The relation of Connected Set Cover and Group Steiner Tree

Slobodan Jelić¹ Domagoj Matijević¹

¹Josip Juraj Strossmayer University of Osijek Department of Mathematics

ApplMath11

7th Conference on Applied Mathematics and Scientific Computing June 13-17, 2011 Trogir, Croatia

(4月) (日) (日)

- NP-hard combinatorial optimizations problem
- efficient algorithm not known
- polynomial approximation

$$OPT \leq ALG \leq \rho * OPT$$

- ρ approximation algorithm
- $\rho = \rho(\cdot)$ function of input size = approximation ratio

• *U* - set of elements (universe)

• S family of subsets of U

•
$$\bigcup_{S \in S} S = U$$

- **Problem:** Find $\mathcal{R} \subseteq \mathcal{S}$
 - each $u \in U$ is contained in at least one set from \mathcal{R}
 - \bullet among all such subfamilies, ${\cal R}$ has minimal cardinality

イロン イヨン イヨン イヨン

- *U* set of elements (universe)
- $\mathcal S$ family of subsets of U

•
$$\bigcup_{S\in\mathcal{S}}S=U$$

- **Problem:** Find $\mathcal{R} \subseteq \mathcal{S}$
 - each $u \in U$ is contained in at least one set from \mathcal{R}
 - \bullet among all such subfamilies, ${\cal R}$ has minimal cardinality

- 4 回 2 - 4 回 2 - 4 回 2 - 4

- *U* set of elements (universe)
- \mathcal{S} family of subsets of U

•
$$\bigcup_{S\in\mathcal{S}}S=U$$

- **Problem:** Find $\mathcal{R} \subseteq \mathcal{S}$
 - each $u \in U$ is contained in at least one set from $\mathcal R$
 - \bullet among all such subfamilies, ${\cal R}$ has minimal cardinality

・ 同 ト ・ ヨ ト ・ ヨ ト

Set Cover

◆□→ ◆□→ ◆注→ ◆注→ □注。

Set Cover

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ

Set Cover

æ

• *U* - set of elements (universe)

• \mathcal{S} family of subsets of U

$$\bigcup_{S\in\mathcal{S}}S=U$$

• G = (S, E) connected graph

→ 同 → → 三 →

- ∢ ≣ >

- *U* set of elements (universe)
- $\bullet \ \mathcal{S}$ family of subsets of U

$$\bigcup_{S\in\mathcal{S}}S=U$$

• G = (S, E) connected graph

・ 同・ ・ ヨ・

- *U* set of elements (universe)
- $\bullet \ \mathcal{S}$ family of subsets of U

$$\bigcup_{S\in\mathcal{S}}S=U$$

• G = (S, E) connected graph

A ■

- *U* set of elements (universe)
- $\bullet \ \mathcal{S}$ family of subsets of U

$$\bigcup_{S\in\mathcal{S}}S=U$$

• G = (S, E) connected graph

A ₽

- U set of elements (universe)
- ${\mathcal S}$ family of subsets of ${\mathcal U}$

$$\bigcup_{S\in\mathcal{S}}S=U$$

• G = (S, E) connected graph

A ₽

- **Problem:** Find $\mathcal{R} \subseteq \mathcal{S}$
 - each $u \in U$ is contained in at least one set from $\mathcal R$
 - $G[\mathcal{R}]$ is connected
 - \bullet among all such subfamilies, ${\cal R}$ has minimal cardinality
- Node weighted case:
 - each set S has nonnegative weight w(S)
 - $\sum_{S \in \mathcal{R}} w(S)$ minimized
 - NWCSC Node Weighted Connected Set Cover

・ロン ・回と ・ヨン ・ヨン

- **Problem:** Find $\mathcal{R} \subseteq \mathcal{S}$
 - each $u \in U$ is contained in at least one set from $\mathcal R$
 - $G[\mathcal{R}]$ is connected
 - ullet among all such subfamilies, ${\mathcal R}$ has minimal cardinality
- Node weighted case:
 - each set S has nonnegative weight w(S)
 - $\sum_{S \in \mathcal{R}} w(S)$ minimized
 - NWCSC Node Weighted Connected Set Cover

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロト ・回ト ・ヨト ・ヨト

æ

æ.

・ロ・・(四・・)を注・・(注・・)注

(日) (回) (E) (E) (E)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

constructing optimal biodiversity reserve system

- set of species live on protected areas reserves
- choose subset of reserves which represents all species
- overall number (cost) of reserves has minimized
- Debinski and Holt, *A survey and overview of habitat fragmentation experiments*, Conservation Biology, (2000)
 - "...movement and species richness are positively affected by corridors and connectivity..."
- problem can be modeled as CSC

- constructing optimal biodiversity reserve system
 - set of species live on protected areas reserves
 - choose subset of reserves which represents all species
 - overall number (cost) of reserves has minimized
- Debinski and Holt, *A survey and overview of habitat fragmentation experiments*, Conservation Biology, (2000)
 - "...movement and species richness are positively affected by corridors and connectivity..."
- problem can be modeled as CSC

- (目) - (日) - (日)

- constructing optimal biodiversity reserve system
 - set of species live on protected areas reserves
 - choose subset of reserves which represents all species
 - overall number (cost) of reserves has minimized
- Debinski and Holt, *A survey and overview of habitat fragmentation experiments*, Conservation Biology, (2000)
 - "...movement and species richness are positively affected by corridors and connectivity..."
- problem can be modeled as CSC

・ 同 ト ・ ヨ ト ・ ヨ ト

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph • approximation ratio: $1 + D_c(G)H(\gamma - 1)$
 - D_c(G) length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max\{|S| : S \in S\}$
 - NWCSC presented as an open problem

・ロン ・回 と ・ ヨ と ・ ヨ と

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 - valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph • approximation ratio: $1 + D_c(G)H(\gamma - 1)$
 - D_c(G) length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max\{|S| : S \in S\}$
 - NWCSC presented as an open problem

(日) (部) (注) (注) (言)

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 - valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph
 - approximation ratio: $1 + D_c(G)H(\gamma 1)$
 - $D_c(G)$ length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max\{|S| : S \in S\}$
 - NWCSC presented as an open problem

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 - valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph
 - approximation ratio: $1 + D_c(G)H(\gamma 1)$
 - $D_c(G)$ length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max\{|S| : S \in S\}$
 - NWCSC presented as an open problem

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 - valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph
 - approximation ratio: $1 + D_c(G)H(\gamma 1)$
 - $D_c(G)$ length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max \{ |S| : S \in S \}$
 - NWCSC presented as an open problem

- Cerdiera and Pinto, *Requiring Connectivity in Set Covering Problem*, Journal of Combinatorial Optimization (2005)
 - valid inequalities for CSC polytope
- Shuai and Hu, *Connected set cover problem and its applications*, Algorithmic Aspects in Information and Management(2006)
 - connected set cover on line and spider graphs
- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - first greedy approximation algorithm for CSC on general graph
 - approximation ratio: $1 + D_c(G)H(\gamma 1)$
 - $D_c(G)$ length of the longest path in graph G between two non-disjoint sets
 - $\gamma = \max \{ |S| : S \in S \}$
 - NWCSC presented as an open problem

Our improvements on CSC and NWCSC

• $D_c(G) \in O(m)$

- improvement on CSC:
 - approximation ratio $O(\log^2 m \log \log m \log n)$

• results on NWCSC:

- we are not aware of any previous algorithm for NWCSC
- our algorithm: $O(\sqrt{m} \log m)$

・ロン ・回と ・ヨン ・ヨン

- $D_c(G) \in O(m)$
- improvement on CSC:
 - approximation ratio $O(\log^2 m \log \log m \log n)$
- results on NWCSC:
 - we are not aware of any previous algorithm for NWCSC
 - our algorithm: $O(\sqrt{m} \log m)$

- 4 同 6 4 日 6 4 日 6

- $D_c(G) \in O(m)$
- improvement on CSC:
 - approximation ratio $O(\log^2 m \log \log m \log n)$
- results on NWCSC:
 - we are not aware of any previous algorithm for NWCSC
 - our algorithm: $O(\sqrt{m} \log m)$

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$n \in \mathbb{N}$$
 is even, $n \ge 6$
 $U = \{1, 2, ..., n\}$
• $S = \{S_1, ..., S_n\}$
• $S_1 = \{1, 2, ..., n/2\}$
• $S_n = \{n/2 + 1, ..., n\}$
• $S_i = \{i - 1, i\}$ for $2 \le i \le n - 1$

•
$$n \in \mathbb{N}$$
 is even, $n \ge 6$
 $U = \{1, 2, ..., n\}$
• $S = \{S_1, ..., S_n\}$
• $S_1 = \{1, 2, ..., n/2\}$
• $S_n = \{n/2 + 1, ..., n\}$
• $S_i = \{i - 1, i\}$ for $2 \le i \le n - 1$

- - 4 回 ト - 4 回 ト

æ

• introduced by Reich and Widmayer (1990).

- motivation: wire routing with multiport terminals in physical VLSI design
- definition:
 - graph G
 - edge weight function $w: E(G) \to \mathbb{R}^+$
 - $\mathcal{G} = \{g_1, g_2, \ldots, g_k\}, \quad g_i \in V$
 - objective: find subtree T
 - $V(T) \cap g_i \neq \emptyset$ for all $i \in \{1, \dots, k\}$
 - minimize $\sum_{e \in E(T)} w(e)$
- node weighted case:
 - each vertex $v \in V(G)$ has nonnegative weight $w_N(v)$
 - minimize $\sum_{v \in V(T)} w_N(v)$
- NWGST Node Weighted Group Steiner Tree

・ロン ・回 と ・ ヨ と ・ ヨ と

- introduced by Reich and Widmayer (1990).
- motivation: wire routing with multiport terminals in physical VLSI design
- definition:
 - graph G
 - edge weight function $w: E(G) \to \mathbb{R}^+$
 - $\mathcal{G} = \{g_1, g_2, \ldots, g_k\}, \quad \underline{g}_i \subset V$
 - objective: find subtree *T*
 - $V(T) \cap g_i \neq \emptyset$ for all $i \in \{1, \dots, k\}$
 - minimize $\sum_{e \in E(T)} w(e)$
- node weighted case:
 - each vertex $v \in V(G)$ has nonnegative weight $w_N(v)$
 - minimize $\sum_{v \in V(T)} w_N(v)$
- NWGST Node Weighted Group Steiner Tree

소리가 소문가 소문가 소문가

- introduced by Reich and Widmayer (1990).
- motivation: wire routing with multiport terminals in physical VLSI design
- definition:
 - graph G
 - edge weight function $w: E(G) \to \mathbb{R}^+$
 - $\mathcal{G} = \{g_1, g_2, \ldots, g_k\}, \quad g_i \subset V$
 - objective: find subtree T
 - $V(T) \cap g_i \neq \emptyset$ for all $i \in \{1, \dots, k\}$
 - minimize $\sum_{e \in E(T)} w(e)$
- node weighted case:
 - each vertex $v \in V(G)$ has nonnegative weight $w_N(v)$
 - minimize $\sum_{v \in V(T)} w_N(v)$
- NWGST Node Weighted Group Steiner Tree

소리가 소문가 소문가 소문가

- introduced by Reich and Widmayer (1990).
- motivation: wire routing with multiport terminals in physical VLSI design
- definition:
 - graph G
 - edge weight function $w: E(G) \to \mathbb{R}^+$
 - $\mathcal{G} = \{g_1, g_2, \ldots, g_k\}, \quad g_i \subset V$
 - objective: find subtree T
 - $V(T) \cap g_i \neq \emptyset$ for all $i \in \{1, \dots, k\}$
 - minimize $\sum_{e \in E(T)} w(e)$
- node weighted case:
 - each vertex $v \in V(G)$ has nonnegative weight $w_N(v)$
 - minimize $\sum_{v \in V(T)} w_N(v)$
- NWGST Node Weighted Group Steiner Tree

- introduced by Reich and Widmayer (1990).
- motivation: wire routing with multiport terminals in physical VLSI design
- definition:
 - graph G
 - edge weight function $w: E(G) \to \mathbb{R}^+$
 - $\mathcal{G} = \{g_1, g_2, \ldots, g_k\}, \quad g_i \subset V$
 - objective: find subtree T
 - $V(T) \cap g_i \neq \emptyset$ for all $i \in \{1, \dots, k\}$
 - minimize $\sum_{e \in E(T)} w(e)$
- node weighted case:
 - each vertex $v \in V(G)$ has nonnegative weight $w_N(v)$
 - minimize $\sum_{v \in V(T)} w_N(v)$
- NWGST Node Weighted Group Steiner Tree

(日本) (日本) (日本)

Group Steiner Tree

・ロト ・回ト ・ヨト ・ヨト

æ

Group Steiner Tree

Slobodan Jelić, Domagoj Matijević The relation of Connected Set Cover and Group Steiner Tree

・ロト ・回ト ・ヨト ・ヨト

æ

Group Steiner Tree

Slobodan Jelić, Domagoj Matijević The relation of Connected Set Cover and Group Steiner Tree

total weight = 5

Slobodan Jelić, Domagoj Matijević The relation of Connected Set Cover and Group Steiner Tree

Slobodan Jelić, Domagoj Matijević The relation of Connected Set Cover and Group Steiner Tree

- Garg, Konjevod and Ravi, *A polylogarithmic approximation algorithm for group Steiner tree problem*, Journal of Algorithms (2000)
 - first polylogarithmic approximation algorithm for GST
 - solving problem on trees in approximation ratio $O(\log k \log N)$
 - technique: LP relaxation + randomized rounding
 - generalization: stretch = $O(\log n \log \log n)$
 - Bartal probabilistic approximation of metric spaces
- result on general graph: $O(\log N \log n \log \log n \log k)$

- Garg, Konjevod and Ravi, *A polylogarithmic approximation algorithm for group Steiner tree problem*, Journal of Algorithms (2000)
 - first polylogarithmic approximation algorithm for GST
 - solving problem on trees in approximation ratio $O(\log k \log N)$
 - technique: LP relaxation + randomized rounding
 - generalization: stretch = $O(\log n \log \log n)$
 - Bartal probabilistic approximation of metric spaces
- result on general graph: $O(\log N \log n \log \log n \log k)$

• Khandekar, Kortsarz and Nutov - Approximating Fault-Tolerant Group-Steiner Problems, FSTTCS (2009)

- first approximation of NWGST
- $O(\sqrt{n} \log n)$ approximation algorithm

・ロト ・回ト ・ヨト ・ヨト

- Khandekar, Kortsarz and Nutov Approximating Fault-Tolerant Group-Steiner Problems, FSTTCS (2009)
 - first approximation of NWGST
 - $O(\sqrt{n} \log n)$ approximation algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

- Khandekar, Kortsarz and Nutov Approximating Fault-Tolerant Group-Steiner Problems, FSTTCS (2009)
 - first approximation of NWGST
 - $O(\sqrt{n} \log n)$ approximation algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

NWCSC and NWGST are equivalent

- NWCSC reducible to NWGST
- NWGST reducible to NWCSC
- NWCSC algorithm:
 - reduce NWCSC to NWGST
 - solve NWGST by Khandekar et al. algorithm
- CSC algorithm:
 - reduce CSC to GST with edge weights equal to 1
 - solve GST by Garg et al. algorithm

NWCSC and NWGST are equivalent

- NWCSC reducible to NWGST
- NWGST reducible to NWCSC
- NWCSC algorithm:
 - reduce NWCSC to NWGST
 - solve NWGST by Khandekar et al. algorithm
- CSC algorithm:
 - reduce CSC to GST with edge weights equal to 1
 - solve GST by Garg et al. algorithm

NWCSC and NWGST are equivalent

- NWCSC reducible to NWGST
- NWGST reducible to NWCSC
- NWCSC algorithm:
 - reduce NWCSC to NWGST
 - solve NWGST by Khandekar et al. algorithm
- CSC algorithm:
 - reduce CSC to GST with edge weights equal to 1
 - solve GST by Garg et al. algorithm

- NWCSC and NWGST are equivalent
 - NWCSC reducible to NWGST
 - NWGST reducible to NWCSC
- NWCSC algorithm:
 - reduce NWCSC to NWGST
 - solve NWGST by Khandekar et al. algorithm
- CSC algorithm:
 - reduce CSC to GST with edge weights equal to 1
 - solve GST by Garg et al. algorithm

- 4 回 ト 4 ヨ ト 4 ヨ ト

- NWCSC and NWGST are equivalent
 - NWCSC reducible to NWGST
 - NWGST reducible to NWCSC
- NWCSC algorithm:
 - reduce NWCSC to NWGST
 - solve NWGST by Khandekar et al. algorithm
- CSC algorithm:
 - reduce CSC to GST with edge weights equal to 1
 - solve GST by Garg et al. algorithm

伺 ト イヨト イヨト

- Zhang, Gao and Wu, Algorithms for connected set cover problem and fault-tolerant connected set cover problem, Theoretical Computer Science (2009)
 - solution subgraph has to be k connected
 - each element covered by at least *m* sets
- (*k*, *m*) CSC
- generalization of (1,m)-CSC
 - each element u has requirement $r_u \in \mathbb{N}$
 - element u has to be covered by at least r_u sets
- Connected Set Cover with requirements (CSC-R)

- Zhang, Gao and Wu, Algorithms for connected set cover problem and fault-tolerant connected set cover problem, Theoretical Computer Science (2009)
 - solution subgraph has to be k connected
 - each element covered by at least *m* sets
- (k, m) CSC
- generalization of (1,m)-CSC
 - each element u has requirement $r_u \in \mathbb{N}$
 - element u has to be covered by at least r_u sets
- Connected Set Cover with requirements (CSC-R)

- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - solution subgraph has to be k connected
 - each element covered by at least *m* sets
- (k, m) CSC
- generalization of (1,m)-CSC
 - each element u has requirement $r_u \in \mathbb{N}$
 - element u has to be covered by at least r_u sets
- Connected Set Cover with requirements (CSC-R)

- 4 同 6 4 日 6 4 日 6

- Zhang, Gao and Wu, *Algorithms for connected set cover problem and fault-tolerant connected set cover problem*, Theoretical Computer Science (2009)
 - solution subgraph has to be k connected
 - each element covered by at least *m* sets
- (k, m) CSC
- generalization of (1,m)-CSC
 - each element u has requirement $r_u \in \mathbb{N}$
 - element u has to be covered by at least r_u sets
- Connected Set Cover with requirements (CSC-R)

- 4 同 6 4 日 6 4 日 6

generalization of GST

- $\bullet\,$ each group $g\in \mathcal{G}$ has to be covered at least k_g times, $k_g\in \mathbb{N}$
- Konjevod, Ravi and Srinivasan, Approximation algorithms for the covering steiner problem, Random Structures and Algorithms (2002)
 - polylog approximation for CST
 - approximation ratio: $O(\log n \log \log n \log N \log(K \cdot k))$

- generalization of GST
 - $\bullet\,$ each group $g\in \mathcal{G}$ has to be covered at least k_g times, $k_g\in \mathbb{N}$
- Konjevod, Ravi and Srinivasan, *Approximation algorithms for the covering steiner problem*, Random Structures and Algorithms (2002)
 - polylog approximation for CST
 - approximation ratio: $O(\log n \log \log n \log N \log(K \cdot k))$

(1) マン・ション・

- CSC-R equivalent to CST with mutually equal edge weights (w(e) = 1 for all e ∈ E(G))
- algorithm for CSC-R:
 - reduce CSC-R to CST
 - approximation ratio for CSC-R: $O(\log^2 m \log \log m \log(R \cdot n))$
 - $R = \max_{u \in U} r_u$

・ロン ・回と ・ヨン ・ヨン

- CSC-R equivalent to CST with mutually equal edge weights (w(e) = 1 for all e ∈ E(G))
- algorithm for CSC-R:
 - reduce CSC-R to CST
 - approximation ratio for CSC-R: $O(\log^2 m \log \log m \log(R \cdot n))$
 - $R = \max_{u \in U} r_u$

(1) マン・ション・

NWCSC to NWGST reduction

- reduction from NWCSC to NWGST
 - fixed element $u \in U$

$$g_u = \{S \in S : u \in S\}$$

- graph G, node weights $w_N(\cdot)$
- NWGST instance
- let T is solution of NWGST
- take $\mathcal{R} = V(T)$ as solution of NWCSC
 - $G[\mathcal{R}]$ is connected since T is connected
 - $\bullet~ \mathcal{R}$ is set cover since T touches each group
- CSC to GST reduction: w(e) = 1 for all e ∈ E(G)
 CSC-R to CST reduction: k_{gu} = r_u

- 4 同 6 4 日 6 4 日 6

NWCSC to NWGST reduction

- reduction from NWCSC to NWGST
 - fixed element $u \in U$

$$g_u = \{S \in S : u \in S\}$$

- graph G, node weights $w_N(\cdot)$
- NWGST instance
- let T is solution of NWGST
- take $\mathcal{R} = V(T)$ as solution of NWCSC
 - $G[\mathcal{R}]$ is connected since T is connected
 - $\bullet~ \mathcal{R}$ is set cover since T touches each group
- CSC to GST reduction: w(e) = 1 for all $e \in E(G)$
- CSC-R to CST reduction: $k_{g_u} = r_u$

- 4 同 6 4 日 6 4 日 6

NWCSC to NWGST reduction

- reduction from NWCSC to NWGST
 - fixed element $u \in U$

$$g_u = \{S \in S : u \in S\}$$

- graph G, node weights $w_N(\cdot)$
- NWGST instance
- let T is solution of NWGST
- take $\mathcal{R} = V(T)$ as solution of NWCSC
 - $G[\mathcal{R}]$ is connected since T is connected
 - $\bullet~ \mathcal{R}$ is set cover since T touches each group
- CSC to GST reduction: w(e) = 1 for all $e \in E(G)$
- CSC-R to CST reduction: $k_{g_u} = r_u$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Inapproximability results on NWCSC and open problems

- Halperin and Krauthgamer, *Polylogarithmic inapproximability*, STOC,(2003)
 - approximation ratio for GST is $\Omega(\log^2 n)$
 - even for trees

- 4 回 ト 4 ヨ ト 4 ヨ ト

Inapproximability results on NWCSC and open problems

- Halperin and Krauthgamer, *Polylogarithmic inapproximability*, STOC,(2003)
 - approximation ratio for GST is $\Omega(\log^2 n)$
 - even for trees
- our conclusion:
 - NWGST on trees is reducible to GST
 - NWCSC and NWGST are equivalent
 - NWCSC is $\Omega(\log^2 n)$ inapproximable

Inapproximability results on NWCSC and open problems

- Halperin and Krauthgamer, *Polylogarithmic inapproximability*, STOC,(2003)
 - approximation ratio for GST is $\Omega(\log^2 n)$
 - even for trees
- our conclusion:
 - NWGST on trees is reducible to GST
 - NWCSC and NWGST are equivalent
 - NWCSC is $\Omega(\log^2 n)$ inapproximable
- open problems:
 - polylog approximation of NWCSC
 - log approximation of CSC (or proof of nonexistence)

- (目) - (日) - (日)

Thank you for attention!!!

▲ロン ▲御と ▲注と ▲注と

æ