registrirati samo uz prisutnost vanjskoga magnetskog polja. [12] On je svojstvo svih materijala, ali zbog male sile može se promatrati samo kod onih materijala koji nemaju ostala magnetska svojstva. Uzroci magnetizma u materijalu su atomske strukture koje su uzrokovane orbitalnim gibanjem elektrona oko jezgre i vlastitim spinom elektrona, a ako se magnetski efekti svih elektronskih struja međusobno ponište, tada materijali neće pokazivati magnetska svojstva [13].

Dijamagnetski materijali imaju atome koji nisu magnetični. Kada unesemo materijal u vanjsko magnetsko polje, tada se u strujnim petljama elektrona induciraju magnetski dipolni momenti suprotnoga smjera od vanjskog magnetskog polja (Lenzovo pravilo) te zbog toga dijamagnetske tvari slabe vanjsko magnetsko polje, a čim prestane djelovanje toga magnetskog polja, dijamagnetski materijali se vraćaju u prvobitno, odnosno ne magnetizirano stanje.

Ako općenito promotrimo dijamagnete, tada ćemo primijetiti da dijamagnetizam ne ovisi o temperaturi, ali ipak postoje dijamagneti kao što su bizmut i grafit čija je susceptibilnost na niskim temperaturama ipak temperaturno ovisna [7][13].
3.7.3. Paramagnetizam

Materijal ima paramagentična svojstva onda kada njegovi atomi imaju permanentni magnetski dipolni moment. Promotrimo li slučaj da nemamo vanjsko magnetsko polje, tada su nam atomski magnetski momenti kaotično orijentirani te je ukupni dipolni moment materijala u tom slučaju jednak nuli. U vanjskom magnetskom polju koje ima magnetsku indukciju B, na te će dipole djelovati moment sile koji će nastojati elementarne magnetične usmjeriti duž polja i na taj način će nastati paramagnetska magnetizacija što možemo vidjeti na donjoj slici. U slučaju da prestane djelovati magnetsko polje, ti paramagnetski materijali se vraćaju u prvobitno stanje, odnosno vraćaju se u ne magnetizirano stanje [2][13][14].

Slika 11. Objašnjenje pojave paramagnetizma. [14]

Paramagnetski materijali ovise o temperaturi jer je pri višim temperaturama i termičko kretanje molekula intenzivnije, a s tim je intenzivnija i težnja za statističkom orijentacijom elektronskih momenata u svim pravcima što znači da će pri višim temperaturama magnetska susceptibilnost imati manju vrijednost [7][14].
3.7.4. Feromagnetizam. Krivulja magnetiziranja

Za razliku od dijamagnta i paramagneta, feromagnetski materijali su materijali koji mogu pokazivati magnetizaciju kada vanjsko magnetsko polje nije prisutno. U takvim materijalima kao što su feromagnetski materijali postoje Weissove domene. U svakoj toj domeni svi atomi imaju paralelene magnetske dipolne momente te se tada domena ponaša kao mali permanentni magnet, a u ne magnetiziranom materijalu smjerovi magnetskih momenata domena raspoređeni su kaotično te tada taj materijal nije magnetičan. U slučaju da dovedemo vanjsko magnetsko polje, ono će utjecati na orijentaciju domena na sljedeći način: domene u smjeru polja povećavat će se na račun onih čiji je smjer suprotan polju, dok ona polja koja su jača će moći zarotirati domene tako ih orijentirati u smjeru polja [7].

![Slika 13. Feromagnetizam: prikaz spontane orijentacije elementarnih dipola u jakim magnetima. [25]](image1)

![Slika 12. Feromagnetizam. [12]](image2)

Pri visokim temperaturama toplinsko gibanje postaje dovoljno jako da naruši orijentaciju magnetskih dipola unutar domena pa feromagnetski materijali gube feromagnetska svojstva i ponašaju se kao paramagnetići [7]. Temperatura na kojoj se to događa naziva se Curieova temperatura T_c i njezina vrijednost za čisto željezo iznosi 770 °C, za nikal 360 °C, za kobalt 1075°C [7]. Ispod Curieve temperature prevladava međudjelovanje magnetskih dipolnih momenata i oni se spontano uređuju tako da su svi usmjereni u istom smjeru, a to je upravo prijelaz iz paramagnetske u feromagnetsku fazu.
Sada ćemo promatrati magnetsko ponašanje feromagnetskih materijala. Sa B_0 označit ćemo magnetsku indukciju unutar zavojnice bez feromagnetske jezgre, a u slučaju da unutar zavojnice stavimo jezgru od nekog feromagnetskog materijala, tada će se magnetska indukcija u feromagnetskom materijalu povećavati na vrijednost koju ćemo označiti s B.

Za početak ćemo unutar zavojnice kojom ne teče struja ($p a j e B_0 = 0$) staviti ne magnetizirani feromagnetski materijal ($p a j e B_0 = 0$). Sada ćemo pustiti struju kroz zavojnicu te postepeno povećavati vrijednost B_0. Kako povećavamo B_0 od nule do maksimalne vrijednosti, magnetska indukcija će se mijenjati po krivulji OA, a kada počnemo smanjivati B_0, tada se B mijenja po krivulji AC, što znači da feromagnetski materijal ostaje stalno magnetiziran kada B_0 iščezne.

Krivulju OA nazivamo krivuljom prve magnetizacije, a veličina OC predstavlja tzv. remanentni magnetizam i označavamo ga sa B_r.

Sada ćemo promijeniti smjer magnetske indukcije B_0, što znači da će magnetska indukcija B_0 imati negativan predznak te ćemo joj sada povećavati iznos. S daljnjim povećanjem iznosa B_0, promjene magnetske indukcije B pratimo po krivulji grafa od točke C preko točke D sve do točke E u kojoj primjećujemo da su B i B_0 jednakih iznosa, ali suprotnog smjera nego u točki A. Također vidimo da u točki D magnetska indukcija B_0 poništava magnetsku indukciju B. Ta vrijednost iznosa B_0 koja poništava remanentni magnetizam naziva se koercitivno polje. Sada ćemo ponovo smanjiti iznos B_0 sve do nule, pri čemu će se B mijenjati po krivulji od točke E do
točke F, u kojoj B ima vrijednost $B = -B_r$. Sada ćemo opet promijeniti smjer magnetske indukcije B_0, odnosno sada će nam predznak opet biti pozitivan. S daljnjim povećanjem magnetske indukcije B_0 u pozitivnom smjeru, magnetska indukcija B će se mijenjati po krivulji od točke F preko G ponovo do točke A. Ovaj graf prikazuje opisane promjene magnetske indukcije B u feromagnetskom materijalu od početka magnetizacije predočen krivuljom $OACDEFGA$, a ako i dalje radimo slične promjene s B_0, tada će se magnetska indukcija B nastaviti mijenjati i te njezine promijene pratimo po krivulji $ACDEFGA$. Tu zatvorenu krivulju nazivamo histerezom. Oblik histereze za neki feromagnetski materijal pokazuje kakvo je njegovo magnetsko ponašanje [15].

Kako se magnetsko polje mijenja, nastaju gubici, a mjeru tih gubitaka prikazujemo petljom histereze. Kako se polje mijenja tako se inducira napon koji uzrokuje vrtložne struje, te što je veći inducirani napon, veći su i gubici, a ujedno je tada i manji otpor. Ako mijenjamo smjer magnetskog polja, tada se okreću i smjerovi elementarnih magneti, a gubici koji pri tome nastaju rastu s porastom frekvencije. Da bi nam se smanjili gubici, morali bi imati što veći otpor magnetskih materijala [13].
3.7.5. Antiferomagnetizam

Razlika između antiferomagnetskih materijala i feromagnetskih materijala je u karakterističnoj mikroskopskoj strukturi. Struktura antiferomagnetskih materijala je takva da su magnetski momenti međusobno paralelni i naizmjenično suprotnog smjera, a istog intenziteta [15]. Na slici je shematski prikazana elementarna čelija antiferomagnetskih materijala koja se sastoji od dvije podrešetke A i B.

![Elementarna čelija antiferomagnetskih materijala](image)

Slika 21. Elementarna čelija antiferomagnetskih materijala. [16]

Na slici možemo primijetit da su magnetski momenti atoma podrešetke A orijentirani u jednom smjeru, dok su magnetski momenti atoma podrešetke B orijentirani u drugom smjeru. Ovakvu magnetsku orijentaciju atoma antiferomagnetskih materijala objašnjavamo sa kvantnom-mehaničkim efektom [16].
Glavna makroskopska posljedica ovakve mikroskopske strukture je postojanje izraženog maksimuma na krivulji zavisnosti magnetske susceptibilnosti o apsolutnoj temperaturi, što možemo primijetiti na donjoj slici [15]. Ako sada promotrimo sliku, primijetit ćemo da se ovaj maksimum pojavljuje za određenu temperaturu, a ta temperatura naziva se Néelova temperatura. Magnetsko atomsko uređenje ispod Néelove temperature je takvo da je za $T = 0$ polovica magnetskih momenata atoma antiferomagnetskog materijala orijentirana u jednom smjeru, a druga polovica je orijentirana u suprotnom smjeru.

Iznad Nilove temperature magnetska susceptibilnost antiferomagnetskog materijala mijenja se po izrazu:

$$
\chi_m = \frac{C}{T + T_{ca}}
$$

gdje je C – Curieova konstanta, a T_{ca} - Curieova temperatura [16].

Slika 22. Ovisnost magnetske susceptibilnost MnO o temperaturi. [16]
3.7.6. Ferimagnetizam

Kod ferimagnetskih materijala mikroskopska struktura je slična s mikroskopskom strukturom antiferomagnetskih i feromagnetskih materijala. Također su i kod ferimagnetskih materijala magnetski momenti susjednih atoma suprotno orijentirani, ali za razliku od antiferomagnetskih materijala, oni su različitog intenziteta. Na slici je prikazana shema elementarne čeliije jednog ferimagnetskog materijala koja se sastoji od podrešetke A i B.

![Slika 23. Prikaz podrešetki ferimagnetskih materijala. [16]](image)

Magnetski momenti atoma podrešetke A orijentirani su u suprotnom smjeru od magnetskih momenata atoma podrešetke B. Također se i ova mikroskopska struktura ferimagnetskih materijala objašnjava kvantno-mehaničkim efektom.

Ferimagnetski materijali su u biti čvrste otopine dva oksida, te ih razlikujemo od feromagnetskih materijala po specifičnoj otpomosti koja je veća od 10^6 do 10^{12} puta od feromagnetskih materijala te po odgovarajućim negativnim linearnim temperaturnim koeficijentom. Ferimagnetski materijali pripadaju poluvodičima te se dijele na tvrde i meke ferite [16].
4. Pokusi u nastavi fizike

Pokuse koristimo u školama da bi motivirali učenike, dali konkretne primjere složenih koncepata, povećali razumijevanje određenih fizikalnih pojmova i uređaja koji se koriste u izvođenju. Fizika, više nego bilo koje druge prirodne znanosti, svoje principe i temelje može pokazati na neposrednim i jednostavnim pokusima.

Da bi se nastava kvalitetno održala trebala bi se temeljiti na pokusima. Zbog opsežnosti grada kao i nedostatak aparature, u nastavi su pokusi zastupljeni u malim količinama. Pokus bi u nastavi trebao predstavljati sredstvo koje pomaže učenicima da svojim osjetilima uoče temeljne fizikalne zakone i pojave. Osim što učenicima nastava postaje zanimljiva i aktivnija, oni na toj nastavi postaju „mali istraživači“, što za njih predstavlja izazov i mogućnost da se svojim radom istaknu.

Veliki problem se javlja s opremljenosti škola, ali u današnje vrijeme postoje računala i razne simulacije koje mogu dočarati pojave ukoliko se uživo ne mogu prikazati.

a) Učenički eksperimenti u učionici

Učenički eksperimenti u učionici izvode učenici podijeljeni u grupe ovisno o količini opreme i zadacima. Nakon završetka svaka grupa izlaže svoje rezultate. Svaka grupa dobiva napisane upute da bi se lakše orijentirali. Ono što je prihvatljivo kod navedenog eksperimenta je to što se kod učenika razvijaju obrazovne, ali i odgojne vrijednosti. Učenici uče jedni od drugih, razgоварaju, međusobno zaključuju ili raspravljaju o mogućim pogreškama. Pošto sami izvode pokuse, svojim osjetilima mogu uvidjeti u bogatstvo koje pojedini pokus pruža. Nastavno gradivo je pretrpano te zbog nedostatka vremena nastavnici pokušavaju napraviti da se takvi eksperimenti uklope u sat te da se odmah provjere rezultati [17].
b) Kućni eksperimenti

Na temelju uputa nastavnika, učenicima se može dati da pojedine eksperimente naprave kod kuće. Mora se uzeti u obzir da se zadaje eksperiment koji će svaki učenik biti u mogućnosti napraviti te ga demonstrirati u učionici [17].

c) Praktikumski eksperiment

Eksperimenti se obavljaju u praktikumima koji su opremljeni priborom da bi se pokus uopće mogao izvesti. Učenici upoznavaju načine na koje se mogu mjeriti i odrediti fizikalne veličine. Danas u školama rijetko možemo naći takav način rada zbog nedostatka vremena, opreme i volje. Puno više bi učenici naučili da se pristupi fizici na takav način [17].

4.1. Demonstracijski pokusi

Demonstracijski pokus izvodi nastavnik uz pomoć učenika te služi za kvalitativno demonstriranje određenih fizikalnih pojava. Često služe za otvaranje problemske situacije, pogotovo u osnovnoj školi [17].

Demonstracijski pokus može jasno pojasniti fizikalne zakone ili pokazati zanimljive primjene principa. Važno je da svi učenici, bilo da sjede u prvim ili zadnjim redovima, imaju čist i pregledan pogled na pokus koji se demonstrira. Vrlo su praktični zato što se vremenski mogu uklopiti u nastavni sat i ne bi trebali trajati dugo da se ne bi izgubila sama bit pokusa, ali i zainteresiranost učenika.

Prije izvođenja pokusa, učenika bi bilo poželjno upitati koji bi bio ishod pokusa jer se na taj način budi zainteresiranost, ali se polako otvara i rasprava o postavljenom problemu. Demonstracijske pokuse u nastavi potrebno je izvesti u pravilnom trenutku i da se osjeti povezanost s nastavnim građivom. Kao i svaki pokus treba biti dobro pripremljen.

Na mjestu gdje se izvode pokusi potrebno je postaviti pribor koji se isključivo koristi samo za taj pokus jer inače ostala oprema dovodi do zbuženosti učenika. Kada se posloži aparatura, treba pitati učenike da li znaju nešto reći o pojedinim uređajima. U slučaju da ne znaju, detaljno im objasniti pojedine uređaje.
Nakon završetka poželjno je učenicima postaviti pitanje Što ste vidjeli?. Nakon toga prelazi se na točno definiranje konačnog zaključka. Svaki demonstracijski pokus teži k nekom zaključku pa je poželjno s učenicima analizirati i što više ih uključiti u razgovor da se donesu određeni zaključci. Ako pokus sadrži ključna mjerenja, upisati ih u tablicu na ploču i zajednički analizirati.

Na temelju navedenog postoje ključni koraci za pravilno izvođenje pokusa:

1. Upoznavanje učenika s korištenim priborom i uređajem
2. Postavljenje pitanja Što očekujete?
3. Izazivanje fizikalne pojave i postavljanje pitanja Što ste vidjeli?
4. Diskusija i analiza dobivenih rezultata

Brojni pokusi se danas u nastavi izvođe kao demonstracijski, bilo u osnovnoj ili srednjoj školi. Neki od njih su slobodni pad, Oerstedov pokus, Faradayev zakon indukcije, Youngova interferencija i drugi [17].
4.1.1. Magneti koji padaju jedan kroz drugi

Pribor:
- 2 prstenasta magneta s otvorom na sredini
- Obična olovka koja ima čelični držač gumice

Izvođenje pokusa:

Postavite olovku vertikalno s vrhom prema gore i s jednim magnetom koji je postavljen iznad gumice. Stavite drugi magnet na vrh olovke i držite olovku kako je prikazano na slici. Vodite računa da je drugi magnet orijentiran tako da gura donji magnet (odbijaju se). Gornji magnet će pasti. Izgledati će kao da gornji magnet pada kroz prvi i ostavlja donji magnet na istom mjestu gdje je i bio.

Slika 24.

a) Položaj magneta prije nego je gornji magnet pao, b) Položaj magneta nakon što je gornji magnet pao. [18]
Zaključak:

4.1.2. Čudnovati novčići

Pribor:
- Magnet u obliku diska
- Novčići od 50 lipa

Izvođenje pokusa:

Novčiće postavimo na magnet u obliku diska i slažemo ih kao što je to prikazano na slikama [19].

Slika 25. Ravnoteža novčića. [19]

Zaključak:

Iz ovog pokusa možemo zaključiti da novčići postaju magneti kada se nađu u magnetskom polju zbog toga što oni u sebi imaju željeza te se magnetiziraju. Ako bi nastavili slagati novčiće jedan na drugi, u jednom trenutku bi se novčići srušili zbog djelovanja dviju sila koje se suprotstavljaju jedna drugoj, a to su magnetska sila i gravitacijska sila. Kada gravitacijska sila nadjača magnetsku silu, novčići se počinju rušiti.
4.1.3. Čudnovati novčići

Pribor:
- Magnet u obliku diska
- Kovanice od 50 lipa

Izvođenje pokusa:

Vučemo gornji novčić kao što je to prikazano na slici, dok se donji novčić nalazi između magneta i gornjeg novčića. Rukom pridržavamo magnet da se ne podigne skupa s novčićima [19].

![Slika 26. Vučemo za gornji novčić. [19]](image)

Zaključak:

U početku su oba novčića bila u dodiru s magnetom te su se magnetizirali. Pitamo se zašto donja kovanica nije ostala spojena s magnetom nego se odvojila zajedno s gornjom kovanicom u trenutku kada smo povukli gornju kovanicu. Razlog tome je taj što su silnice magnetskog polja u dodirnoj točki tih dviju kovanica gušće od silnica magnetskog polja u dodirnoj točki donje kovanice i samog magneta. Sila između tih dviju kovanica je veća od sile između donje kovanice i magneta.
4.1.4. Čudnovato kotrljanje

Pribor:
- Dva spojena prstenasta magneta
- Kompas
- Kosina

Izvođenje pokusa:

Postavimo kosinu u smjeru sjever – jug i pustimo magnet da se kotrlja niz kosinu. Nakon toga postavimo kosinu u smjeru istok – zapad i pustimo da se magnet kotrlja niz kosinu. Pratimo kretanje magneta u oba slučaja [19].

![Kotrljanje magneta niz kosinu.][1]

Zaključak:

Kada je kosina bila u smjeru sjever – jug tada se magnet kotrljao pravocrtno. U drugom slučaju magnet je skretao u jednu pa u drugu stranu, ovisno o kojem se polu magneta radilo. Iz toga možemo zaključiti da je na taj magnet utjecalo Zemljino magnetsko polje. Iako je Zemljino magnetsko polje slabo, dovoljno je jako da zakrene ovaj magnet kao i magnetsku iglu.

[1]: Slika 27. Kotrljanje magneta niz kosinu. [19]
4.1.5. Djelovanje električne struje na električnu struju

Pribor:

- Izvor struje, promjenjivi otpornik, stalak, nosači vrpce, 2 alumijske vrpce, krokodil stezaljke, spojni vodiči, sklopka

Izvođenje pokusa:

Alumijske vrpce učvrstimo vertikalno na nosač tako da su međusobno paralelne i oko 2 do 3 cm udaljene. Vrpce spojimo u strujni krug preko izvora, promjenjivog otpornika i sklopke. Vrpce ćemo spojiti u paralelni, pa u serijski strujni krug [20].

Slika 28. a) Paralelni spoj, b) Serijski spoj. [20]

Zaključak:

Iz pokusa primjećujemo da kod serijskog spoja dolazi do odbijanja vrpce, a kod paralelnog spoja dolazi do privlačenja vrpce. Kod serijskog spoja su struje iste jakosti, ali su suprotnih smjerova te uporabom pravila desne ruke za Ampère-vo silu i pravilom desnog vijka dolazimo do zaključka da će se vrpce odbijati, a kod paralelnog spoja teku struje koje imaju isti smjer te uporabom pravila desne ruke za Ampère-vo silu i pravilom desnog vijka dolazimo do zaključka da će se vrpce privlačiti. Sila koja se javlja pri djelovanju električne struje na električnu struju nazivamo Ampère-vom silom.

Slika 29. a) Paralelni spoj, b) Serijski spoj.
4.1.6. Pokusi s magnetima

a) Što magnet privlači?

Pribor:

- Magnet
- Stvari napravljene od različitih materijala: drvo, željezo, bakar, tekućina, tkanina

Izvođenje pokusa:

Dodirnite pojedinu stvar od različitog materijala magnetom i promatrajte što se događa.

Zaključak:

Ovim pokusom dokazano je da magneti privlače samo one predmete koji sadrže željezo, nikal i kobalt kao i njihove legure.

b) Snaga magneta

Pribor:

- Magnet
- Spajalice
- Čaša s vodom

Izvođenje pokusa:

U čašu s vodom umetnite spajalicu. Približite magnet i vucite ga po površini čaše.
Zaključak:

c) Polovi magneta

Pribor

- Dva magneta
- Stalak
- Konac

Izvođenje pokusa

Oko jedno magneta zavežemo konac i objesimo ga na stalak. Približavamo mu drugi magnet. Postupak ponovimo kada okrenemo magnet koji približavamo.

Zaključak:

Magnet ima dva pola, sjeverni i južni. Približavanjem sjevernom polu sjeverni pol uočavamo odbijanje. Približavanjem sjevernom polu južni pol uočavamo da se magneti spajaju. Iz toga se zaključuje da se istoimeni polovi magneta odbijaju, a raznoimeni privlače. Odnosno između njih djeluje sila koja može biti privlačna ili odbojna. Pokus se može izvesti i ako postavimo magnet na autiće ili kolica gdje bi djeca bolje uočila odbojnu i privlačnu silu.

Slika 32. Privlačna i odbojna sila. [28]
d) Magnetske silnice

Pribor:
- Magnet
- Željezna piljevina
- Komad papira

Izvođenje pokusa:

Postavimo magnet i na njega komad papira. Željezno piljevinu posipamo po papiru gdje se nalazi magnet.

Slika 33. Silnice magnetskog polja. [28]

Zaključak:

Željezna piljevina formira se tako da pokazuje silnice magneta. Svaki komad željezne piljevine postaje malena magnetska igla koja se orijentira u smjeru magnetskog polja. Magnetske silnice su zamišljene krivulje koje pokazuju smjer magnetskog polja. Silnice izlaze iz sjevernog i ulaze u južni pol te su uvijek zatvorene krivulje.
4.1.7. Djelovanje električne struje na magnet (Oerstedov pokus)

Pribor:
- Izvor električne energije 6 V DC, promjenjivi otporник (reostat), duža savitljiva žica, čavao, kompas ili magnetska igla na stalku

Izvođenje pokusa:

Sastavimo jednostavni strjani krug prema zadanoj shemi. Promatrajmo ponašanje magnetske igle kada krugom teče električna struja [20].

\[Slika 34. Shema pokusa. [29] \]

Zaključak:

Iz pokusa smo primijetili da kada kroz žicu ne teče električna struja, naša magnetska igla ima orijentaciju sjever – jug, a kada tom žicom teče električna struja, tada se naša magnetska igla zakrene. Uzrok zakretanju naše magnetske igle je magnetsko polje, a iz toga zaključujemo da se oko te žice kojom teče električna struja pojavljuje magnetsko polje. Znamo da je električna struja usmjereno gibanje naboja i iz toga zaključujemo da svaki naboj pri gibanju stvara magnetsko polje.
4.1.8. Djelovanje magneta na električnu struju

Pribor:
- Izvor 24 V DC, promjenjivi otpornik (reostat), potkovičasti magnet, stalak, ovješena žica, prekidač, spojni vodič

Izvođenje pokusa:

Između polova potkovičastog magneta na dvjema tankim bakrenim žicama objesimo komad deblje bakrene žice. Na slobodne krajeve žice preko sklopke i promjenjivog otpornika spojimo s izvorom struje. Otpornik nam služi kao osiguranje jer je otpor bakrenih žica malen pa bi se mogao oštetiti izvor struje. Promatrajmo što se događa u pokusu [20].

Zaključak:

Djelovanje magnetskog polja na vodič kroz koji teče električna struja je takvo da približava ili udaljava vodič od sebe, ovisno o tome u kojem smjeru teče električna struja u tom vodiču. Ako promijenimo smjer magnetskog polja na vodič ili smjer električne struje, tada će se promijeniti i smjer djelovanja sile na taj vodič. A ako povećamo/smanjimo jakost električne struje tada će nam biti veći/manji otklon vodiča. Isto se to dešava ako povećamo/smanjimo jakost magnetskog polja. Zaključujemo da magnetsko polje djeluje na našu bakrenu žicu nekom silom, a tu silu nazivamo Ampèrevom silom. Smjer te sile određujemo pravilom desne ruke: „Ako ispruženi prsti pokazuju smjer magnetskog polja, a ispruženi palac pokazuje smjer struje, tada magnetska sila djeluje okomito iz dlana.“
5. Priprema za izvođenje nastave

<table>
<thead>
<tr>
<th>Škola: OŠ</th>
<th>Razred: 8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mjesto: Osijek</td>
<td></td>
</tr>
<tr>
<td>Mentor: -</td>
<td></td>
</tr>
<tr>
<td>Student: Gordan Paradžik</td>
<td>Smjer: DS fizike i informatike</td>
</tr>
<tr>
<td>Datum: -</td>
<td></td>
</tr>
</tbody>
</table>

Nastavni predmet: Fizika

Nastavna cjelina: Električna struja

Nastavna tema: Magneti i magnetsko djelovanje električne struje

Nastavna jedinica: Magnetsko djelovanje električne struje

SADRŽAJNI PLAN

<table>
<thead>
<tr>
<th>Red. broj.</th>
<th>Podjela nastavne cjeline na teme</th>
<th>Broj sati</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>predavanja</td>
</tr>
<tr>
<td>1</td>
<td>Strujni krug i njegovi elementi</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Električni vodiči i izolatori</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Spajanje trošila u strujnome krugu</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Učinci električne struje</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Magneti i magnetsko djelovanje električne struje</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Električni naboji i njihovo međudjelovanje</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Elektroni, pokretnji ioni i električna struja</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Mjerenje električne struje</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Električni napon</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Elektromagnetska indukcija</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Rad i snaga električne struje</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Električni otpor</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Ohmov zakon</td>
<td>1</td>
</tr>
</tbody>
</table>
14. Opasnost i zaštita od električnoga udara 1 0

<table>
<thead>
<tr>
<th>Red. broj.</th>
<th>Podjela nastavne teme na jedinice</th>
<th>Broj sati</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>predavanja</td>
</tr>
<tr>
<td>1.</td>
<td>Magneti</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Magnetsko djelovanje električne struje</td>
<td>1</td>
</tr>
</tbody>
</table>

PLAN VOĐENJA NASTAVNOG PROCESA

Cilj (svrha) obrade metodičke jedinice:
Istražiti magnetski učinak električne struje.

Zadaci koje treba ostvariti da bi se cilj postigao:

-Materijalni (kognitivni) zadaci:

- U Oerstedovu pokusu prepoznati magnetsko djelovanje električne struje.
- Spoznati da zavojnica u strujnom krugu djeluje kao magnet.
- Objasniti što je elektromagnet.

-Funkcionalni (psihomotorički, afektivni zadaci):

- Razvijati sposobnost rasprave o problemu magnetskog učinka električne struje.
- Ospobobljavati učenike za izradu elektromagneta.
- Razvijati vještine opažanja i opisivanje opaženog prilikom izvedbe pokusa.

-Odgojni zadaci:

- Poticati dobru komunikaciju postavljanjem pitanja.
- Poticati stvaralačko ozračje.
- U raspravi poštovati tuđe ideje.
Organizacija nastavnog rada – artikulacija metodičke jedinice:

<table>
<thead>
<tr>
<th>Koraci nastavnog procesa</th>
<th>Sadržaj</th>
<th>Oblici nastave</th>
<th>Metode i postupci</th>
<th>Vrijeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uvodni dio</td>
<td>Ponavljanje gradiva</td>
<td>Frontalna nastava</td>
<td>Metoda razgovora</td>
<td>3 min</td>
</tr>
<tr>
<td>Glavni dio</td>
<td>Obrada nove nastavne jedinice te primjena obrađenog gradiva</td>
<td>Frontalna nastava</td>
<td>Metoda usmenog izlaganja, metoda demonstracije</td>
<td>25 min</td>
</tr>
<tr>
<td>Zaključni dio</td>
<td>Ponavljanje obrađene nastavne jedinice</td>
<td>Frontalna nastava</td>
<td>Metoda razgovora</td>
<td>2 min</td>
</tr>
</tbody>
</table>

Nastavna sredstva, pomagala i ostali materijalni uvjeti rada:

- Računalo, ploča, kreda, magnetska igla, izvor, vodiči, sklopka, žarulja, 2 krokodil stezaljke, izolirana žica, čavao, spajalice, grafoskop

Korelacija:

- Tehnička kultura: Elektromagneti
- Povijest: Hans Christian Oersted

Metodički oblici koji će se primjenjivati u toku rada:

- Metoda razgovora, metoda usmenog razgovora, metoda demonstracije

Izvori za pripremanje nastavnika:

- Udžbenici iz fizike za osnovnu školu

Izvori za pripremanje učenika:

- Udžbenici iz fizike za osnovnu školu
TIJEK IZVOĐENJA NASTAVE – NASTAVNI RAD:

1. Uvod

Pozdravljenje učenika, upisivanje sata i odsutnih učenika.

Pomoću prezentacije i postavljanjem pitanja ponoviti s učenicima građivo s prošlog sata:

1. Što je magnet i koji su najčešći oblici magneta?
 Magneti su materijali koji imaju svojstvo da privlače predmete od željeza, nikla, kobalata i njihovih legura. Najčešće imaju oblik štapa, potkove ili igle.

3. Magnet ima pol/polove? Kako ga/ih nazivamo?
 Magnet ima dva pola. Nazivamo ih sjeverni i južni pol.

4. Što će se dogoditi ako približimo dva magneta istih polova ili dva magneta suprotnih polova?
 Istoimeni polovi se odbijaju, raznoimeni polovi se privlače.

2. Glavni dio

Sada ćemo izvesti pokus. Za izvođenje pokusa potreban nam je sljedeći pribor (*prilikom nabrjanja pokazujem učenicima svaki pribor)*:

- Baterija 12 V
- Vodiči
- Izolirana žica
- Žarulja
- Magnetska igla
- Krokodil stezaljke
- Sklopka
- Grafoskop
Crtanje sheme na ploču te postavljanje učenicima pitanja da se utvrdi razumijevanje sheme.

Sada ćemo pomoću navedenog pribora spojiti zadanu shemu. Pozvati jednog učenika neka pomogne u slaganju spoja.

Nakon što smo spojili prema nacrtanoj shemi, krenut ćemo na izvođenje pokusa. Upitam učenike po čemu će prepoznati da strujnim krugom teče struja, a odgovor koji bi trebali učenici dati je da će žarulja zasvijetliti.

Uputim učenika neka otvori strujni krug i zatvori ga, a ostali neka prate što se događa. Postupak ponovimo da svi učenici dobro uoče.

Upitam učenike: Što ste uočili?

Učenici bi trebali uočiti da se magnetska igla otklonila u trenutku kada se strujni krug otvorio, a vratila u početni položaj kada je strujni krug zatvoren. Znamo da magnetsku iglu možemo otkloniti magnetom, ali u ovom slučaju vi ne vidite magnet. Imamo samo strujni krug gdje električna struja na neki način djeluje na magnetsku iglu i ona se otklanja. Zaključujemo da se oko vodiča kojim teče struja stvara magnetsko polje koje djeluje na magnetsku iglu da se ona otkloni. Napišem naslov na ploču: Magnetsko djelovanje električne struje.

Ako zamijenimo polove na bateriji promijeniti ćemo smjer struje. Što će se dogoditi s magnetskom iglom? Magnetska će se igla otkloniti samo u suprotnu stanu. Općenito, pokus koji smo mi izveli naziva se Oerstedov pokus. 1820. godine do iste spoznaje došao je danski fizičar Hans Christian Oersted koji je uočio da se igla kompasa zakrenula kada je bila u blizini strujnog kruga kojim je tekla električna struja.
Napravit ćemo i drugi pokus. Za izvođenje pokusa koristimo sljedeće:

- Baterija 12 V
- Vodiči
- Magnetska igla
- Spajalice
- Sklopkana
- Krokodil stezaljke

Crtanje sheme na ploču te postavljanje učenicima pitanja da se utvrdi razumijevanje sheme.

\[\text{+} \quad \text{ coil } \quad
\text{ - }\]

Ako u blizinu zavojnice postavimo magnetsku iglu što mislite hoće li se išta dogoditi? Nakon slušanja ideja učenika pozovem jednog učenika.

Pomoću sklopke otvorimo strujni krug i zavojnici približimo magnetsku iglu te je otklonimo. Upitam *Što su uočili?*

Magnetska igla se otklonila. Ako zamijenimo polove na bateriji, što mislite da će se dogoditi s magnetskom iglom? Nakon slušanja ideja zamijenim polove baterije i upitam učenike što su uočili? Magnetska igla se privukla zavojnici.

Ako zavojnicom teče struja, magnetska igla se odbija ili privlači. Odbijanje ili privlačenje uočeno je na prošlom satu kod polova magneta. Na temelju toga, zaključujemo da se zavojnica ponaša kao magnet.

Jačinu dobivenog magneta možemo pojačati željeznom jezgrom. Unutar naše zavojnice umetnut ćemo čavao. Ako čavao koji je umetnut u zavojnicu približimo spajalicama, što će se dogoditi? Čavao će privući spajalice, isto kao i magnet.

Takvu zavojnicu koja u sebi ima čavao, odnosno željeznu jezgru nazivamo elektromagnet. Elektromagnet je zavojnica kojom teče struja te je u nju umetnuta željezna jezgra. Ona djeluje kao magnet dok njome teče struja, a kada se struja isključi njezino djelovanje prestaje.

3. **Završni dio sata**

Postavljanjem pitanja ponoviti gradivo:

1. Što smo zaključili Oerstedovim pokusom?

 Oko vodiča kojim teče struja stvara se magnetsko polje.

2. Na koji način možemo stvoriti magnet?

 Zavojnicu spojimo u strujni krug. U trenutku kada vodičem teče struja zavojnica postaje magnet.

3. Što je elektromagnet?

 Elektromagnet je zavojnica kojom teče struja te je u nju umetnuta željezna jezgra.
Plan ploče:

Magnetsko djelovanje električne struje

Pokus 1
- **Shema spoja:**

[Diagram]

- **Zaključak:** Oko vodiča kojim teče električna struja stvara se magnetsko polje.

Pokus 2
- **Shema spoja:**

[Diagram]

- **Zaključak:** Kada zavojnicom teče električna struja ona djeluje kao magnet.
- Elektromagnet je zavojnica kojom teče struja te je u nju umetnuta željezna jezgra.

DODACI:

![Magnetni oblici](image)
Ponavljanje

- Koji sve predmete magnet privlače?

Ponavljanje

- Magnet ima pol/polove? Kako ga/ih nazivamo?

 North - Sjeverni pol
 South - Južni pol

Pokus 1

- Pribor:
 • Batterija 12 V
 • Vodiči
 • Izolirana žica
 • Žarulja
 • Magnetna igla
 • Krotkodi sluzaljke
 • Sklopke
 • Graduskop

- Shema:

Pokus 1

- Magetsko djelovanje električne struje

Pokus 2

- Pribor:
 • Batterija 12 V
 • Vodiči
 • Magnetna igla
 • Spojalice
 • Sklopke
 • Krotkodi sluzaljke

- Shema:
6. Zaključak

Magneti su oduvijek predstavljali čudo za čovječanstvo. Čudni i maleni objekti koji privlače predmete i stvaraju magnetsko polje. Magnetsko polje je nevidljivo i u njemu se osjeća djelovanje magnetske sile koja može biti odbojna ili privlačna. Stalni magneti napravljeni su od materijala koji je magnetiziran, a materijali koji se mogu magnetizirati nazivaju se feromagnetski. Magnetizam je usko povezan s električnom strujom, što dokazuje i Oerstedov pokus. Prolaskom električne struje, odnosno naboja u gibanju, oko vodiča stvara se magnetsko polje. Sila na nabijenu česticu, Lorentzova sila, te sila na vodič kojim teče električna struja važni su koncepti koje učenici prilikom proučavanja moraju shvatiti.

Fizika teži k razumijevanju. Da bi se potrebno razumijevanje dobilo, fizika se ispituje kroz eksperimente. Eksperimenti se ne odnose samo na ispitivanju teorije već imaju i ključnu ulogu u učenju same fizike. Također imaju „moć“ motivacije. U praksi ima dosta pokusa, ali oni najzastupljeniji i najčešće korišteni su oni demonstracijski. Njima učenici oblikuju konkretnе predodžbe, sudove i stavove. Bitno je da se koriste u pravo vrijeme i s točno određenim uređajima. Korisnije je koristiti manji broj dobro i pravilo odrađenih pokusa da bi se učenici uključili u nastavu raspravom što bi dovelo do razumijevanja nastavnog građiva. Škola je odgojno obrazovna ustanova stoga moramo kod učenika razvijati obje strane. Postoje brojni demonstracijski pokusi te su u radu opisani neki od njih koji bi bili zanimljivi učenicima srednje škole. Uz potrebni materijal i dobru volju mogu se ostvariti velike stvari.

Osim u poboljšanju nastave treba uzeti u obzir i budući napredak. Znanstvenici će i dalje istraživati, pronaći će nove dokaze koji će biti još korisniji za daljnji razvoj i opstanak ljudske vrste, a sve je počelo sa malim crnim čudnim kamenom, magnetitom.
7. Literatura

Životopis