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Abstract. In this paper, we deal with value distribution for g-shift polynomials of tran-
scendental meromorphic functions with zero order and obtain some results which improve
the previous theorems given by Liu and Qi [18]. In addition, we investigate value sharing
for g-shift polynomials of transcendental entire functions with zero order and obtain some
results which extend the recent theorem given by Liu, Liu and Cao [17].
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1. Introduction and main results

In this paper, meromorphic function f will always mean meromorphic in the complex
plane C. We assume that the reader is familiar with the fundamental results and
standard notations of Nevanlinna value distribution theory, such as the proximity
function m(r, f), the counting function N(r, f), the characteristic function T'(r, f),
the first and second main theorems, the lemma on logarithmic derivatives and so
on, for details about Nevalinna theory, see Hayman [10], Yi and Yang [24]. For a
meromorphic function f, S(r, f) denotes any quantity satisfying S(r, f) = o(T'(r, f))
for all r outside a possible exceptional set of the finite logarithmic measure, S(f)
denotes the family of all meromorphic functions « such that T(r,«) = S(r, f) =
o(T(r, f)), where r — oo outside of a possible exceptional set of the finite logarithmic
measure. For convenience, we agree that S(f) includes all constant functions and
S := S(f)U{oo}. In addition, by S (r, f) we denote any quantity satisfying Sy (r, f) =
o(T(r, f)) for all r on a set of logarithmic density 1.

Let f(z) and g(z) be two nonconstant meromorphic functions. If for some a €
CU {00}, the zeros of f(z) —a and g(z) —a (if a = oo, zeros of f(z) —a and g(z) —a
are the poles of f(z) and g(z), respectively) coincide in locations and multiplicities,

*The first author was supported by the NSF of China (11301233, 61202313, 11101201,
11461042,11301260), the Natural Science Foundation of Jiangxi Province in China
(20132BAB211001, 20151BAB201008), and the Foundation of Education Department of
Jiangxi (GJJ14644) of China.

fCorresponding author.  Email addresses: xhyhhh@126.com (H.Y.Xu), 1liukai418€126.com
(K.Liu), tbcao@ncu.edu.cn (T.B. Cao)

http://www.mathos.hr/mc (©2015 Department of Mathematics, University of Osijek



98 H.Y.Xu, K.Lu anxp T.B.Cao

we say that f(z) and g(z) share the value a CM (counting multiplicities) and if
they coincide in locations only, we say that f(z) and g(z) share a IM (ignoring
multiplicities).

In recent years, there has been an increasing interest in studying difference equa-
tions, the difference product and the g-difference in the complex plane C, a number
of papers (including [4, 7, 9, 12, 15, 16, 19, 21, 22, 25]) have focused on the uniqueness
of difference analogues of Nevanlinna theory. Halburd and Korhonen [7] established
a difference analogue of the Logarithmic Derivative Lemma, and then applied it
to prove a number of results on meromorphic solutions of complex difference equa-
tions. Afterwards, Barnett, Halburd, Korhonen and Morgan [2] also established an
analogue of the Logarithmic Derivative Lemma on ¢-difference operators.

Liu, Liu and Cao [17], Chen, Huang and Zheng [3], and Luo and Lin [20] studied
zeros distributions of difference polynomials of meromorphic functions and obtained
the following results:

Theorem 1 (see [17], Theorem 1.2). Let f be a transcendental meromorphic func-
tion of finite order and ¢ a nonzero complex constant. If n > 6, then the difference
polynomial f(2)"f(z + ¢) — a(z) has infinitely many zeros, where a(z) € S(f).

Theorem 2 (see [17], Corollary 1.3). Let f(z) be a transcendental entire function
of finite order and ¢ a nonzero complex constant. If f(z) has the Borel exceptional
value 0, then H(z) = f(2)f(z + ¢) takes every nonzero value a € C infinitely often.

Theorem 3 (see [20], Theorem 1). Let f be a transcendental entire function of finite
order o and c be a nonzero complex constant, Let P(z) = apz™ + ap_12" "1 4+ -+ +
a1z + ag be a nonzero polynomial, where ag,as,...,a,(# 0) are complex constants,
and let m be the number of the distinct zeros of P(z). Then for n >m, P(f)f(z+
¢) = a(z) has infinitely many solutions, where a(z) € S(f)\{0}.

For the ¢-difference of meromorphic functions, Zhang and Korhonen [23] studied
value distribution of g-difference polynomials of meromorphic functions and obtained
the following result.

Theorem 4 (see [23], Theorem 4.1). Let f be a transcendental meromorphic (resp.
entire) function of zero order and q mon-zero complex constant. Then for n > 6
(resp. n > 2), f(2)"f(qz) assumes every non-zero value a € C infinitely often.

Recently, Liu and Qi [18] firstly investigated value distributions for a g-shift of
the meromorphic function and obtained the following result.

Theorem 5 (see [18], Theorem 3.6). Let f be a zero-order transcendental mero-
morphic function, n > 6,q € C\ {0}, n € C, and R(z) a rational function. Then
the g-shift difference polynomial f(z)" f(qz +n) — R(z) has infinitely many zeros.

A natural question is what can we get about the zeros of P(f)f(gz + 1) = a(2)
and P(f)[f(gz +n) — f(2)] = a(z), where P(f),a(z) are stated as in Theorem 3
and ¢,n are stated as in Theorem 57 Corresponding to this question, we get the
following theorems which are the improvements of Theorems 4 and 5.
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Theorem 6. Let f be a zero-order transcendental meromorphic (resp. entire) func-
tion, ¢ € C\{0}, n € C. Then forn > m+4 (resp. n > m), P(f)f(qz+n) = a(z) has
infinitely many solutions, where a(z) € S(f)\{0}, P(f)and m are stated in Theorem
3.

Theorem 7. Let f be a zero-order transcendental meromorphic (resp. entire) func-
tion, ¢ € C\ {0}, n € C. Then forn>m+6 (resp. n>m+2), P(f)[f(¢gz+n) —
f(2)] = a(2) has infinitely many solutions, where a(z) € S(f)\{0}, P(f) and m are
stated in Theorem 3.

For the uniqueness of the difference and the ¢-difference of meromorphic func-
tions, some results were obtained (see [11, 12, 15, 17, 20, 25, 26]). Here, we only
state some recent theorems as follows.

Theorem 8 (see [26], Theorem 5.1). Let f(z) and g(z) be two transcendental mero-
morphic (resp. entire) functions of zero order. Suppose that q is a non-zero complex
constant and n is an integer satisfying n > 8 (resp. n > 4). If f(2)"f(qz) and
9(2)"g(qz) share 1,00 CM, then f(z) = tg(z) for t"T! = 1.

Theorem 9 (see [26], Theorem 5.2). Let f(z) and g(z) be two transcendental entire
functions of zero order. Suppose that q is a non-zero complexr constant and n > 6
is an integer. If f(2)"(f(2) — 1)f(qz) and g(2)"(g(z) — 1)g(qz) share 1 CM, then
f(z) = g(2)-

Theorem 10 (see [20], Theorem 2). Let f and g be transcendental entire functions
of finite order, ¢ a nonzero complex constant, let P(z) be stated as in Theorem 3,
and let n > 2Ty + 1 be an integer, where I'y = my + 2mo, my is the number of the
simple zero of P(z) and my is the number of multiple zeros of P(z). If P(f)f(z+¢)
and P(g)g(z + ¢) share 1 CM, then one of the following results holds:

(i) f =tg for a constant t such that t¢ = 1, where d = GCD{\g, A\, , A\, } and

i+, a; #0, . )
Al_{n—kl,aizo, 1=0,1,2,...,n;

(ii) f and g satisfy the algebraic equation R(f,g) = 0, where R(w1,ws) = P(wy)wy (2+
¢) — P(wa)wa(z + ¢);

(iii) f(z) = e*®) g(z) = 23, where a(z) and B(z) are two polynomials, b is a
constant satisfying o+ 5 =b and aie("ﬂ)b =1.

In this paper, we will investigate the uniqueness problem of g¢-shifts of entire
functions and obtain the following results.

Theorem 11. Let f and g be transcendental entire functions of zero order, and let
qg € C\{0}, n € C, P(f),To,d be stated as in Theorem 10. If P(f)f(qz +n) and
P(g)g(qgz +n) share 1 CM and n > 2Ty + 1, then one of the following cases holds:

(i) f =tg for a constant t such that t¢ = 1;
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(ii) f and g satisfy the algebraic equation R(f,g) = 0, where R(wy,ws) = P(w1)w1(gz+
1) = Plwz)wa(gz +1);

(iii) fg = p, where p is a complex constant satisfying a2 ™+t = 1.

To state the other theorem, we can explain some notations and definitions as
follows.

Definition 1 (see [13, 14]). Let I be a nonnegative integer or infinity. For a € CU
{0}, by Ei(a; ) we denote the set of all a-points of f where an a-point of multiplicity
k is counted k times if k <1 and l + 1 times if k > 1. If Ei(a; f) = Ei(a;g), we say
that f,g share the value a with weight [.

Theorem 12. Under the assumptions of Theorem 11, if E(1; P(f)f(qz + 1)) =
E;(1; P(g9)g9(qz+mn)) andl,n,m are integers satisfying one of the following conditions:

() 1=2,n>2Tg+m+2—\;
(II) 1 =1, n>2Tg+2m + 3 — 2);
(III) 1 =0, n > 2T +3m +4 — 3X;
(IV) 1>3,n>2Tg+1.
Then the conclusions of Theorem 11 hold, where A = min{0(0, f),0(0,9)} and m
1s stated as in Theorem 3.
2. Some lemmas

In what follows, we explain some definitions and notations which are used in this
paper. For a € C U oo, we define

&) 1—1i N =)
(a,f)=1- mSup

For a € CU oo and k a positive integer, by N(k(r, ﬁ) we denote the counting
function of those a-points of f whose multiplicities are not less than k in counting

the a-points of f we ignore the multiplicities (see [10]) and Ny (r, f—ia) = N(r, ﬁ) +
N(Q(ra ﬁ) T+ +N(k(7ﬁ7 ﬁ)

Definition 2 (see [1]). When f and g share 1 IM, we denote by N (r, ﬁ) the
counting function of the 1-points of f whose multiplicities are greater than 1-points
of g, where each zero is counted only once; similarly, we have N (r, #) Let zy be
a zero of f — 1 of multiplicity p and a zero of g — 1 of multiplicity q, by N1 (r, ﬁ)

we also denote the counting function of those 1-points of f where p=q=1.

Lemma 1 (see [6]). Let f and g be two meromorphic functions. If f and g share 1
CM, then one of the following three cases holds:
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(i)
1 1
T(T, f) + T(T7 g) < 2N2(7“, f) + 2N2(T, g) + 2N2 (7“, f) + 2N2 (7’7 g)
+ S(r, f)+ S(r,9);
(ii) [ =g;
(iii) f-g=1.

Lemma 2 (see [5]). Let f and g be two meromorphic functions, and let | be a
positive integer. If Ei(1; f) = Ei(1;g), then one of the following cases must occur:

(i)

Tl )+ T(0) < Nalrs )+ Natr) + 8 (7 ) + N (13 ) 48 (17 )

_ 1 1 — 1
+N<“g—1>Nﬁ(“f—1>+N““(“f—1)

— 1
+Nm10v_l>+ﬂnﬂ+5mm;

(ii) f = (b+1)g+(a—b—1)

bgt(a—b)  ’ where a(# 0),b are two constants.

Lemma 3 (see [5]). Let f and g be two meromorphic functions. If f and g share 1
IM, then one of the following cases must occur:

(i)
T 1)+ T00) <2 [ )+ 8 (1) 4 300+ ()

_ 1 _ 1
3N —— ) 4+3N
* L<T’f—1>+ L(T’g—1>

+S(r, f) + S(r, 9);

(“) f (b+1 g+a b— l)

bgr(a—b) where a(#£ 0),b are two constants.

Lemma 4 (see [24]). Let f be a nonconstant meromorphic function and P(f) =
ag + a1 f +asf? + -+ anf", where ag,a1,az,--- ,a, are constants and a, # 0.
Then

T(r,P(f)) =nT(r, )+ S(r, f).
Lemma 5 (see [8], Lemma 2.1). Let f be a non-constant meromorphic function,
s>0,a<1, and let F C Ry be the set of all v such that T(r, f) < aT(r + s, f).
If the logarithmic measure of F' is infinite, that is, [n % = 00, then f is of infinite
order of growth.

Lemma 6 (see [4], Theorem 2.1). Let f(z) be a meromorphic function of finite order
p and ¢ a non-zero complex constant. Then, for each € > 0, we have

T(r, f(z+¢)) =T(r,f(2)) + O (r"~'*%) + O(log ).
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Lemma 7 (see [26], Theorem 1.1 and Theorem 1.3). Let f(z) be a transcendental
meromorphic function of zero order and q a nonzero complex constant. Then

T(r, f(gz)) = (L+o(1))T(r, f(2))

and
N(r, f(gz)) = (1 +0(1))N(r, f(2)),

on a set of logarithmic density 1.

Remark 1. Under the assumptions of Lemma 7, from the definition of Si(r, f) we
have

T(r, f(gz)) = T(r, f(2)) + Si(r, f),

N(r, f(qz)) = N(r, f(2)) + S1(r, [).

Lemma 8. Let f(z) be a transcendental meromorphic function of zero order and
q,m two nonzero complex constants. Then

T(r, f(qz +m)) =T(r, f(2)) + Si(r, f),

( qz+n)<N<r )+Sl( D

N(r, f(gz+mn)) < N(r, f) + Si(r, f),
<N

() <7 2) 500

N(r, f(qz +n)) < N(r, f) + Si(r, f).

Proof. From Lemma 6 and Lemma 7, we easily get the first equality of this lemma.
Next, the idea of the proof of other inequalities of this lemma are from [12, 25].
From Lemma 7, we have

¥ () =N ( oy esi(ni(c+]) o
<x(reft] ) +s (o (+):

By Lemma 6 and f is meromorphic function of zero order, we have

S (r,f <z+ ;’)) = Si(r, ).

And by Lemma 5, we have

N<r+'z

Jl,) <N ( }) ) 2)

outside of a possible exceptional set with the finite logarithmic measure.
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From (1),(2) and N (r,4) < N (v + |2
2| (1) s
v fi 5) = () s

L A

Similarly, we can get

R )

Set h(z) = f(lz), then h(gz+n) = m. From above, we can prove other inequal-

ities. O

, %), we have

and

Lemma 9 (see [18], Theorem 2.1). Let f(z) be a nonconstant zero-order meromor-
phic func- tion and ¢ € C\ {0}. Then

- (ﬁ flaz+m)

o) =5

on a set of logarithmic density 1.

Lemma 10. Let f be a transcendental meromorphic function of zero order, g(# 0),n
complex constants, and let P(z) be stated as in Theorem 3. Then we have

(n=1)T(r, f) + Su(r, f) <T(r, P(f) flqz+m) < (n+ 1)T(r, f) + S1(r, f). (3)
If f is a transcendental entire function of zero order, we have
T(r,P(f)f(gz+m) =T (r,P(f)f)+ Si(r. f) = (n+ DT(r, f) + Si(r, ). (4)

Proof. Set F(z) = P(f)f(gz +n). If f is a transcendental entire function of zero
order, from Lemma 9 and Lemma 4, we have

TMFu»:mmF@»gmMPUﬁ@D+m(nﬂﬁ$m)

<m(r,P(f)f(2)) + Si(r, f) = T(r, P(f) f(2)) + Si(r, )
=+ 1T(r, f)+ S:i(r, f).

On the other hand, from Lemma 9, we have
(n+ 1T (r, f) =T(r, P(f)f(2)) + S(r, f) = m(r, P(f) f(2)) + S(r, f)
<m(r,F(z))+m (r, f(z))

flgz+mn)
=T(r,F(2)) + Si(r, f).
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Thus, we can get (4).
If f is a meromorphic function of zero order, from Lemma 8 and Lemma 4, we
have

T(r, P(f)f(az+n)) <T(r, P(f)) + T(r, faz +n)) < (n+ DT(r, f) + S1(r, f).

On the other hand, from Lemma 9 and Lemma 4, we have
(n+1)T(r, f) =T(r, P(f)f) + S(r, f) = m(r, P(f)f) + N(r, P(f) ) + 5(r, f)

<m (r,F(z)%) +N (T’F(z)f(cfz(?n)) +S(r, f)

< T(r, F(z)) +2T'(r, f) + S1(r, f).
Thus, we can get (3). O
Using the same method as in Lemma 10, we can easily get the following lemma.

Lemma 11. Let f be a transcendental meromorphic function of zero order, g(# 0),n
complex constants, and let P(z) be stated as in Theorem 3. Then we have

T(r, P(f)f(gz +n) = [(2)]) = (n = V)T (r, f) + Si(r, f)-

If f is a transcendental entire function of zero order, we have

T(r, P(f)f(gz +n) = f(2)]) 2 nT(r, ) + Si(r, ).

Lemma 12. Let f(z) and g(z) be transcendental entire functions of zero order, P(z)
be stated as in Theorem 8. If n > 2, and

P(f)f(gz +n)P(g)9(qz +n) =1t, (5)

where q(# 0),n,t( 0) are complex constants, then we have fg = u, where a?u™! =

t.

Proof. Suppose that the roots of P(z) = 0 are by,ba,...,b, with multiplicities
l1,l2, ..., lm. Then we have Iy + s + - - - + I, = n. From (5), we have

(f=b0)" (f=b2) - (f=bm)"™ fgz+n)(g—=b1)" (g=b2)" - - (g—bm) "™ g(gz+7) E(t)

6
Since f, g are nonconstant entire functions, from (6), we can deduce that by = by =
o = by, = 0. If fact, from (6), we can get that by, b, ..., b, are Picard exceptional
values. If m > 2 and b; # 0(j = 1,2,...,m), by Picard’s theorem of the entire
function, we can get that Picard’s exceptional values of f are at least three. Thus,
we can get a contradiction. Hence, m = 1 and [; = n, that is, there exists a complex
constant « satisfying P(f) = a,(f — )™ and P(g) = a,(g —)". Then

an(f —7)" flgz +n)an(g —7)"glqz +n) = t. (7)

Since f, g are transcendental entire functions, by Picard’s theorem, we can get that
f—~=0and g —~ = 0 do not have zeros. Then, we obtain that f(z) = e*(*) 4
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7, g(2) = e#) + 4, where a(z), 8(z) are two nonconstant functions. From (7), we
get that f(gqz +n) # 0 and g(gz + 1) # 0. Thus, we can get v = 0, that is,

ap f(2)" faz +m)g(2)"g(gz +n) = t. )
Set M(z) = f(2)g(z). If M(z) is nonconstant, from (8), we have
ap M(2)"M(qz +1) =1,
that is,
_t (9)
M(qz+n)
Since f,g are transcendental entire functions of zero order, from (9), Lemma 4,
Lemma 8 and n > 2, we can get a contradiction.
Thus, M(z) is a constant. From (9), we can get f(z)g(z) = p, where p is a

complex constant satisfying a2 u"*t = t.
Therefore, the proof of Lemma 12 is complete. O

apM(2)" =

3. Proofs of Theorems 6 and 7

3.1. The proof of Theorem 6

Proof. Case 1. If f is a transcendental meromorphic function of zero order, we
first suppose that P(f)f(gz +n) = a(z) has finitely many solutions. From Lemma
10, we have S(r, P(f)f(qz +n)) = S(r, f). By the Second Fundamental Theorem,
Lemma 8 and the definition of m, we have

ﬂﬁPUM@z+m)SNvJ%ﬁﬂw+n»+N<n (10)

1
P(f)f(fJZ+C)>
! )Y

P(f)f(gz+¢) —a(z)
_ — 1 — 1
S 2N(’I"7f)+N <’I”,P(f)> +N <T7f<q2;—i—c)> +S(T,f)

< (m+3)T(r, f) + Si(r, f).

—l—N(r,

From Lemma 10 and (10), we have
(n=1T(r, f) < (m+3)T(r, f) + S1(r, f),

that is,
(n—m—4)T(r, f) < Si(r, f). (11)

Since n > m + 4 and f is a transcendental meromorphic function, we can get a
contradiction. Thus, P(f)f(gz + 1) = a(z) has infinitely many solutions when f ia
a transcendental meromorphic function of zero order.

Case 2. If f is a transcendental entire function, we suppose that P(f)f(gz+n) =
a(z) has finitely many solutions. By using the same argument as in Case 1 and (4),
we have

(n+DT(r, f) < (m+DT(r, f) + 51(r, f)-
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Since n > m and f is transcendental, we can get a contradiction.
Thus, we can get the conclusions of Theorem 6. O

3.2. The Proof of Theorem 7

Proof. Similarly to the proof of Theorem 6, and using Lemma 12, we can easily
prove Theorem 7. O

4. Proofs of Theorems 11 and 12

In this section, set F'(z) = P(f)f(qz +n) and G(z) = P(9)g(qz + n).

4.1. The proof of Theorem 11

Proof. From the assumptions of Theorem 11, we have that F(z), G(z) share 1 CM.
Then, the following three cases will be considered.

Case 1. Suppose that F(z2), G(z) satisfy Lemma 1(i). Since f(z), g(z) are entire
functions of zero order, from Lemma 10, we have S(r, F') = S(r, f), S(r,G) = S(r, 9).
Then, from Lemma 1(i) and Lemma 8, we have

G

+ 2N, (r, )+S(nf)+5(ng)

T, F(2) + T 6() <2 (n ) +28 (1 ) 45000+ 5000) (1)

g(qz +n)

< 20T (r, f) + 20T (r, g) + 2N (7“7 M)

1
+ 2N <T7 f(<12+77)> + S1(r, f) + Si(r, 9)
< 2(Lo+ DT (r, ) + T(r,g)] + S1(r, f) + S1(r,9).
From Lemma 9 and (12), we have
(n+DT(r, f) +T(r,9)] < 2(Lo + DT (r, f) + T(r, 9)] + S1(r, [) + 51(r, 9),

that is,
(n—2Tg — V[T (r, f) +T(r,g)] < Si(r, f) + Si(r, g). (13)

Since n > 2I'g + 1 and f, g are transcendental functions, we can get a contradiction.
Case 2. If F(z) = G(z), that is,

P(f)f(gz+n) = P(g)g(qz +n). (14)

Set h = g. If h is not a constant, from (14), we can get that f and g satisfy the
algebraic equation R(f,g) = 0, where R(w1,ws) = P(w1)w1(gz+c¢)—P(w2)wa(gz+c).
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If h is a constant. Substituting f = gh into (14), we can get
9(qz + )[ang™ (K" — 1)+ ap_19" 1 (h" = 1) + -+ ag(h—1)] =0, (15)

where a,(# 0),an—1,...,ap are constants.
Since ¢ is a transcendental entire function, we have g(gz + 1) # 0. Then, from
(15), we have

g (R — 1) 4 an_1g" N (A" = 1)+ - +ag(h —1) =0, (16)

If a, # 0 and ap—1 = ap—2 = -+~ = a9 = 0, then from (16) and g being a
transcendental function, we can get h"*! = 1.

a, # 0 and there exists a; # 0(i € {0,1,2,...,n — 1}). Suppose that h" Tt # 1,
by Lemma 4 and (16), we have T'(r,g) = S(r,g) which is a contradiction with a
transcendental function g. Then A"*! = 1. Similarly to this discussion, we can get
that A/t =1, when a; # 0 for some j =0,1,...,n

Thus, from the definition of d, we can get that f = tg, where t is a constant such
that t¢ =1, d = GCD{\o, A1, , An}.

Case 3. If F(2)G(z) = 1. From Lemma 12, we can get that fg = p for a

constant g such that a?pu"* = 1.
Thus, this completes the proof of Theorem 11. O

4.2. The proof of Theorem 12

From the assumptions of Theorem 12 , we have E;(1; F(2)) = E;(1; G(z)).

Proof. (I) I = 2. Since

x <r, Fl—l) LN (7’, G1_1> Ny (r, L 1) (17)

1—
+ 2N (141 (Tv

NSRS

=T(r,F) + (T,G) S(r, F)+ S(r,G).

IN

I /\

2
— 1 1 F 1 1— 1
_ )< )= = < Z —
N(l+1(T’F1>_2N( F) 2N( F)+S(TF)_2N( F)+S(T,F)

m
2

IN

}) L Su(r f),

T(r, f)+ N(

— 1
— | <
N(l—'rl (T’G—l)

and

SE

1— 1
T(Ta g) + §N (’f’, g) + 51(7", g)
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Case 1. If F(z),G(z) satisfy Lemma 2(i), from transcendental entire function
f(2),9(2) and (17), we have

T(r, F(z) + T(r,G(2)) < 2Ny (r, ;) + 2N, (r, é) +mT(r, f) + mT(r,g)

+N (r}) +N <r, ;) + S1(r, f) + S1(r, 9).

From Lemma 10 and A = min{©(0, f),0(0, ¢g)}, for any €(0 < ¢ < n—2Tg—m—2+N),

we have
(n=2Tg—m—=2+X=¢)[T(r,f)+T(r,9)] < S1(r, )+ S1(r,g). (18)

Since n > 2I'g +m + 2 — X and f, g are transcendental functions, we can get a

contradiction.
Case 2. If F(z),G(z) satisty Lemma 2(ii), that is,

(b+1)G+(a—b—1)

F:
bG + (a —b) ’

(19)

where a(# 0),b are two constants.

We consider three cases as follows.
Subcase 2.1. b#£0,—1. If a — b — 1 # 0, then by (19) we know

— 1 — 1
N(’r’al)l) :N(T,F>
G+ b+1

Since f, g are entire functions of zero order, by the Second Fundamental Theorem
and Lemma 7 and Lemma 8, we have

_ 1 — 1
T(r,G) <N <r, G> +N <r7 G—i—“_b_1> + S(r, g)

— 1 — 1
<N — N —
5 d) (o) e

)
— 1
<(m+1DT(r,g)+mT(r,f)+ N <7”, f) + S1(r, f) + S1(r, 9).

Then from Lemma 8, we have

(n_m)T<rvg> SmT(T7 f)+N(T, +Sl(7”,f)+51(7“,g).

—_

Similarly, we have
) + 51(r, f) + S1(r, 9).

(n —m)T(r, )SmT(r,g)+N<7‘,

S

From the above two inequalities, we have

(n—=2m—14+X—¢)[T(r,f) +T(r,9)] < Si(r, f) + Si(r, g). (20)
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From the definitions of m and I'g, we have m = mq 4+ msy. Since 2I'g +m +2 — X —
(2m+1—X) >0, thatis, n > 2I'g+ m+2— A >2m+ 1 — . From (20) and since
f, g are transcendental, we can get a contradiction.

If a—b—1=0, then by (19) we know F' = ((b+ 1)G)/(bG + 1). Since f,g
are entire functions, we get that —% is a Picard’s exceptional value of G(z). By the
Second Fundamental Theorem, we have

T(r,G)<N (r, é) +S5(r,G) < (m+1)T(r,g9) + Si(r,g).

Then, from Lemma 10 and n > 2o + m + 2 — A, we know T'(r,g) < Si(r,g), a
contradiction.

Subcase 2.2. b= —1. Then (19) becomes F =a/(a+1— G).

If a+ 1 # 0, then a + 1 is a Picard’s exceptional value of G. Similarly to the
discussion in Subcase 2.1, we can deduce a contradiction again.

If a+1=0, then FG = 1, that is,

P(f)f(gz +n)P(9)g(gz+n) = 1.

Since n > 2I'g +m + 2 — XA > 2, by Lemma 12, we can get that fg = p for a
constant u such that a?pu"+! = 1.
Subcase 2.3. b= 0. Then (19) becomes F = (G +a —1)/a.

If a —1 # 0, then N (r, ﬁ) = N(r, %) Similarly to the discussion in

Subcase 2.1, we can deduce a contradiction again.
If a — 1 =0, then F = G, that is,

P(f)f(gz+n) = P(g9)9(qz +n).

Using the same argument as in the proof of Case 2 in Theorem 11, we can get
that f, g satisfy Theorem 11(ii).
(IT) I = 1. Since

_ 1 — 1 1
N <T7F—1> + N (T',G_l) - Niy <T7F—1> (21)
From Lemma 8, we have
— 1 F F — 1
) < — ) = i < —
Na(rg) s (ng) =N () SN <F (g ) +500) @2
_|_

and

N (r, é) <mT(r,g)+ N (r, ;) + S1(r, 9). (23)
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Case 1. If F(z),G(z) satisfy Lemma 2(i), from f,g as entire functions and
(21)-(23), we have

T(r,F)+T(r,G) <2(Lo +m+ V)[T(r, f) + T(r,g)] + 2N (r, })

+2N (n ;) + S1(r, f) + Si(r, g).

From Lemma 10 and A = min{O(0, f),©(0, g)}, for any (0 < ¢ < n — 2y — 2m —
34+ 2)), we have

[n—2T0 — 2m = 3+ 2 — ] [T(r, f) + T(r,9)] < Si(r, f) + S1(r, g). (24)

Since n > 2Ty + 2m + 3 — 2\, from (24) and since f, g are transcendental, we can
get a contradiction.

Case 2. If F(z),G(z) satisfy Lemma 2(ii). Similarly to the proof of Case 2 in
(I), we can get the conclusions of Theorem 12.

(IIT) I = 0, that is, F(z),G(z) share 1 IM. From the definitions of F(z), G(z),
we have

Ny (rFl_ 1) <N <r§,> =N (r, 1;) +S(r, F) §N<T, ;) +S(r, F) (25)

<mT(r,f)+ N (T, }) + Si(r, f);

similarly, we have

Ny <r, Gl_ 1) <mT(r,g)+ N (r, ;) + Si(r, f). (26)

Case 1. Suppose that F(z), G(z) satisfy Lemma 3(i). From (25) and (26), we
have

T(r, F(2)) + T(r, G(2)) < 2N, (r, ;) 2N, (n é) + 3mT(r, f) + 3mT(r, g)

_ 1 — 1
+3N <r7 f) +3N (r, g> +51(r, f) + 51(r, 9)-
From Lemma 10, for any (0 < e <n —2I'g —3m — 4 + 3)), we can get
(n =200 —3m — 443X —e)[T'(r, f) + T(r,9)] < S1(r, ) + S1(r, 9). (27)
Since n > 2I'g + 3m + 4 — 3\, we can get a contradiction.

Case 2. Suppose that F(z),G(z) satisfy Lemma 3(ii). Similarly to the proof of
Case 2 in (I), we can easily get the conclusions of Theorem 12.
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(IV) 1 > 3. Since

() ¥ ramer) e (hrg )

1
o (ngy=1) - (=)
1

Ly (r, F@;l) - (n G(;J +S(r, F) + 5(r,G)

< %m, F)+ %m, Q)+ S(r,F) + S(r,G).

Case 1. Suppose that F(z),G(z) satisfy Lemma 2(i). From Lemmas 8 and 9,
we have

(n+ DT (r, /) +T(r,9)] <2(To + DT (r, f) + T(r, 9)] + S1(r, ) + S1(r, 9),

that is,
(n—2Lg = D[T(r, f) + T(r,g)] < +51(r, f) + S1(r, 9). (28)

Since n > 2I'g + 1 and f, g are transcendental functions, we can get a contradiction.
Case 2. Suppose that F'(z), G(z) satisfy Lemma 2(ii). Similarly to the proof of
Case 2 in (I), we can easily get the conclusions of Theorem 12.
Thus, the proof of Theorem 12 is complete. O
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