Odjel za matematiku

Kristian Sabo

 

ksabo web

Full Professor
Department of Mathematics
Josip Juraj Strossmayer University of Osijek
Trg Ljudevita Gaja 6
Osijek, HR-31000, Croatia¸

Google Scholar Profile

phone: +385-31-224-827
fax: +385-31-224-801
email:  ksabo @ mathos.hr
office:  18 (ground floor)

 


Research Interests

Applied and Numerical Mathematics (Curve Fitting, Parameter Estimation, Data Cluster Analysis) with applications in Agriculture, Economy, Chemistry, Politics, Electrical Engineering, Medicine, Food Industry, Mechanical Engineering.

Degrees

PhD in Numerical Mathematics, Department of Mathematics, University of Zagreb, 2007
MSc in Mathematics, Department of Mathematics, University of Zagreb, 2003
BSc in Mathematics and Computer Science, Department of Mathematics, University of Osijek,  Croatia, 1999
 

Publications

Journal Publications

  1. R. Scitovski, K. Sabo, P. Nikić, S. Majstorović, A new efficient method for solving the multiple ellipse detection problem, Expert systems with applications (2023), prihvaćen za objavljivanje
    In this paper, we consider the multiple ellipse detection problem based on data points coming from a number of ellipses in the plane not known in advance. In so doing, data points are usually contaminated with some noisy errors. In this paper, the multiple ellipse detection problem is solved as a center-based problem from cluster analysis. Therefore, an ellipse is considered a Mahalanobis circle. In this way, we easily determine a distance from a point to the ellipse and also an ellipse as the cluster center. In the case when the number of ellipses is known in advance, an optimal partition is searched for on the basis of the k-means algorithm that is modified for this case. Hence, a good initial approximation for M-circle-centers is searched for as unit circles with the application of a few iterations of the well-known DIRECT algorithm for global optimization. In the case when the number of ellipses is not known in advance, optimal partitions with 1, 2, … clusters for the case when cluster-centers are ellipses are determined by using an incremental algorithm. Among them, the partition with the most appropriate number of clusters is selected. For that purpose, a new Geometrical Objects-index (GO-index) is defined. Numerous test-examples point to high efficiency of the proposed method. Many algorithms can be found in the literature that recognize ellipses with clear edges well, but that do not recognize ellipses with unclear or noisy edges. On the other hand, our algorithm is specifically used for recognition of ellipses with unclear or noisy edges.
  2. R. Scitovski, K. Sabo, D. Grahovac, Š. Ungar, Minimal distance index — A new clustering performance metrics, Information Sciences (2023), prihvaćen za objavljivanje
    We define a new index for measuring clustering performance called the Minimal Distance Index. The index is based on representing clusters by characteristic objects containing the majority of cluster points. It performs well for both spherical and ellipsoidal clusters. This method can recognize all acceptable partitions with well-separated clusters. Among such partitions, our minimal distance index may identify the most appropriate one. The proposed index is compared with other most frequently used indexes in numerous examples with spherical and ellipsoidal clusters. It turned out that our proposed minimal distance index always recognizes the most appropriate partition, whereas the same cannot be said for other indexes found in the literature.
  3. R. Scitovski, K. Sabo, Š. Ungar, A method for forecasting the number of hospitalized and deceased based on the number of newly infected during a pandemic, Scientific Reports - Nature 12/4773 (2022), 1-8
    In this paper we propose a phenomenological model for forecasting the numbers of deaths and of hospitalized persons in a pandemic wave, assuming that these numbers linearly depend, with certain delays τ>0 for deaths and δ>0 for hospitalized, on the number of new cases. We illustrate the application of our method using data from the third wave of the COVID-19 pandemic in Croatia, but the method can be applied to any new wave of the COVID-19 pandemic, as well as to any other possible pandemic. We also supply freely available Mathematica modules to implement the method.
  4. R. Scitovski, K. Sabo, A combination of k-means and DBSCAN algorithm for solving the multiple generalized circle detection problem, Advances in Data Analysis and Classification 15 (2021), 83-89
    Motivated by the problem of identifying rod-shaped particles (e.g. bacilliform bacterium), in this paper we consider the multiple generalized circle detection problem. We propose a method for solving this problem that is based on center-based clustering, where cluster-centers are generalized circles. An efficient algorithm is proposed which is based on a modification of the well-known $k$-means algorithm for generalized circles as cluster-centers. In doing so, it is extremely important to have a good initial approximation. For the purpose of recognizing detected generalized circles, a verb|QAD|-indicator is proposed. Also a new verb|DBC|-index is proposed, which is specialized for such situations. The recognition process is intitiated by searching for a good initial partition using the verb|DBSCAN|-algorithm. If verb|QAD|-indicator shows that generalized circle-cluster-center does not recognize searched generalized circle for some cluster, the procedure continues searching for corresponding initial generalized circles for these clusters using the Incremental algorithm. After that, corresponding generalized circle-cluster-centers are calculated for obtained clusters. This will happen if a data point set stems from intersected or touching generalized circles. The method is illustrated and tested on different artificial data sets coming from a number of generalized circles and real images.
  5. R. Scitovski, S. Majstorović, K. Sabo, A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem, Journal of Global Optimization 79/3 (2021), 669-686
    In this paper we consider the multiple geometrical object detection problem. On the basis of the set $A$ of data points coming from and scattered among a number of geometrical objects not known in advance, we should reconstruct or detect thosegeometrical objects. A new very efficient method for solving this problem based on avery popular RANSAC method using parameters from DBSCAN method is proposed.Thereby, instead of using classical indexes for recognizing the most appropriatepartition, we use parameters from DBSCAN method which define the necessaryconditions proven to be far more efficient.Especially, the method is applied to solving multiple circle detection problem. In this case, we give both the conditions for the existence of the best circle as arepresentative of the data set and the explicit formulas for the parameters of the bestcircle. In the illustrative example we consider the multiple circle detection problem for the datapoint set $A$ coming from $5$ intersected circles not known in advance. Using Wolfram Mathematica, the proposed method needed between 0.5 - 1 sec to solve this problem.





Projects

  • Scientifically branded Pork (Member of the scientific project entitled above. Project started on June 1, 2014. Principal investigator is professor Goran Kušec from Faculty of Agriculture in Osijek, University of Osijek. Project was supported by Croatian Science Foundation.)

 


Professional Activities

Editorial Board

Since 2012 member of the Editorial board of the Journal Osječki matematički list

2001-2012 Editor in Chief of the Journal Osječki matematički list

 


 

Committee Memberships
  •  Member of the Organize Committee of the 4th Croatian Congress of Mathematics, Osijek, 2008
  •  Member of the Organize Committee of the 15th International Conference on Operational Research, Croatian Operational Research Society, Osijek 2014

 

Refereeing/Reviewing
 

Journal of Computational and Applied Mathematics, Journal of Classification, Mathematical Communications,  International Journal of Applied and Mathematics and Computer Science, Croatian Operational Research Review, TEAM 2012 International Conference, Osječki matematički list


 

Service Activities

Since 2013 president of Osijek Mathematical Society

2001-2013 secretary of Osijek Mathematical Society

 

Selected Other Activities (in Croatian)
 

 

  • 2014., 2015.  Večer matematike – manifestacija popularizacije matematike u organizaciji Udruge matematičara Osijeku i Hrvatskog matematičkog društva -  Član Programskog i Organizacijskog odbora
  •  2013.-2016. Matematičke pripreme za učenike srednjih škola • Programski i Organizacijski koordinator
  • 2000.-2016. Zimska matematička škola za učenike srednjih škola  • Član Programskog i Organizacijskog odbora
  • 2000.-2016. Zimska matematička škola za učenike osnovnih škola  • Član Programskog i Organizacijskog odbora
  • 2006.-2016. Stručni kolokvij Udruge matematičara Osijek • Član Programskog i Organizacijskog odbora
  • travanj, 2014.  Geometrijska škola Stanko Bilinski, Našice:  Predavanje za nastavnike: „Funkcija udaljenosti i odgovarajuća geometrija“,  Radionica za učenike: “Neki optimizacijski problemi u geometriji“
  • travanj, 2014. Festival znanosti Sveučilišta Josipa Jurja Strossmayera u Osijeku  Predavanje: „Što su optimalne izborne (upravne) jedinice i kako ih odrediti“.  Član Programskog i Organizacijskog odbora
  • listopad, 2012. Stručni skup: Nastava matematike i izazovi moderne tehnologije u organizaciji Udruge Normala - Predavanje: „Zaglađivanje podataka: metode, pristupi i primjene“

 

 


Teaching (in Croatian)

Konzultacije: Srijeda  11:00 - 12:00

Teme zavšnih i diplomskih radova (pdf)

 

Zimski semestar 2017./2018.

 

Matematika I, Prehrambeno tehnološki fakultet

Primijenjena i Inženjerska matematika, Prehrambeno tehnološki fakultet

 

 

Ljetni semestar 2015./2016.

Grupiranje podataka: pristupi, metode i primjene,  ponedjeljak 13:00 - 17:00, RP2

Linearno programiranje, petak 8:00-12:00, RP1

Numerička analiza, srijeda 10:00-12:00, P24

 

Zimski semestar 2015./2016.

 Diferencijalni račun, utorak, 8:00 - 11:00, P 1

 Matematički praktikum, srijeda, 8:00-10:00

 

Ljetni semestar 2014./2015.

Grupiranje podataka: pristupi, metode i primjene,  ponedjeljak 13:00 - 17:00, RP2

Linearno programiranje, utorak 15:00-19:00, P3

Numerička analiza, srijeda 8:00-10:00, P24

Primjene diferencijalnog i integralnog računa II, srijeda 10:00-11:00, P2

 


Personal

 

  • Birthdate: November 23, 1975
  • Birthplace: Kula, Vojvodina, Serbia
  • Family: married with Marija, and have one daughter Paula

 

Udžbenik Linearno programiranje (pdf)

Pelud(rar)

Uvodni sat (pptx)

Izvjesce procelnika 2017/2018 (pdf)

Diplomski sveucilisni nastavnicki studij matematike i informatike (pdf)

Izvješće pročelnika 2021./2022 (pdf)