Kažemo da je funkcija $f : (a, b) \rightarrow \mathbb{R}$ derivabilna u točki $x_0 \in (a, b)$, ako postoji limes

$$
\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.
$$

Ako limes (1) ne postoji, onda kažemo da funkcija f nije derivabilna u točki x_0. Ako je funkcija f derivabilna u točki x_0, onda realan broj (1) zovemo derivacija funkcije f u točki x_0 i označavamo s $f'(x_0)$, tj.

$$
f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.
$$

Ako je funkcija f derivabilna u svakoj točki $x_0 \in (a, b)$, onda kažemo da je ona derivabilna na (a, b). Funkciju $x \mapsto f'(x)$ definiranu na (a, b) označavamo s f' i nazivamo derivacijom funkcije f na (a, b).

Supstitucijom $\Delta x = x - x_0$, formula (1) prelazi u ekvivalentnu formulu

$$
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.
$$

Ako su $f, g : (a, b) \rightarrow \mathbb{R}$ derivabilne funkcije u točki $x \in (a, b)$, onda su i $f \pm g, f \cdot g, \frac{f}{g}, f \circ g$ derivabilne u točki $x \in (a, b)$ i vrijede sljedeća pravila:

1) $(f \pm g)'(x) = f'(x) \pm g'(x)$

2) $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

3) $\left(\frac{f}{g} \right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)},$ uz dodatni uvjet $g(x) \neq 0$

4) $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Tablica derivacija elementarnih funkcija:

- $(c)' = 0, \ c \in \mathbb{R}$
- $(x^\alpha)' = \alpha x^{\alpha - 1}, \ \alpha \in \mathbb{R}, \ x \in \mathbb{R}$
- $(\log_a x)' = \frac{1}{x \ln a} \left(= \frac{1}{x \log_a e} \right), \ x > 0$
- $(\ln x)' = \frac{1}{x}, \ x > 0$
- $(a^x)' = a^x \ln a, \ x \in \mathbb{R}$
- $(e^x)' = e^x, \ x \in \mathbb{R}$
- $(\sin x)' = \cos x, \ x \in \mathbb{R}$
- $(\cos x)' = -\sin x, \ x \in \mathbb{R}$
\[(\tan x)' = \frac{1}{\cos^2 x}, \quad x \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z} \]
\[(\cot x)' = -\frac{1}{\sin^2 x}, \quad x \neq k\pi, \quad k \in \mathbb{Z} \]
\[(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \]
\[(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \]
\[(\arctan x)' = \frac{1}{1 + x^2}, \quad x \in \mathbb{R} \]
\[(\arcctan x)' = -\frac{1}{1 + x^2}, \quad x \in \mathbb{R} \]

ZADATAK 1. Ispitajte derivabilnost funkcije \(f(x) = x^3 \) u proizvoljnoj točki \(x_0 \in \mathbb{R} \).

Rješenje.

Zadatak ćemo riješiti koristeći formulu (2). Kako je

\[
\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x^2 + x_0x + x_0^2)}{x - x_0} = \lim_{x \to x_0} (x^2 + x_0x + x_0^2) = 3x_0^2.
\]

funkcija \(f(x) = x^3 \) je derivabilna u svakoj točki \(x_0 \in \mathbb{R} \) i vrijedi \(f'(x_0) = 3x_0^2 \).

Uvjerite se da isto rješenje dobijemo i pomoću formule (1).

ZADATAK 2. Funkcija \(f \) je zadana formulom \(f(x) = \sqrt{x+1} \). Izračunajte \(f'(3) \).

Rješenje.

Koristit ćemo definicionu formulu (1).

\[
f'(3) = \lim_{\Delta x \to 0} \frac{f(3 + \Delta x) - f(3)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{3+\Delta x} - \sqrt{3}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{(3+\Delta x)^2} - \sqrt{3^2}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{4+\Delta x} - \sqrt{3}}{\Delta x} \cdot \frac{\sqrt{4+\Delta x} + \sqrt{3}}{\sqrt{4+\Delta x} + \sqrt{3}} = \lim_{\Delta x \to 0} \frac{1}{\sqrt{4+\Delta x} + 2} = \frac{1}{4}.
\]

Uvjerite se da isto rješenje dobijemo i pomoću formule (1).

ZADATAK 3. Ispitajte derivabilnost funkcije \(f : \mathbb{R} \to \mathbb{R} \) zadane formulom \(f(x) = |x+1| \) u točki \(x_0 = -1 \).

Rješenje. Vrijedi

\[
\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x) - f(-1)}{x + 1} = \frac{|x+1|}{x+1} = \begin{cases} 1, & x > -1 \\ -1, & x < -1 \end{cases}
\]
Sada, uočimo da
\[\lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} \]
ne postoji \(^1\) te stoga funkcija \(f \) nije derivabilna u \(x_0 = -1 \).

Zadatak 4. Izračunajte derivacije sljedećih funkcija:

(a) \(f(x) = x^4 - 5x^3 + 3x^2 + 2x - 4 \)

(b) \(f(x) = 5\sqrt{x} + \frac{4}{\sqrt{x}} - 3\sqrt[3]{x^2} + \sqrt[5]{x} \)

(c) \(f(x) = \frac{1}{2x} + \frac{3}{x^4} - \frac{1}{2^5} \)

(d) \(f(x) = \sqrt{x\sqrt{x^3}} \)

Rješenje.

(a) Primjenom pravila za deriviranje sume funkcija, dobivamo
\[
 f'(x) = (x^4 - 5x^3 + 3x^2 + 2x - 4)' = (x^4)' - (5x^3)' + (3x^2)' + (2x)' - (4)' = 4x^3 - 15x^2 + 6x + 2.
\]

(b) Napišemo prva tri izraza u obliku opće potencije pa imamo
\[
\sqrt{x} = x^{\frac{1}{2}}, \quad \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}, \quad \sqrt[5]{x^3} = x^{\frac{3}{5}}.
\]

Primjenom pravila za deriviranje sume i opće potencije, slijedi
\[
 f'(x) = \left(5\sqrt{x} + \frac{4}{\sqrt{x}} - 3\sqrt[3]{x^2} + \sqrt[5]{x}\right)' = 5\left(x^{\frac{1}{2}}\right)' + 4\left(\frac{1}{2}x^{-\frac{1}{2}}\right)' - 3\left(x^{\frac{1}{3}}\right)' + \left(\frac{1}{5}x^{-\frac{3}{5}}\right)' = 5 \cdot \frac{1}{2}x^{-\frac{1}{2}} - 4 \cdot \frac{1}{3}x^{-\frac{2}{3}} - 3 \cdot \frac{2}{5}x^{-\frac{4}{5}} + 0 = \frac{5}{2\sqrt{x}} - \frac{4}{3x^{\frac{2}{3}}} - \frac{6}{5x^{\frac{4}{3}}}.
\]

(c) Iz istog razloga, kao u prethodnom primjeru, napišemo sumande u obliku opće potencije i dobivamo
\[
 f'(x) = \left(\frac{1}{2}x + \frac{3}{x^4} - \frac{1}{2^5}\right)' = \frac{1}{2}(x^{-1})' + 3\left(x^{-4}\right)' - \left(\frac{1}{2^5}\right)' = \frac{1}{2}x^{-\frac{1}{2}} - 12x^{-\frac{5}{4}}.
\]

\(^1\) Promatrajmo niz s općim članom \(a_n = -1 - \frac{1}{n} \), koji slijeva konvergira ka \(-1\). Pri tome za odgovarajući niz funkcijalnih vrijednosti vrijedi
\[
\lim_{n \to \infty} \frac{f(a_n) - f(-1)}{a_n + 1} = -1.
\]

S druge strane promatrajmo niz s općim članom \(a_n = -1 + \frac{1}{n} \), koji zdesna konvergira ka \(-1\), za odgovarajući niz funkcijalnih vrijednosti vrijedi
\[
\lim_{n \to \infty} \frac{f(a_n) - f(-1)}{a_n + 1} = 1.
\]

Prema definiciji limesa funkcije u točki zaključujemo da
\[
\lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1}
\]
ne postoji.
\[
\frac{1}{2} x^{-2} + 3(-4) x^{-5} + 0 = -\frac{1}{2x^2} - \frac{12}{x^5}.
\]

(d) Analogno, napišemo dani izraz u obliku opće potencije

\[
\sqrt[3]{x} \sqrt[3]{x} = \sqrt[3]{x^\frac{9}{8}} = x^\frac{9}{8}.
\]

Deriviranjem dobivamo

\[
f'(x) = \left(\sqrt[3]{x^\frac{9}{8}}\right)' = \frac{9}{8} x^\frac{1}{8}.
\]

ZADATAK 5. Izračunajte derivacije sljedećih funkcija:

(a) \(f(x) = \log_4 x + 3^x \)

(b) \(f(x) = 2 \sin x - 3 \cos x + \sin \pi \)

(c) \(f(x) = \tan x - \cot x \).

Rješenje.

Primjenom pravila za deriviranje sume funkcija, te formula za deriviranje eksponencijalne, logaritamske i trigonometrijskih funkcija dobivamo tražene derivacije.

(a)

\[
f'(x) = (\log_4 x + 3^x)' = (\log_4 x)' + (3^x)' = \frac{1}{x \ln 4} + 3^x \ln 3 = \frac{1}{2x \ln 2} + 3^x \ln 3.
\]

(b)

\[
f'(x) = (2 \sin x - 3 \cos x + \sin \pi)' = 2 (\sin x)' - 3 (\cos x)' + (\sin \pi)' = 2 \cos x - 3(- \sin x) + 0 = 2 \cos x + 3 \sin x.
\]

(c)

\[
f'(x) = (\tan x - \cot x)' = (\tan x)' - (\cot x)' = \frac{1}{\cos^2 x} - \frac{-1}{\sin^2 x} = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} = \frac{\sin^2 x + \cos^2 x}{\cos^2 x \cdot \sin^2 x} = \frac{1}{\cos^2 x \cdot \sin^2 x}.
\]

ZADATAK 6. Izračunajte derivacije sljedećih funkcija:

(a) \(f(x) = \cos x \cdot \cot x \)

(b) \(f(x) = (1 - x^2) \log x \)

(c) \(f(x) = e^x \cdot \sin x + \cos x \).

Rješenje.
Koristimo pravilo za deriviranje produkta dvaju funkcija.

(a)
\[f'(x) = (\cos x \cdot \text{ctg} x)' = (\cos x)' \cdot \text{ctg} x + \cos x \cdot (\text{ctg} x)' \]
\[= -\sin x \cdot \text{ctg} x + \cos x \cdot \frac{-1}{\sin^2 x} = -\sin x \cdot \frac{\cos x}{\sin x} - \frac{\cos x}{\sin^2 x} \]
\[= -\cos x \left(1 + \frac{1}{\sin^2 x} \right). \]

(b)
\[f'(x) = \left[(1 - x^2) \log x \right]' = (1 - x^2)' \log x + (1 - x^2) (\log x)' \]
\[= -2x \log x + (1 - x^2) \frac{1}{x \ln 10}. \]

(c)
\[f'(x) = \left(e^x \cdot \sin x + \cos x \right)' = (e^x)' \cdot \sin x + e^x \cdot (\sin x)' + (\cos x)' \]
\[= e^x \sin x + e^x \cos x - \sin x = (e^x - 1) \sin x + e^x \cos x. \]

ZADATAK 7. Izračunajte derivacije sljedećih funkcija:

(a)
\[f(x) = \frac{2x + 3}{x + 4} \]

(b)
\[f(x) = \frac{\sin x + \cos x}{\sin x - \cos x} \]

(c)
\[f(x) = \frac{\ln x}{1 - x^2} \]

(d)
\[f(x) = \frac{1 - 3^x}{1 + 3^x}. \]

Rješenje.

Koristimo pravilo za deriviranje kvocijenta dvaju funkcija.

(a)
\[f'(x) = \left(\frac{2x + 3}{x + 4} \right)' = \frac{(2x + 3)' \cdot (x + 4) - (2x + 3) \cdot (x + 4)'}{(x + 4)^2} \]
\[= \frac{2 \cdot (x + 4) - (2x + 3) \cdot 1}{(x + 4)^2} = \frac{2x + 8 - 2x - 3}{(x + 4)^2} = \frac{5}{(x + 4)^2}. \]

(b)
\[f'(x) = \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)' \]
\[= \frac{(\sin x + \cos x)' \cdot (\sin x - \cos x) - (\sin x + \cos x) \cdot (\sin x - \cos x)'}{(\sin x - \cos x)^2} \]
\[= \frac{(\cos x - \sin x) \cdot (\sin x - \cos x) - (\sin x + \cos x) \cdot (\cos x + \sin x)}{(\sin x - \cos x)^2} \]

...
\[
\begin{align*}
&= -\sin^2 x + 2\sin x \cos x - \cos^2 x - \sin^2 x - 2\sin x \cos x - \cos^2 x \\
&= -2(\sin^2 x + \cos^2 x) = -2.
\end{align*}
\]

(c)
\[
\begin{align*}
f'(x) &= \left(\frac{\ln x}{1-x^2} \right)' = \frac{(\ln x)' \cdot (1-x^2) - \ln x \cdot (1-x^2)'}{(1-x^2)^2} \\
&= \frac{1}{x} (1-x^2) - \ln x \cdot (-2x) = \frac{1-x^2 + 2x^2 \ln x}{x} \\
&= \frac{1-x^2 + 2x^2 \ln x}{x(1-x^2)^2}.
\end{align*}
\]

(d)
\[
\begin{align*}
f'(x) &= \left(\frac{1-3^x}{1+3^x} \right)' = \frac{(1-3^x)' \cdot (1+3^x) - (1-3^x) \cdot (1+3^x)'}{(1+3^x)^2} \\
&= \frac{(-3^x \ln 3)(1+3^x) - (1-3^x)(3^x \ln 3)}{(1+3^x)^2} \\
&= \frac{-3^x \ln 3 - 3^{2x} \ln 3 - 3^x \ln 3 + 3^{2x} \ln 3}{(1+3^x)^2} \\
&= \frac{-2 \cdot 3^x \ln 3}{(1+3^x)^2}.
\end{align*}
\]

ZADATAK 8. Izračunajte derivacije sljedećih funkcija:
(a) \(f(x) = (x^2 + 5)^3 \)
(b) \(f(x) = \sqrt{x + 2\sqrt{x}} \)
(c) \(f(x) = \log_3(x^2 - \sin x) \)
(d) \(f(x) = \arctg \frac{1 + x}{1 - x} \).

Rješenje.
Koristimo pravilo za deriviranje kompozicije funkcija.
(a) Označimo \(h(x) = x^3 \) i \(g(x) = x^2 + 5 \). Pravilo za derivaciju kompozicije funkcija glasi
\[f'(x) = [h(g(x))]' = h'(g(x)) \cdot g'(x). \]
Kako je \(h'(x) = 3x^2 \) i \(g'(x) = 2x \) imamo
\[f'(x) = h'(x^2 + 5) \cdot 2x = 3(x^2 + 5)^2 \cdot 2x. \]
Stoga je
\[f'(x) = [(x^2 + 5)^3]' = 3(x^2 + 5)^2 \cdot 2x = 6x(x^2 + 5). \]
(b) \[f'(x) = \left[\sqrt{x + 2\sqrt{x}} \right]' = \frac{1}{2\sqrt{x + 2\sqrt{x}}} \cdot (x + 2\sqrt{x})' \]
\[= \frac{1}{2\sqrt{x + 2\sqrt{x}}} \cdot \left(1 + 2 \cdot \frac{1}{2\sqrt{x}} \right) \]
\[= \frac{1}{2\sqrt{x + 2\sqrt{x}}} \cdot \left(1 + \frac{1}{\sqrt{x}} \right). \]

(c) \[f'(x) = \left[\log_3(x^2 - \sin x) \right]' = \frac{1}{(x^2 - \sin x)\ln 3} \cdot (x^2 - \sin x)' \]
\[= \frac{2x - \cos x}{(x^2 - \sin x)\ln 3}. \]

(d) \[f'(x) = \left[\arctg \frac{1 + x}{1 - x} \right]' = \frac{1}{1 + \left(\frac{1 + x}{1 - x} \right)^2} \cdot \left(\frac{1 + x}{1 - x} \right)' \]
\[= \frac{1}{1 + \left(\frac{1 + x}{1 - x} \right)^2} \cdot \left(\frac{1 \cdot (1 - x) + (1 + x) \cdot 1}{(1 - x)^2} \right) \]
\[= \frac{(1 - x)^2}{(1 - x)^2 + (1 + x)^2} \cdot \frac{2}{(1 - x)^2} = \frac{1}{1 + x^2}. \]

Logaritamsko deriviranje

Pretpostavimo da je zadana funkcija oblika \(y(x) = f(x)^{g(x)} \). Derivaciju računamo na sljedeći način:

Logaritmiramo funkciju \(y(x) = f(x)^{g(x)} \) i dobivamo
\[\ln y(x) = \ln f(x)^{g(x)} = g(x) \cdot \ln f(x). \]
Sada, deriviranjem dobivene jednakosti imamo
\[\frac{1}{y(x)} \cdot y'(x) = g'(x) \cdot \ln f(x) + g(x) \cdot \frac{1}{f(x)} \cdot f'(x) \]
Konačno, množenjem cijele jednakosti s \(y(x) \) dobivamo
\[y'(x) = y(x) \cdot \left(g'(x) \cdot \ln f(x) + \frac{g(x)}{f(x)} \cdot f'(x) \right) \]
te konačno
\[y'(x) = f(x)^{g(x)} \cdot \left(g'(x) \cdot \ln f(x) + \frac{g(x)}{f(x)} \cdot f'(x) \right). \]
ZADATAK 9. Izračunajte derivaciju funkcije \(y(x) = x^{\sin x} \).

Rješenje.

Logaritmiranjem funkcije \(y(x) = x^{\sin x} \) slijedi

\[
\begin{align*}
\ln y(x) &= \ln x^{\sin x} \\
\ln y(x) &= \sin x \cdot \ln x.
\end{align*}
\]

Deriviranjem dobivene jednačnosti imamo

\[
\begin{align*}
\frac{1}{y(x)} y'(x) &= (\sin x)' \ln x + \sin x (\ln x)' \\
y'(x) &= \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}.
\end{align*}
\]

Množenjem cijele jednačnosti s \(y(x) \) dobivamo

\[
\begin{align*}
y'(x) &= y(x) \left[\cos x \cdot \ln x + \frac{1}{x} \sin x \right] \\
y'(x) &= x^{\sin x} \left[\cos x \cdot \ln x + \frac{1}{x} \sin x \right].
\end{align*}
\]

ZADATAK 10. Izračunajte derivaciju funkcije \(y(x) = (\sin x)^{\cos x} \).

Rješenje.

Logaritmiranjem funkcije \(y(x) = (\sin x)^{\cos x} \) slijedi

\[
\begin{align*}
\ln y(x) &= \ln(\sin x)^{\cos x} \\
\ln y(x) &= \cos x \cdot \ln(\sin x).
\end{align*}
\]

Deriviranjem dobivene jednačnosti imamo

\[
\begin{align*}
\frac{1}{y(x)} y'(x) &= (\cos x)' \ln(\sin x) + \cos x (\ln(\sin x))' \\
y'(x) &= -\sin x \cdot \ln(\sin x) + \cos x \cdot \frac{\cos x}{\sin x}.
\end{align*}
\]

Množenjem cijele jednačnosti s \(y(x) \) dobivamo

\[
\begin{align*}
y'(x) &= y(x) \left[-\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right], \\
y'(x) &= (\sin x)^{\cos x} \left[-\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right].
\end{align*}
\]

Derivacije višeg reda

Ako je funkcija \(f \) derivabilna u svakoj točki \(x_0 \in (a, b) \), onda funkciju \(x \mapsto f'(x) \) definiranu na \((a, b) \) označavamo s \(f' \) i nazivamo prvim derivacijom funkcije \(f \) na \((a, b) \). Ona može ali i ne mora biti derivabilna funkcija na \((a, b) \). Ako je prva derivacija \(f' \)}
derivabilna na \((a, b)\), onda njenu derivaciju nazivamo drugom deriva\cijom funkcije \(f\) na \((a, b)\) i ozna\c{c}avamo s \(f''\). Dakle, \(f'' = (f')'\). Derivacije vi\(\check{s}g\) reda definiraju se induktivno:
\[
f^{(n)} = \left(f^{(n-1)}\right)', \quad n \in \mathbb{N},
\]
gdje je \(f^{(n)}\) oznaka za \(n\)-tu derivaciju funkcije \(f\). Prema dogovoru je \(f^{(0)} = f\).

ZADATAK 11. Izračunajte \(n\)-tu derivaciju funkcije \(f(x) = x \cdot e^x, x \in \mathbb{R}\).

Rješenje.

Prva derivacija iznosi
\[
f'(x) = (x \cdot e^x)' = (1 + x)e^x.
\]

Druga derivacija, odnosno derivacija prve derivacije funkcije \(f\) jednaka je
\[
f''(x) = (f'(x))' = [(1 + x)e^x]' = (2 + x)e^x.
\]

Treća derivacija, odnosno derivacija druge derivacije funkcije \(f\) iznosi
\[
f'''(x) = (f''(x))' = [(2 + x)e^x]' = (3 + x)e^x.
\]

Uočimo pravilnost i sa sigurnošću pretpostavljamo da je \(n\)-ta derivacija funkcije \(f\) jednaka
\[
f^{(n)}(x) = (n + x)e^x.
\]

Da bi zadatak bio u potpunosti riješen, našu pretpostavku dokažimo metodom matematičke indukcije:

Baza indukcije: za \(n = 1\) imamo \(f'(x) = (1 + x)e^x\), a to smo prethodno deriviranjem i dobili.

Pretpostavka indukcije: pretpostavimo da je tvrdnja istinita za prirodni broj \(n = k\), tj. \(f^{(k)}(x) = (k + x)e^x\).

Korak indukcije: pokažimo da tvrdnja vrijedi za prirodni broj \(n = k + 1\) tj. da vrijedi \(f^{(k+1)}(x) = (1 + k + x)e^x\).

Zaista,
\[
f^{(k+1)}(x) = \left(f^{(k)}(x)\right)' = ((k + x)e^x)' = e^x + (k + x)e^x = (1 + k + x)e^x,
\]
a to smo i trebali pokazati.
Primjena derivacija

Neka je funkcija $f : (a, b) \to \mathbb{R}$ derivabilna u točki $x_0 \in (a, b)$.

Tangenta

Jednadžba tangente na graf funkcije f u točki $(x_0, f(x_0))$ glasi

$$y = f'(x_0)(x - x_0) + f(x_0).$$

Derivacija funkcije f u točki $(x_0, f(x_0))$ predstavlja koeficijent smjera tangente na graf funkcije u toj točki i jednaka je tangensu kuta koji ta tangenta zatvara s pozitivnim smjerom osi apscisa.

Normala

Jednadžba normale na graf funkcije f u točki $(x_0, f(x_0))$ glasi:

- ako je $f'(x_0) \neq 0$,
 $$y = -\frac{1}{f'(x_0)}(x - x_0) + f(x_0).$$

- ako je $f'(x_0) = 0$,
 $$x = x_0.$$

Zadatak 1. Odredite jednadžbu tangente i normale na graf funkcije $f(x) = x^2 + 5x + 7$ u točki s apscisom $x_0 = 1$.

Rješenje.

Derivacija funkcije f jednaka je

$$f'(x) = (x^2 + 5x + 7)' = 2x + 5.$$

Koeficijent smjera tangente na graf funkcije f u točki $x_0 = 1$ iznosi

$$f'(x_0) = 2 \cdot 1 + 5 = 7.$$

Vrijednost funkcije f u točki $x_0 = 1$ iznosi

$$f(x_0) = 1^2 + 5 \cdot 1 + 7 = 13.$$

Stoga jednadžba tangente na graf funkcije f u točki s apscisom $x_0 = 1$ glasi

$$y = 7(x - 1) + 13,$$

odnosno

$$y = 7x + 6.$$

Kako je normala na graf funkcije f u točki $(x_0, f(x_0))$ pravac okomit na tangentalu i prolazi točkom $(x_0, f(x_0))$, jednadžba normale dane funkcije f u točki s apscisom $x_0 = 1$ jednaka je

$$y = -\frac{1}{7}(x - 1) + 13.$$
ZADATAK 2. Odredite jednadžbu tangent i normale na graf funkcije $f(x) = x^2 - 5x + 6$ u točki s apscisom $x_0 = \frac{5}{2}$.

Rješenje.
Derivacija funkcije f jednaka je
$$f'(x) = (x^2 - 5x + 6)' = 2x - 5,$$
a $f'(x_0) = 0$. Nadalje vrijedi $f(x_0) = -\frac{1}{4}$, te stoga jednadžba tangent na graf funkcije f u točki $x_0 = \frac{5}{2}$ glasi
$$y + \frac{1}{4} = 0,$$
dok jednadžba normale glasi
$$x = \frac{5}{2}.$$

ZADATAK 3. Odredite jednadžbu tangent i normale na graf funkcije $f(x) = e^{2x}$ u točki s apscisom $x_0 = \ln 2$.

Rješenje. Kako je derivacija funkcije f jednaka
$$f'(x) = (e^{2x})' = 2e^{2x},$$
njena vrijednost u točki $x_0 = \ln 2$ iznosi
$$f'(x_0) = 2e^{2\ln 2} = 2 \cdot 2^2 = 8.$$

Nadalje, vrijednost funkcije f u istoj točki jednaka je
$$f(x_0) = e^{2\ln 2} = 4.$$

Stoga je jednadžba tangent na graf funkcije f u točki $x_0 = \ln 2$ jednaka
$$y = 8(x - \ln 2) + 4,$$
a jednadžba normale je
$$y = -\frac{1}{8}(x - \ln 2) + 4.$$

ZADATAK 4. Odredite kut α koji tangenta na graf funkcije $f(x) = -x^2 + 3x$ u točki s apscisom $x_0 = 1$ zatvara s pozitivnim smjerom osi x.

Rješenje.
Budući je derivacija funkcije f jednaka
$$f'(x) = (-x^2 + 3x)' = -2x + 3,$$
u točki $x_0 = 1$ ima vrijednost
$$f'(x_0) = -2 \cdot 1 + 3 = 1.$$

Kako je
$$f'(x_0) = \tan \alpha,$$
traženi kut iznosi
$$\alpha = \arctg 1 = \frac{\pi}{4}. $$
Slika 1: Tangenta na graf funkcije \(f(x) = -x^2 + 3x \) i kut \(\alpha \)

L’HOPITALOVU PRAVILO

Ovo pravilo od izuzetnog je značaja za računanje limesa funkcije kada se javljaju neodređeni oblici \(\frac{0}{0}, \infty - \infty, 0 \cdot \infty, 0^0, 1^\infty \) i \(\infty^0 \).

U potpunosti navodimo primjenu pravila za limese oblika \(\frac{0}{0} \):

Neka su \(f \) i \(g \) bilo koje dvije funkcije takve da je \(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \). Ako su ispunjene sljedeće pretpostavke:

(i) postoje realan broj \(\delta > 0 \) takav da su funkcije \(f \) i \(g \) derivabilne u svakoj točki intervala \((a - \delta, a + \delta) \), osim možda u točki \(a \),

(ii) \(g'(x) \neq 0 \) za svaki \(x \in (a - \delta, a + \delta) \setminus \{a\} \),

(iii) postoji \(L = \lim_{x \to a} \frac{f'(x)}{g'(x)} \),

onda je

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \]

Uz male modifikacije uvjeta analogno pravilo vrijedi i za limese oblika \(\frac{\infty}{\infty} \), kao i za jednostrane limese.

ZADATAK 1. Primjenom L’Hopitalovog pravila izračunajte limese

(a) \(\lim_{x \to 0} \frac{e^x - 1}{\sin 2x} \)

(b) \(\lim_{x \to 0} \frac{x^2 - 2x - 3}{x^2 - x - 6} \)

(c) \(\lim_{x \to 0} \frac{x - \sin x}{\sin x - x \cos x} \)
Rješenje.

(a) Nakon uvrštavanja \(x = 0 \) funkcija u brojniku i funkcija u nazivniku poprima vrijednost nula, pa je zadani limes neodređenog oblika \(\left(\frac{0}{0} \right) \). Primjenom L'Hospitalovog pravila slijedi

\[
\lim_{x \to 0} \frac{e^x - 1}{\sin 2x} = \lim_{x \to 0} \frac{(e^x - 1)'}{(\sin 2x)'} = \lim_{x \to 0} \frac{e^x}{2 \cos 2x} = \frac{1}{2}
\]

(b) Limes je neodređenog oblika \(\left(\frac{0}{0} \right) \), pa primjenom L'Hospitalovog pravila dobivamo

\[
\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - x - 6} = \lim_{x \to 3} \frac{(x^2 - 2x - 3)'}{(x^2 - x - 6)'} = \lim_{x \to 3} \frac{2x - 2}{2x - 1} = \frac{4}{5}
\]

(c) Iz istog razloga, kao u prethodnim primjerima, primjenimo L'Hospitalovo pravilo i dobivamo

\[
\lim_{x \to 0} \frac{x - \sin x}{\sin x - x \cos x} = \lim_{x \to 0} \frac{(x - \sin x)'}{(\sin x - x \cos x)'} = \lim_{x \to 0} \frac{1 - \cos x}{1 - \cos x} = \lim_{x \to 0} \frac{1}{x \sin x}
\]

Kako je dobiveni limes neodređenog oblika \(\left(\frac{0}{0} \right) \), ponovnom primjenom L'Hospitalovog pravila slijedi

\[
\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x \sin x)'} = \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x}.
\]

Budući da smo ponovno dobili limes neodređenog oblika \(\left(\frac{0}{0} \right) \), opet primjenimo L'Hospitalovo pravilo i dobivamo

\[
\lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{(\sin x)'}{(\sin x + x \cos x)'} = \lim_{x \to 0} \frac{\cos x}{2 \cos x - x \sin x} = \frac{1}{2}.
\]

ZADATAK 2. Primjenom L'Hopitalovog pravila izračunajte limese

(a) \(\lim_{x \to \infty} \frac{\ln x}{x} \)

(b) \(\lim_{x \to \infty} \frac{x^2}{x + e^x} \)

(c) \(\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{3}{x^3 - 1} \right) \)

(d) \(\lim_{x \to \infty} x \left(e^{\frac{1}{x}} - 1 \right) \).
Rješenje.

(a) Limes je neodređenog oblika \((\infty/\infty)\), pa primjenom L’Hospitalovo pravilo dobivamo

\[
\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{(\ln x)'}{(x)'} = \lim_{x \to \infty} \frac{1}{x} = 0.
\]

(b) Kako je dani limes neodređenog oblika \((\infty/\infty)\), primjenom L’Hospitalovog pravila slijedi

\[
\lim_{x \to \infty} \frac{x^2}{x + e^x} = \lim_{x \to \infty} \frac{(x^2)'}{(x + e^x)'} = \lim_{x \to \infty} \frac{2x}{1 + e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0.
\]

(c) Zadani limes je neodređenog oblika \((\infty - \infty)\), pa svođenjem na zajednički nazivnik izraza u zagradi dobivamo neodređeni oblik \((0/0)\) na koji možemo primjeniti L’Hospitalovo pravilo. Dobivamo

\[
\lim_{x \to 1} \frac{1}{x - 1} - \frac{3}{x^3 - 1} = \lim_{x \to 1} \frac{x^2 + x + 1 - 3}{x^3 - 1} = \lim_{x \to 1} \frac{(x^2 + x - 2)'}{(x^3 - 1)'} = \lim_{x \to 1} \frac{2x + 1}{3x^2} = 1.
\]

(d) Budući da je dani limes je neodređenog oblika \((0 \cdot \infty)\), funkciju pod znakom limesa napisati ćemo u drugom obliku, kako bi dobili neodređeni oblik \((0/0)\) na koji možemo primjeniti L’Hospitalovo pravilo.

\[
\lim_{x \to 0} x \left(e^{\frac{x}{2}} - 1 \right) = \lim_{x \to \infty} \frac{e^{\frac{x}{2}} - 1}{x} = \lim_{x \to \infty} \frac{\left(e^{\frac{x}{2}} - 1 \right)'}{\left(\frac{1}{x} \right)'} = \lim_{x \to \infty} \frac{-\frac{1}{2} e^{\frac{x}{2}}}{\frac{-1}{x^2}} = \lim_{x \to \infty} e^{\frac{x}{2}} = 1.
\]

ZADATAK 3. Primjenom L’Hospitalovog pravila izračunajte \(\lim_{x \to 0} (\cos x)^{\frac{1}{x}}\).

Rješenje.

Zadani limes je neodređenog oblika \(1^\infty\). Označimo ga s \(A\), dakle

\[
A = \lim_{x \to 0} (\cos x)^{\frac{1}{x}}.
\]

Logaritmiranjem dobivamo

\[
\ln A = \ln \lim_{x \to 0} (\cos x)^{\frac{1}{x}} = \lim_{x \to 0} \ln (\cos x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \ln (\cos x) = \lim_{x \to 0} \frac{\ln (\cos x)}{x}.
\]

Kako je \(\ln x\) neprekidna funkcija vrijedi \(\lim_{x \to a} [\ln f(x)] = \ln \left[\lim_{x \to a} f(x) \right]\), pa slijedi

\[
\ln A = \lim_{x \to 0} \ln (\cos x)^{\frac{1}{x}}.
\]

Odnosno

\[
\ln A = \lim_{x \to 0} \frac{1}{x} \ln (\cos x) = \lim_{x \to 0} \frac{\ln (\cos x)}{x} = \lim_{x \to 0} \frac{\ln (\cos x)}{x}.
\]

Dobiveni limes je neodređenog oblika \((0/0)\), te na njega možemo primjeniti L’Hospitalovo pravilo.

\[
\ln A = \lim_{x \to 0} \frac{\ln (\cos x)'}{x'} = \lim_{x \to 0} \frac{\frac{1}{\cos x} (\cos x)'}{x} = \lim_{x \to 0} \frac{\cos x (-\sin x)}{1} = \lim_{x \to 0} \frac{-\sin x}{\cos x} = 0.
\]
Kako je $\ln A = 0$, slijedi $A = e^0$, pa je

$$
\lim_{x \to 0} (\cos x)^{\frac{1}{x}} = 1.
$$

Neodređeni oblici 1^∞, 0^0 i ∞^0 rješavaju se logaritmiranjem.
Intervali monotonosti, lokani ekstremi, konveksnost, konkavnost i točke infleksije

Neka je \(f : (a, b) \rightarrow \mathbb{R} \), derivabilna na \((a, b) \).

- Funkcija \(f \) je monotono rastuća na \((a, b) \) onda i samo onda ako je \(f'(x) \geq 0 \), za svaki \(x \in (a, b) \). Ako je \(f'(x) > 0 \), za svaki \(x \in (a, b) \), onda funkcija \(f \) strogo monotono raste na \((a, b) \).
- Funkcija \(f \) je monotono padajuća na \((a, b) \) onda i samo onda ako je \(f'(x) \leq 0 \), za svaki \(x \in (a, b) \). Ako je \(f'(x) < 0 \), za svaki \(x \in (a, b) \), onda funkcija \(f \) strogo monotono pada na \((a, b) \).

Neka je \(f' : (a, b) \rightarrow \mathbb{R} \) derivabilna na skupu \((a, b) \) te \(x_0 \in (a, b) \).

- Ako je \(f'(x_0) = 0 \), kažemo da je \(x_0 \) stacionarna točka funkcije \(f \).
- Ako je \(x_0 \) stacionarna točka funkcije \(f \) i \(f''(x_0) < 0 \), onda je točka \(x_0 \) točka strogog lokalnog maksimuma funkcije \(f \).
- Ako je \(x_0 \) stacionarna točka funkcije \(f \) i \(f''(x_0) > 0 \), onda je točka \(x_0 \) točka strogog lokalnog minimuma funkcije \(f \).
- Funkcija \(f \) je konveksna na \((a, b) \) onda i samo onda ako je \(f''(x) \geq 0 \), za svaki \(x \in (a, b) \).
- Funkcija \(f \) je konkavna na \((a, b) \) onda i samo onda ako je \(f''(x) \leq 0 \), za svaki \(x \in (a, b) \).
- Točku \(x_1 \in (a, b) \) nazivamo točkom infleksije funkcije \(f \) ako postoji realan broj \(\delta > 0 \) takav da je \(f \) strogo konveksna na \((x_1 - \delta, x_1) \) i strogo konkavna na \((x_1, x_1 + \delta) \) ili da je \(f \) konkavna na \((x_1 - \delta, x_1) \) i konveksna na \((x_1, x_1 + \delta) \).
- Neka je \(f \) dva puta derivabilna na intervalu \((a, b) \). Točka \(x_1 \in (a, b) \) je točka infleksije funkcije \(f \) onda i samo onda ako funkcija \(f' \) ima strogi lokalni ekstrem u \(x_1 \).

ZADATAK 1. Odredite intervale monotonosti funkcija

(a) \(f(x) = x^3 - 3x^2 - 5 \)

(b) \(f(x) = \frac{x}{x - 2} \)

(c) \(f(x) = \sqrt{x^2 - 4x} \).

Rješenje.

(a) Derivacija funkcije \(f \) iznosi \(f'(x) = 3x^2 - 6x = 3x(x - 2) \).

Kako je \(f'(x) > 0 \) za \(x \in (-\infty, 0) \cup (2, \infty) \), funkcija \(f \) strogo monotono raste na skupu \((-\infty, 0) \cup (2, \infty) \).

Nadalje \(f'(x) < 0 \) za \(x \in (0, 2) \), pa funkcija \(f \) strogo monotono pada na skupu \((0, 2) \).
Slika 2: Graf funkcije \(f(x) = x^3 - 3x^2 - 5 \)

(b) Područje definicije funkcije \(f \) je skup \(\mathbb{R\setminus{2}} \), a derivacija funkcije iznosi

\[
f'(x) = \frac{1 \cdot (x-2) - x \cdot 1}{(x-2)^2} = \frac{-2}{(x-2)^2}.
\]

Slika 3: Graf funkcije \(f(x) = \frac{x}{x-2} \)

Budući da je \((x-2)^2 > 0\) za svaki \(x \) iz domene funkcije \(f \), onda je \(f'(x) < 0 \) za svaki \(x \in \mathbb{R\setminus{2}} \), pa funkcija \(f \) strogo monotono pada na skupu \(\mathbb{R\setminus{2}} \).

(c) Područje definicije funkcije \(f \) je skup \((-\infty, 0] \cup [4, \infty)\). Derivacija funkcije iznosi

\[
f'(x) = \frac{1}{2\sqrt{x^2-4x}} \cdot (2x-4) = \frac{x-2}{\sqrt{x^2-4x}}.
\]

Slika 4: Graf funkcije \(f(x) = \sqrt{x^2 - 4x} \)
Nejednakost \(f'(x) > 0 \) vrijedi ako je \((x - 2) > 0 \), odnosno \(x > 2 \) za svaki \(x \) iz domene dane funkcije. Dakle, zbog uvjeta na domenu funkcije,

\[
f'(x) > 0 \quad \text{za} \quad x \in (4, \infty).
\]

S druge strane, \(f'(x) < 0 \) vrijedi ako je \((x - 2) < 0 \), odnosno \(x < 2 \) za svaki \(x \) iz domene dane funkcije. Analogno, zbog uvjeta na domenu funkcije,

\[
f'(x) < 0 \quad \text{za} \quad x \in (-\infty, 0),
\]

pa funkcija \(f \) strogo monotono raste na skupu \((4, \infty) \), a strogo monotono pada na skupu \((-\infty, 0) \). Uočite da smo rubove intervala isključili, jer u njima \(f'(x) \) nije niti definirana!

ZADATAK 2. Odredite lokalne ekstreme funkcija

(a) \(f(x) = \frac{x^2}{x - 3} \)

(b) \(f(x) = x^2e^{-x} \).

Rješenje.

(a) Područje definicije funkcije \(f \) je skup \(\mathbb{R}\setminus\{3\} \), a njena prva derivacija iznosi

\[
f'(x) = \frac{2x(x - 3) - x^2 \cdot 1}{(x - 3)^2} = \frac{x^2 - 6x}{(x - 3)^2}.
\]

Nužan uvjet za postojanje lokalnog ekstrema u točki \(x \) je \(f'(x) = 0 \). Dakle

\[
x(x - 6) = 0,
\]

pa su \(x_1 = 0 \) i \(x_2 = 6 \) rješenja dane jednačine, odnosno stacionarne točke. Ispitajmo dovoljan uvjet postojanja ekstrema za dobivene stacionarne točke. Druga derivacija funkcije iznosi

\[
f''(x) = \frac{(2x - 6)(x - 3)^2 - (x^2 - 6x) \cdot 2(x - 3)}{(x - 3)^3} = \frac{18}{(x - 3)^3}.
\]

Kako je

\[
f''(0) = -\frac{2}{3} < 0
\]

funkcija \(f \) postiže strogi lokalni maksimum u točki \(M(0, f(0)) \), tj. u točki \(M(0, 0) \). Nadalje

\[
f''(6) = \frac{2}{3} > 0
\]

pa funkcija \(f \) u točki \(m(6, f(6)) \), tj. u točki \(m(6, 12) \) ima strogi lokalni minimum.
Slika 5: Graf funkcije $f(x) = \frac{x^2}{x-3}$

(b) Područje definicije funkcije f je skup \mathbb{R}. Prva derivacija glasi

$$f'(x) = 2xe^{-x} - x^2e^{-x} = e^{-x}(2x - x^2),$$

pa je $f'(x) = 0$ ekvivalentno sa $2x - x^2 = 0$. Dakle, $x_1 = 0$ i $x_2 = 2$ su stacionarne točke dane funkcije. Druga derivacija funkcije je jednaka

$$f''(x) = -e^{-x}(2x - x^2) + e^{-x}(2 - 2x) = e^{-x}(x^2 - 4x + 2).$$

Kako je

$$f''(0) = 2 > 0$$

funkcija f postiže strogi lokalni minimum u točki $m(0,0)$. Nadalje

$$f''(2) = \frac{-2}{e^2} < 0$$

pa funkcija f u točki $M(2,4/e^2)$ ima strogi lokalni maksimum.

Slika 6: Graf funkcije $f(x) = x^2e^{-x}$

ZADATAK 3. Odredite intervale konveksnosti, intervale konkavnosti i točke infleksije funkcija

(a) $f(x) = \frac{1}{x+5}$

(b) $f(x) = \ln(x^2 + 1)$.

Rješenje.
(a) Domena funkcije f je skup $\mathbb{R}\setminus\{-5\}$. Prva i druga derivacija funkcije iznose

$$f'(x) = \frac{-1}{(x+5)^2},$$

$$f''(x) = \frac{2}{(x+5)^3}.$$

Kako je $f''(x) \neq 0$, za svaki $x \in \mathbb{R}\setminus\{-5\}$, funkcija nema točke infleksije. Nejednadžba $f''(x) > 0$ vrijedi ako je $(x+5) > 0$, odnosno $x > -5$ za svaki x iz domene dane funkcije. Nejednadžba $f''(x) < 0$ vrijedi ako je $(x+5) < 0$, odnosno $x < -5$ za svaki x iz domene dane funkcije. Dakle,

$$f''(x) > 0 \text{ za } x \in (-\infty,-5)$$

i

$$f''(x) < 0 \text{ za } x \in (-5,\infty),$$

pa je funkcija f konveksna na skupu $(-\infty, -5)$, a konkavna na skupu $(-5, \infty)$.

(b) Područje definicije funkcije f je skup \mathbb{R}. Izračunamo prvu i drugu derivaciju funkcije

$$f'(x) = \frac{2x}{1 + x^2},$$

$$f''(x) = \frac{2(1 - x^2)}{(1 + x^2)^2}.$$}

Kako je nejednadžba $f''(x) > 0$ ekvivalentna s $1 - x^2 > 0$, vrijedi

$$f''(x) > 0 \text{ za } x \in (-1, 1).$$

Kako je nejednadžba $f''(x) < 0$ ekvivalentna s $1 - x^2 < 0$, vrijedi

$$f''(x) < 0 \text{ za } x \in (-\infty, -1) \cup (1, \infty).$$

Dakle, funkcija f je konveksna na skupu $(-1, 1)$, a konkavna na skupu $(-\infty, -1) \cup (1, \infty)$. Također zaključujemo da su $x_1 = -1$ te $x_2 = 1$ točke infleksije zadane funkcije.