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Abstract

We construct elliptic curves over the field Q(
√−3) with torsion

group Z/3Z×Z/3Z and ranks equal to 7 and an elliptic curve over the
same field with torsion group Z/3Z× Z/6Z and rank equal to 6.

1 Introduction

Let as suppose that E is an elliptic curve defined over a number field K. Ac-
cording to the Mordell-Weil theorem, the group of K-rational points E(K)
of E is a finitely generated abelian group. Therefore,

E(K) ' E(K)tors × Zr,

where E(K)tors is the torsion group and integer r ≥ 0 is the rank of E.
By Mazur’s theorem [9], when K = Q, the torsion group is one of the
following 15 groups: Z/nZ with 1 ≤ n ≤ 10 or n = 12, Z/2Z × Z/2mZ
with 1 ≤ m ≤ 4. If K = Q(

√−3) , Najman [11, 12] recently showed that
possible torsion group is either one of the groups from Mazur’s theorem, or
Z/3Z × Z/3Z or Z/3Z × Z/6Z (the last two groups are possible only over
this quadratic field [6, 7]). It is not known which values of rank are possible.
In the case of field K = Q, elliptic curves of rank greater from 28 haven’t
yet been found (current records of ranks for each of 15 possible torsion
groups can be found at http://web.math.hr/~duje/tors/tors.html) but
the conjecture that there is no upper bound for the rank of elliptic curve is
widely accepted.
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In this paper we focused on elliptic curves over the field Q(
√−3) with

torsion groups Z/3Z× Z/3Z, Z/3Z× Z/6Z. Rabarison [14] constructed el-
liptic curves with these torsion groups and ranks ≥ 2, ≥ 3, respectively. We
have improved these results and described how we find elliptic curves over
the field Q(

√−3) with ranks equal to 7 for torsion group Z/3Z×Z/3Z and
an elliptic curve with rank equal to 6 for torsion group Z/3Z × Z/6Z. It
is interesting to mention that curves with torsion group Z/3Z × Z/6Z and
positive rank are used for factoring numbers of the form a3n ± b3n (see [2]).

Our main tool for calculating the rank over Q(
√−3) is the fact (see, for

example, [15]) that if E is an elliptic curve over Q, then the rank of E over
Q(
√−3) is given by

rank(E(Q(
√−3))) = rank(E(Q)) + rank(E−3(Q)), (1)

where E−3 is the (−3)-twist of E over Q. Searching methods that we used
are similar as methods used in [5] (we have implemented them in PARI/GP
[13]).

We started with a family of elliptic curves E(t) and for curves E ∈
E(t) with property t = t1/t2, |t1| ≤ 100, t2 ≤ 500, we maximize the sum
S(N, E) + S(N,E−3) (it is experimentally known that sum S(N, E) is rela-
tively large for curve E with large rank, see [10]), where

S(N, E) =
∑

p≤N,p prime

2− ap

p + 1− ap
, ap = ap(E) = p + 1−#E(Fp),

and we used N = 1999.
In the next step we used Mestre’s conditional upper bound [8] for the

rank: if

Gλ(E) =
π2

8λ

(
log N − 2

∑

pm≤eλ

b(pm)Fλ(m log p)
log p

pm
−Mλ

)
,

where N is the conductor, b(pm) = am
p if p | N and b(pm) = αm

p + α′mp if
p - N where αp, α′p are the roots of x2 − apx + p,

Mλ = 2
(

log 2π +
∫ +∞

0
(Fλ(x)/(ex − 1)− e−x/x)dx

)
,

Fλ(x) = F (x/λ) and

F (x) =





(1− x) cos(πx) + sin(πx)/π, x ∈ [−1, 1]

0, elsewhere
,
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then the rank of elliptic curve E over Q is ≤ Gλ(E) (assuming the Birch
and Swinnerton-Dyer conjecture and GRH). For curves with large value of
S(N, E)+S(N,E−3) we used Mestre’s upper bound with parameter λ = 12
to select elliptic curve E which has potentially large rank over Q. To find
independent points of infinite order on elliptic curves E and E−3 over Q
we used Cremona’s program MWRANK [4] for curves which have rational 2-
torsion points. For other elliptic curves we used Conell’s APECS [1] or Stoll’s
RATPOINTS [16].

2 Elliptic curves over Q(
√−3) with torsion sub-

group Z/3Z× Z/3Z

According to Rabarison’s article [14], a general form of elliptic curves over
Q(
√−3) with torsion group Z/3Z× Z/3Z is

y2+s(ts2−12)xy+4t(144s2−24ts4+432ts+432t2+t2s6−36t2s3)y = x3. (2)

The torsion group is generated by the points T1 = [0, 0] and (with corrections
of misprints in Rabarison’s article)

T2 =
[
12t2s3 − 144t2 + 8ts4 − 144ts− 48s2 − t2s6

3
,

(3 +
√−3)(ts3 + (6

√−3− 18)t− 12s)(ts3 − (6
√−3 + 18)t− 12s)2

18

]
.

For fixed small s’es we used searching methods that we described ear-
lier, with the following alternation: after calculating Mestre’s upper bo-
und for rank, for selected curves we calculated analytic rank by MAGMA. For
example, for s = 1 we get five elliptic curves with the ranks equal to 6
(t = −51/20,−97/425,−95/389,−74/297, 69/262), and for s = 2 we get
two elliptic curves with ranks equal to 6 (t = −53/247, 33/313) and two
elliptic curves with ranks equal to 7 (t = 43/171, 97/133). We will now
proceed with giving details only for the last two curves.

When we put s = 2 in equation (2) we get the following family of elliptic
curves

y2 + (8t− 24)xy + 64t(36 + 30t + 13t2)y = x3

and family of (−3)-twists

y2 + (8t− 24)xy + 64t(36 + 30t + 13t2)y = x3 − 64(−3 + t)2x2
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+2048t(−108− 54t− 9t2 + 13t3)x− 28672t2(36 + 30t + 13t2)2.

For t = 43/171 we have the elliptic curve with minimal Weierstrass
equation

E : y2 + y = x3 + x2 − 42484096963x + 3506965787198963,

and independent points of infinite order

[−114191, 82881102], [−71449, 78598173],
[127323, 12721285], [277613, 114491289],[
−742000

3
,−1

2
− 347102063

18
√−3

]
,

[
−14508298

3
,−1

2
− 110421361925

18
√−3

]
,

[
−522977855649598

2051310603
,−1

2
− 8780527001022491644615

321838325747082
√−3

]
.

For t = 97/133 we have the elliptic curve with minimal Weierstrass
equation

E′ : y2 + y = x3 + x2 − 36348070599x + 4166981243028849.

Independent points of infinite order are

[−138469, 80901936], [2068591, 2963211943],[
17313869

4
,
71974844343

8

]
,

[
15483229569

64
,
1926602838263967

512

]
,

[
−81123124

27
,−1

2
− 1458267957839

486
√−3

]
,

[
−706816

3
,−1

2
− 193750613

18
√−3

]
,

[
−147741896293

164268
,−1

2
− 55330636651296391

115316136
√−3

]
.

The curves E and E′ have ranks equal to 4 over Q and twisted curves have
ranks equal to 3 (we searched for the points on these or isogenous curves
by RATPOINTS and the numbers of found independent points on all of these
curves coincide with their 2-Selmer ranks calculated by MAGMA).
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3 Elliptic curves over Q(
√−3) with torsion sub-

group Z/3Z× Z/6Z

A general form of an elliptic curve over Q(
√−3) with torsion group Z/3Z×

Z/6Z is (see [14])

y2 + 2(9t3 − 30t2 + 60t− 40)xy − 144(3t− 2)(3t2 + 4)(3t2 − 6t + 4)(t− 2)3y

= x3 − 16(3t− 2)(3t2 + 4)(3t2 − 6t + 4)x2.

The torsion group is generated by the points T1 = [0, 0] and

T2 =
[−12(t− 2)2(3t2 − 6t + 4)(3t2 + 4), 324(3 +

√−3)(t− 2)2

×(t− 2
3
√−3)2(t− 1− 1

3
√−3)(t− 1 +

1
3
√−3)2(t +

2
3
√−3)2

]
.

The (−3)-twist of this elliptic curve is given with

y2 + 2(−40 + 60t− 30t2 + 9t3)xy

− 144(−2 + t)3(−32 + 96t− 120t2 + 108t3 − 72t4 + 27t5)y

= x3 − 4(1984− 5952t + 7440t2 − 5616t3 + 2844t4 − 864t5 + 81t6)x2

− 1152(−2 + t)3(1280− 5760t + 11520t2 − 14688t3

+ 13824t4 − 9720t5 + 4752t6 − 1458t7 + 243t8)x

− 145152(−2 + t)6(32− 96t + 120t2 − 108t3 + 72t4 − 27t5)2.

We noticed that parameters t and 4/(3t) give isomorphic elliptic curves over
Q(
√−3). For parameter t = −74/469 we have an elliptic curve with rank

equal to 6 (r(E(Q)) = r(E−3(Q)) = 3). The minimal Weierstrass equations
is

E : y2 + xy + y = x3 − x2 − 187646882683490022342866999027
−43285746898654983057699486743376155701770349.

Independent points of infinite order are

P1 = [707406059162101, 13340697112791107526174] ,

P2 =
[
77083204410542157930979

9162729
,

21372105282239431202904591169806542
27735580683

]
,
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P3 =
[
1901766270755934739691839

63632529
,

2622344436598590959558761413133872862
507596683833

]
,

P4 = [−216659438724672,

216659438724671
2

− 4131272122580067263337
2

√−3
]

,

P5 =
[−4488915509374394670

3481
,

4488915509374391189
6962

− 10460864310602319386663328165
410758

√−3
]

,

P6 =
[
−9770285635149371157870573

37725681361
,

4885142817574666716094606
37725681361

− 14690941939486947421551505752352483884
7327496816428391

√−3
]

,

Furthemore, for parameters t = 22/89, 35/43, 30/149, 56/117, 104/201,
138/89,−20/59,−38/153 we have elliptic curves with ranks equal to 5 over
Q(
√−3) (curve with parameter 22/89 and (−3)-twist of the curve with pa-

rameter 56/117 are isogenous elliptic curves and same happens with the
pairs 30/149, 104/201 and 35/43, −38/153).
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