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Abstract. In this paper, our aim is to establish some generalizations upon the sufficient
conditions for linear fractional differential operators involving the normalized forms of the
generalized Bessel functions of the first kind to be univalent in the open unit disk as investi-
gated recently by [E.Deniz, H.Orhan, H.M. Srivastava, Some sufficient conditions for

univalence of certain families of integral operators involving generalized Bessel functions,
Taiwanese J. Math. 15(2011), No. 2, 883–917] and [Á. Baricz, B. Frasin, Univalence of

integral operators involving Bessel functions, Appl. Math. Letters 23(2010), No. 4, 371–
376]. Our method uses certain Luke’s bounding inequalities for hypergeometric functions

p+1Fp and pFp.
AMS subject classifications: 26D10, 26D15, 30C45, 30C55, 33C10, 33C20
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1. Introduction and preparation

Several applications of Bessel functions arise naturally in a wide variety of problems
in applied mathematics, statistics, operational research, theoretical physics and en-
gineering sciences. Bessel functions are series solutions to a second order differential
equation that ascend in many and diverse situations. Bessel’s differential equation
of order ν is defined as [26, p. 97, Eq. (3)]:

z2w2 + bzw + [cz2 − ν2 + (1− b)ν]w = 0, b, c, ν ∈ C. (1)

A particular solution of differential equation (1), denoted by wν,b,c(z), is called the

generalized Bessel function of the first kind of order ν. In fact, we have the following
familiar series representation for the function wν,b,c(z):

wν,b,c(z) =
∑

m≥0

(−c)m
m! Γ(ν + b+1

2 +m)

(z
2

)2m+ν

, z ∈ C , (2)
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where Γ(z) stands for the Euler gamma function. The series in (2) permits us to
study the Bessel, the modified Bessel and the spherical Bessel functions in a unified
manner. Each of these particular cases of the function wν,b,d(z) is worthing mention
here. So, for b = c = 1 in (2) we obtain the Bessel function of the first kind Jν(z) of
order ν, defined by [26] (also see [6])

Jν(z) =
∑

m≥0

(−1)m

m! Γ(ν +m+ 1)

(z
2

)2m+ν

, z ∈ C, (3)

while if b = −c = 1 in (2), we obtain the modified Bessel function of the first kind

Iν(z) defined by (see [26] and [6])

Iν(z) =
∑

m≥0

1

m! Γ(ν +m+ 1)

(z
2

)2m+ν

, z ∈ C. (4)

Now, consider the function uν,b,c : C 7→ C, defined by the transformation

uν,b,c(z) = 2ν Γ
(
ν + b+1

2

)
z−

ν
2 wν,b,c(

√
z).

By using the Pochhammer (Appell, or shifted factorial) symbol, defined in terms of
the Euler gamma function,

(a)m =
Γ(a+m)

Γ(a)
= a(a+ 1) · · · (a+m− 1)

and (a)0 = 1, for the function uν,b,c we obtain the following representation

uν,b,c(z) =
∑

m≥0

(− c
4 )

m

(
ν + b+1

2

)
m

zm

m!
,

where ν+ b+1
2 6= 0,−1,−2, · · · . This function is analytic in C and satisfies the second

order linear differential equation

4z2u′′(z) + 2(2ν + b+ 1)zu′(z) + c z u(z) = 0.

We now introduce the function ϕν,b,c(z) = z uν,b,c(z) defined in terms of the gener-
alized Bessel function wν,b,c(z) (and in a hypergeometric form, too) by

ϕν,b,c(z) = 2νΓ
(
ν + b+1

2

)
z1−

ν
2 wν,b,c(

√
z)

= z + z
∑

m≥1

(
− cz

4

)m

(κ)mm!
= z 0F1

(
−;κ;−cz

4

)
, κ = ν + 1

2 (b+ 1). (5)

Let A denote the class of analytic functions f defined in the open unit disk U =
{z : |z| < 1} and let it have the form f(z) = z +

∑
k≥2 akz

k. For functions f(z) =
z+
∑

m≥2 amz
m and g(z) = z+

∑
m≥2 bmz

m, the Hadamard product (or convolution)
f ∗ g is defined as usual, by (f ∗ g)(z) = z +

∑
m≥2 ambmz

m.
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This paper deals with the linear fractional differential operator Dn,γ
λ , where for

for 0 ≤ γ < 1, λ ≥ 0 [3, p. 658, Eq. (1.6)]

D
n,γ
λ f(z) = (D1,γ

λ ∗D1,γ
λ ∗ · · · ∗D1,γ

λ︸ ︷︷ ︸
n

∗f)(z)

D
1,γ
λ f(z) = Γ(2− γ) zγDγ

z f(z) ∗ gλ(z), γ 6∈ N2 = {2, 3, · · · }

gλ(z) =
z − (1− λ)z2

(1− z)2
=
∑

m≥0

(
1 + λm

)
zm+1

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(t)

(z − t)α
dt, 0 ≤ α < 1.

Using the fractional derivative Dα
z of order α, Owa [15], and later Owa and Srivas-

tava [16] introduced the operator Ωα : A → A , which is known as an extension of
fractional derivative and fractional integral, as follows

Ωαf(z) = Γ(2− α)zαDα
z f(z) = z +

∑

m≥2

B(m+ 1, 2− α)amz
m, α 6∈ N2,

where B(s, t) stands for the Euler beta function, recalling

B(s, t) =

∫ 1

0

xs−1(1 − x)t−1dx =
Γ(s)Γ(t)

Γ(s+ t)
, min{ℜ(s),ℜ(t)} > 0.

In [3], the authors introduced the operator Dn,α
λ : A → A as follows:

D
n,γ
λ f(z) = z +

∑

m≥2

B(m+ 1, 2− γ)
(
1 + λ(m− 1)

)n
amz

m. (6)

When α = 0, we get Al-Oboudi’s differential operator [2], when α = 0 and λ = 1, (6)
covers Sălăgean’s differential operator [21]; while the special cases Dn,α

0 , D
0,α
λ either

n ∈ N0 or λ ∈ C mutually coincide with the Owa-Srivastava fractional differential
operator Ωα studied in [16].

Now, let the linear fractional differential operator Dn,γ
λ ϕν,b,c : A → A viz

D
n,γ
λ ϕν,b,c(z) = 2νΓ

(
ν + b+1

2

)
D

n,γ
λ

[
z1−

ν
2 wν,b,c(

√
z )
]
.

In the recently growing and developing area of Geometric function theory, general
families of integral operators were introduced and studied [7, 11, 13, 19, 22, 23, 24],
among others

Hα1,α2,··· ,αm;β(z) =




β
∫ z

0

tβ−1
m∏

j=1

(
hj(t)

t

) 1
αi

dt






1
β

(7)

Fm,γ(z) =



(mγ + 1)

∫ z

0

m∏

j=1

f
γ
j (t)dt





1
(mγ+1)

(8)

Gλ(z) =

{
λ

∫ z

0

tλ−1eλg(t)dt

} 1
λ

, (9)
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where the functions h1, · · · , hm; f1, · · · , fm; g ∈ A and the parameters α1, · · · , αm

come from the punctured complex plane C \ {0}, while β, γ, λ are complex numbers
for which the integrals in (7), (8) and (9) converge. Here, and throughout this article,
all multiple valued functions are taken conventionally with the principle branch.

Two of the most important and widely known univalence criteria for analytic
functions defined in the open unit disk U were obtained by Ahlfors [1] and Becker
[9, 10]. Some extensions of these two univalence criteria were given by Pescar [18]
and Pascu [17]. Bulut [12] obtained sufficient conditions for the univalence of the
integral operator

I
n,γ
β (f1, · · · , fk) =



β

∫ z

0

tβ−1
k∏

j=1

(
D

n,γ
λ fj(t)

t

)αj

dt





1
β

, (10)

where z ∈ U;n ∈ N0, k ∈ N; β ∈ C with ℜ(β) > 0 and αj ∈ C, j = 1, k.
Recently, Szász and Kupán [25] investigated the univalence of the normalized

Bessel function of the first kind gν : D → C defined by

gν(z) = 2νΓ(ν + 1)z1−
ν
2 Jν

(√
z
)
= z + z

∑

m≥1

(−1)m

4m(ν + 1)m

zm

m!
.

Families of integral operators of types (7) and (9) which involve the normalized forms
of the generalized Bessel functions of the first kind were investigated in [7, 4, 5] and
[8] to obtain sufficient conditions for integral operators to be univalent in the open
unit disk. Also, Prajapat’s results [20, Theorem 1] were mentioned.

The main objective of this paper is to extend and refine the parametric space
and to give an alternative hypergeometric approach to deriving more sensitive forms
in questions treated in the aforementioned results of [7] and [13] and also in the re-
lated references therein. For this purpose, in Section 2, we prove bi-lateral bounding
inequalities for compositions of the operator Dn,α

λ with the normalized and trans-
formed Bessel function of the first kind ϕν,b,c in terms of generalized hypergeometric
functions. In Section 3, we present univalence criteria for three linear fractional
differential operators (37), (38) and (39).

2. Bounding inequalities

By using the familiar Pochhammer symbol we obtain the following series represen-
tation for Dn,γ

λ in the form

D
n,γ
λ f(z) =





z +
∑
m≥2

[
(1+ 1

λ )m−1
(2)m−1

( 1
λ )m−1

(2−γ)m−1

]n
amz

m, λ > 0

z +
∑
m≥2

[
(2)m−1

(2−γ)m−1

]
akz

k, λ = 0
. (11)

For the formulation of the bi-lateral bounding inequality results we recall the defini-
tion of the generalized hypergeometric function with p numerator and q denominator
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parameters, as the series

pFq

[
a1, · · · , ap
b1, · · · , bq

∣∣∣z
]
= pFq

[
ap
bq

∣∣∣z
]
:=
∑

m≥0

(a1)m · · · (ap)m
(b1)m · · · (bq)m

zm

m!
, (12)

where bj ∈ C\Z−
0 , j = 1, q. The series converges for all z ∈ C if p ≤ q. It is divergent

for all z 6= 0 when p > q + 1, unless at least one numerator parameter is a negative
integer in which case (14) is a polynomial. If p = q + 1, the series converges on
|z| = 1 when ℜ

(∑
bj −

∑
aj
)
> 0.

For the sake of simplicity, by ((µ))n we tacitly denote a product of n Pochhammer
symbols with the same base parameter µ occurring inside pFq.

Theorem 1. When ν, b ∈ R and c ∈ C are so constrained that κ = ν + b+1
2 > 0,

then the function z−1D
n,γ
λ ϕν,b,c(z) : U → C satisfies the inequality

L1 := 2−R1 ≤
∣∣z−1D

n,γ
λ ϕν,b,c(z)

∣∣ ≤ R1, (13)

where

R1 = 2nF2n+1

[ ((1 + 1
λ))

n, ((2))n

κ, (( 1λ))
n, ((2 − γ))n

∣∣∣
|c|
4

]
,

provided R1 ≤ 1. Moreover, (13) is reduced to the equality for c = 0.

Proof. Firstly, by virtue of representation (11) we obtain:

D
n,γ
λ ϕν,b,c(z) = z

∑

m≥0

(−1)m

(κ)m

[(
1 + 1

λ

)
m
(2)m(

1
λ

)
m
(2 − γ)m

]n
(cz)m

4mm!

= z · 2nF2n+1

[
((1 + 1

λ))
n, ((2))n

κ, (( 1λ ))
n, ((2 − γ))n

∣∣∣− cz

4

]
.

By the triangle inequality, inside U we conclude

|Dn,γ
λ ϕν,b,c(z)| ≤ |z|2nF2n+1

[ ((1 + 1
λ))

n, ((2))n

κ, (( 1λ))
n, ((2 − γ))n

∣∣∣
|c|
4

]
, (14)

with κ > 0, λ > 0 and γ < 2. On the other hand, we arrive at

|Dn,γ
λ ϕν,b,c(z)| ≥ |z|

(
2− 2nF2n+1

[ ((1 + 1
λ))

n, ((2))n

κ, (( 1λ ))
n, ((2− γ))n

∣∣∣
|c|
4

])
. (15)

Indeed, rewriting

D
n,γ
λ ϕν,b,c(z)

z
= 1−

∑

m≥1

(−1)m−1

(k)m

[ (
1 + 1

λ

)
m
(2)m(

1
λ

)
m
(2− γ)m

]n (
cz
4

)m

m!
,

using the classical inequality |z−w| ≥
∣∣|z| − |w|

∣∣; z, w ∈ C (15) readily follows. The
rest is obvious with 2nF2n+1[0] = 1.
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Despite the elegance of two-sided bounds in (13), we are looking for certain
more practical bounds avoiding the higher transcendental generalized hypergeomet-
ric building blocks. To do this, we have the classical Luke’s article [14] at disposal.
Firstly, let us recall the appropriate rational bound results. Here and in what follows
we use the shorthand notation

θ =

max
1≤j≤p

aj

min
1≤j≤p

bj
, ψ =

1 + max
1≤j≤p

aj

1 + min
1≤j≤p

bj
. (16)

Assume that bj ≥ aj > 0, j = 1, p and σ > 0. Then for all x ∈ (0, 1) we have [14, p.
55, Theorem 13, Eqs. (4.21), (4.23)]

(1− θx)−σ < p+1Fp

[
σ, ap
bp

∣∣∣x
]
< 1− θ + θ(1− x)−σ (17)

1 + σθx

(
1− ψx

2

)−σ−1

< p+1Fp

[
σ, ap
bp

∣∣∣x
]

< 1 + σθ

(
1− ψ

2

)
x+

σθψx

2(1− x)σ+1
. (18)

In conjunction with the estimate (13) in Theorem 1 we clearly deduce

Theorem 2. Let κ, λ be positive, γ ∈ (0, 2), max{ 1
λ , 1}+ 1 ≤ min{κ, 1

λ , 2− γ} and

|c|λ
4κ

≤ 1−
(

θ

1 + θ

) 1

1+max{1,λ−1}

. (19)

Then for all z ∈ U we have

∣∣∣∣∣

∣∣∣∣
D

n,γ
λ ϕν,b,c(z)

z

∣∣∣∣− 1

∣∣∣∣∣ ≤ θ

{(
1− |c|λ

4κ

)−1−max{1,λ−1}

− 1

}
, (20)

where

θ =
1 +max{1, λ−1}
min{λ−1, 2− γ} , ψ =

2 +max{1, λ−1}
1 + min{λ−1, 2− γ} .

Moreover, when we replace (19) with the constraint

|c|λ
4κ

≤ 1−
[

θψλ|c| min{2, 1 + λ−1}
8κ− θ(2 − ψ)λ|c| min{2, 1 + λ−1}

] 1

2+max{1,λ−1}

, (21)

it holds

2− R′′
2 ≤

∣∣∣∣
D

n,γ
λ ϕν,b,c(z)

z

∣∣∣∣ ≤ R′′
2 , (22)

where

R′′
2 = 1 +min{2, 1 + λ−1} |c|λθ

8κ

(
2− ψ + ψ

(
1− |c|λ

4κ

)−2−max{1,λ−1}
)
.



Univalence criteria for linear fractional 177

Proof. Firstly, to apply Luke’s estimate (17) and more sophisticated one (18) we
have to have an p+1Fp generalized hypergeometric function, that is, two Pochham-
mer expressions in the numerator of 2nF2n+1 should be transformed into a power
expression via the obvious (s)m ≥ sm for a suitable s and m ∈ N0. Choosing
( 1λ )m ≥ λ−m, (2− γ)m ≥ (2− γ)m for that purpose, we get

2nF2n+1

[
((1 + 1

λ))
n, ((2))n

κ, (( 1λ))
n, ((2 − γ))n

∣∣∣
|c|
4

]

≤ 2nF2n−1

[
((1 + 1

λ ))
n, ((2))n

κ, (( 1λ))
n−1, ((2− γ))n−1

∣∣∣
|c|λ

4(2− γ)

]
=: C2.

Next, by means of Luke’s upper bounds (17) and (18), we infer

C2 ≤





1− θ + θ

(
1− |c|λ

4κ

)−2−max{1,λ−1}

1 + min{2, 1 + λ−1} |c|λθ
8κ

(
2− ψ + ψ

(
1− |c|λ

4κ

)−2−max{1,λ−1}
)
,

where R2 stands for the right-hand side bound. The rest is obvious.
Now, considering the lower bound L1 in Theorem 1, we see that in this case the

bounds upon C2 again have to be used in estimating
∣∣z−1D

n,γ
λ ϕν,b,c(z)

∣∣ from below.
Therefore ∣∣∣∣

D
n,γ
λ ϕν,b,c(z)

z

∣∣∣∣ ≥ 2−R2.

Finally, we have to check the non-negativity of the lower bounds in both two-sided
inequalities. In turn, their non-negativity is controlled by the assumed constraints
(19) and (21) respectively, which completes the proof.

Remark 1. The proof of Theorem 2 is performed by adapting the 2nF2n+1 hy-

pergeometric function terms into 2nF2n−1 by transforming two of its denominator

Pochhammer expressions into powers.

However, there are another two suitable choices applying the same procedure

mutually either to the couples (κ)m, (
1
λ)m and (κ)m, (2 − γ)m; or to ( 1λ)m, that is,

(2−γ)m twice in both cases. By this approach we can derive another eight two-sided

inequalities similar to the ones presented above by (20) and (22). Since the derivation
technique does not change from the exposed one, we leave their development to the

interested reader.

In [14, p. 56 et seq.], Luke studied among others the problem of two-sided inequal-
ities for a pFp type generalized hypergeometric function where the bounds consist of
polynomials and/or exponential expressions. Now, we recall his appropriate results.
Keeping the meaning of θ and ψ from (16) alive, if bj ≥ aj > 0, j = 1, p, for all
x > 0, we have [14, p. 57, Theorem 16, Eq. (5.6)]

eθx < pFp

[
ap
bp

∣∣∣x
]
< 1− θ

(
1− ex

)
, (23)
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together with the companion estimate [14, p. 57, Theorem 16, Eq. (5.8)]

1 + θxe
ψ
2 x < pFp

[
ap
bp

∣∣∣x
]
< 1 + θx

(
1− ψ

2
+
ψ

2
ex
)
. (24)

Theorem 3. Let κ, λ be positive, γ ∈ (0, 2). If max{λ−1, 1}+ 1 ≤ min{λ−1, 2− γ}
and θ ≥ (e− 1)−1, then for all z ∈ U we have

∣∣∣∣∣

∣∣∣∣
D

n,γ
λ ϕν,b,c(z)

z

∣∣∣∣− 1

∣∣∣∣∣ ≤ θ
(
e
|c|
4κ − 1

)
, (25)

Moreover, if we replace the constraint θ ≥ (e− 1)−1 with

4κ

θ |c| ≥ 1− ψ

2
+
ψ

2
e
|c|
4κ ,

then there holds
∣∣∣∣∣

∣∣∣∣
D

n,γ
λ ϕν,b,c(z)

z

∣∣∣∣− 1

∣∣∣∣∣ ≤
θ |c|
4κ

(
1− ψ

2
+
ψ

2
e
|c|
4κ

)
, (26)

where in both bilateral inequalities θ and ψ remain the same as in (16).

Proof. The natural choice for transforming one denominator Pochhammer symbol
in the displays (14) is (κ)m ≥ κm. By this we achieve

|Dn,γ
λ ϕν,b,c(z)| ≤ |z|2nF2n

[ ((1 + 1
λ))

n, ((2))n

(( 1λ))
n, ((2− γ))n

∣∣∣
|c|
4κ

]
=: C3.

An obvious use of the upper bound (23) implies

C3|z|−1 ≤ 1− θ
(
1− e

|c|
4κ

)
=: R3,

so the upper bound in (25). Following the same steps of the proof of the previous
theorems we deduce the lower bound

∣∣z−1D
n,γ
λ ϕν,b,c(z)

∣∣ ≥ 2 − R3, whose non-
negativity is ensured by assuming θ ≥ (e− 1)−1.

The proving procedure of (26) is synthesized from the presented steps and Luke’s
estimate (24).

Remark 2. Replacing the estimate (κ)m ≥ κm either with ( 1λ)m ≥ λ−m or (2 −
γ)m ≥ (2 − γ)m in the proof of Theorem 3, we can develop additional four similar

two-sided inequalities close to the ones exposed in (25) and (26).

Theorem 4. If the parameters ν, b ∈ R are so constrained that κ = ν+ b+1
2 > 0 and

λ > 0, γ ∈ (0, 2), c ∈ C, then D
n,γ
λ ϕν,b,c(z) : U → C satisfies the following inequality

∣∣∣∣∣(D
n,γ
λ ϕν,b,c(z))

′−D
n,γ
λ ϕν,b,c(z)

z

∣∣∣∣∣≤
[2(1 + λ)]n|c|
4κ(2− γ)n

×2nF2n+1

[ ((2 + 1
λ))

n, ((3))n

κ+ 1, ((1 + 1
λ))

n, ((3− γ))n

∣∣∣
|c|
4

]
. (27)
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Moreover, we have

max{0, 2−R5} ≤
∣∣z (Dn,γ

λ ϕν,b,c(z))
′ ∣∣ ≤ R5, (28)

where

R5 = 1 +
|c|
4κ

[
2(1 + λ)

2− γ

]n {

2nF2n+1

[
((2 + 1

λ))
n, ((3))n

κ+ 1, ((1 + 1
λ ))

n, ((3 − γ))n

∣∣∣
|c|
4

]

+2n+1F2n+2

[
1, ((2 + 1

λ))
n, ((3))n

2, κ+ 1, ((1 + 1
λ ))

n, ((3 − γ))n

∣∣∣
|c|
4

]}
. (29)

Finally, there holds

∣∣∣z2 (Dn,γ
λ ϕν,b,c(z))

′′
∣∣∣ ≤ Λ′

n

{

2nF2n+1

[ ((2 + 1
λ))

n, ((3))n

κ+ 1, ((1 + 1
λ ))

n, ((3 − γ))n

∣∣∣
|c|
4

]

+Λ′′
n2nF2n+1

[ ((3 + 1
λ))

n, ((4))n

κ+ 2, ((2 + 1
λ))

n, ((4 − γ))n

∣∣∣
|c|
4

]}
, (30)

where

Λ′
n =

[
2(1 + λ)

2− γ

]n |c|
2κ
, Λ′′

n =

[
3(1 + 2λ)

(1 + λ)(3 − γ)

]n |c|
8(κ+ 1)

.

Proof. Firstly, we have

∆ϕ :=

∣∣∣∣(D
n,γ
λ ϕν,b,c(z))

′ − D
n,γ
λ ϕν,b,d(z)

z

∣∣∣∣

=

∣∣∣∣∣∣

∑

m≥1

m

(k)m

[(
1 + 1

λ

)
m
(2)m(

1
λ

)
m
(2 − γ)m

]n (
− cz

4

)m

m!

∣∣∣∣∣∣

≤ Λ′
n

2

∑

m≥0

1

(κ+ 1)m

[ (
2 + 1

λ

)
m
(3)m(

1 + 1
λ

)
m
(3 − γ)m

]n ( |c|
4

)m

m!

=
Λ′
n

2
2nF2n+1

[ ((2 + 1
λ))

n, ((3))n

κ+ 1, ((1 + 1
λ ))

n, ((3 − γ))n

∣∣∣
|c|
4

]
=: C4. (31)

With z ∈ U, we obtained the asserted upper bound (27).

In order to prove assertion (28) we make use of the series representation

z (Dn,γ
λ ϕν,b,c(z))

′
= z



1 +
∑

m≥1

m+ 1

(κ)m

[ (
1 + 1

λ

)
m
(2)m(

1
λ

)
m
(2− γ)m

]n (
− cz

4

)m

m!



 .

Splitting the series into a sum writing m+1
(κ)m

= m
(κ)m

+ 1
(κ)m

, we conclude that

∣∣∣z (Dn,γ
λ ϕν,b,c(z))

′
∣∣∣ ≤ 1 +

Λ′
n

2
2nF2n+1

[
((2 + 1

λ))
n, ((3))n

κ+ 1, ((1 + 1
λ ))

n, ((3− γ))n

∣∣∣
|c|
4

]

+
Λ′
n

2
2n+1F2n+2

[ 1, ((2 + 1
λ))

n, ((3))n

2, κ+ 1, ((1 + 1
λ ))

n, ((3 − γ))n

∣∣∣
|c|
4

]
=: R5,
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which confirms the upper bound in (28). Similarly, using |1 − z| ≥
∣∣1 − |z|

∣∣ once
more, we have that

∣∣z (Dn,γ
λ ϕν,b,c(z))

′ ∣∣ ≥ 2−R5 =: L5.

It remains to prove statement (30). By direct calculations for all z ∈ U it follows

∣∣z2 (Dn,γ
λ ϕν,b,c(z))

′′ ∣∣ = |z|

∣∣∣∣∣∣

∑

m≥1

(m+ 1)m

(κ)m

[(
1 + 1

λ

)
m
(2)m(

1
λ

)
m
(2 − γ)m

]n (
− cz

4

)m

m!

∣∣∣∣∣∣

≤
[
2(1 + λ)

2− γ

]n |c|
2κ

{

2nF2n+1

[ ((2 + 1
λ))

n, ((3))n

κ+ 1, ((1 + 1
λ))

n, ((3− γ))n

∣∣∣
|c|
4

]

+
|c|[3(1 + 2λ)]n

8(κ+ 1)[(1 + λ)(3 − γ)]n

×2nF2n+1

[ ((3 + 1
λ))

n, ((4))n

κ+ 2, ((2 + 1
λ ))

n, ((4 − γ))n

∣∣∣
|c|
4

]}
.

Thus the proof is completed.

Similarly to preceding part of the running section, by means of Luke’s bounds
we should evaluate the hypergeometric expressions in the bounds of Theorem 4.

To do this, we choose a sufficient number of denominator Pochhammer expres-
sions and set (s)m ≥ sm with appropriate choices of s bounding them by either

p+1Fp for rational expressions, or pFp for the exponential power terms.
Namely, without easily handleable bounds, it is highly inconvenient to describe

precisely the parameter space and constraints which give - at least sufficient - con-
ditions to secure the earned results’ validity.

As to the rational simplification of the upper bound (27), we have

Theorem 5. Let ν, b ∈ R so constrained that κ > 0. Let γ ∈ (0, 2), λ > 0 and c ∈ C

and

min{κ, λ−1, 2− γ} ≥ 1 + max{1, λ−1} > 0.

Then for all z ∈ U we have

∣∣∣(Dn,γ
λ ϕν,b,c(z))

′ − z−1D
n,γ
λ ϕν,b,c(z)

∣∣∣ ≤ min{R6, R7}, (32)

where

R6 =
[2(1 + λ)]n|c|
4κ(2− γ)n

{
1− ψ + ψ

(
1− |c|λ

4(1 + λ)(3 − γ)

)−σ
}

R7 =
[2(1 + λ)]n|c|
4κ(2− γ)n

{
1 +

λψ(1 + σ)|c|
8(1 + λ)(3 − γ)

(
2− ψ1

+ψ1

(
1− |c|λ

4(1 + λ)(3− γ)

)−σ−1
)}

;



Univalence criteria for linear fractional 181

while σ = 2 +max{1, λ−1} and

ψ =
σ

1 + min{κ, λ−1, 2− γ} , ψ1 =
1 + σ

2 + min{κ, λ−1, 2− γ} .

Further, we have

∣∣∣∣∣
z (Dn,γ

λ ϕν,b,c(z))
′

D
n,γ
λ ϕν,b,c(z)

− 1

∣∣∣∣∣ ≤
1

L1
min{R6, R7}, (33)

and L1 is described in Theorem 1.

Proof. Choosing in (31) e.g. s = 1+λ−1, 2−γ (see also the comments in Remark 3),
we get

C4 ≤ Λ′
n

2
2nF2n−1

[ ((2 + 1
λ ))

n, ((3))n

κ+ 1, ((1 + 1
λ))

n−1, ((3− γ))n−1

∣∣∣
|c|λ

4(1 + λ)(3 − γ)

]
=: C5,

which is ready to be estimated by (17) in evaluating C4. Bearing in mind the
notations (16), in our present setting equal to θ, ψ1, we conclude

C5 ≤ [2(1 + λ)]n|c|
4κ(2− γ)n

{
1− θ + θ

(
1− |c|λ

4(1 + λ)(3 − γ)

)−σ
}
;

also by (18) we derive a more sophisticated counterpart of this result viz.

C5 ≤ Λ′
n

2

{
1 +

λθ(1 + σ)|c|
8(1 + λ)(3 − γ)

(
2− ψ1+ ψ1

(
1− |c|λ

4(1 + λ)(3 − γ)

)−σ−1
)}

.

So bound (32).

Next, considering the right-hand side of (27) we arrive at (33).

Remark 3. For bound (32) one combines (s)m ≥ sm in the denominator concerning

the hypergeometric term in (31), we can additionally choose between the five possible

couples (s1, s2) ∈ {(1+λ−1, 2−γ), (κ+1, 1+λ−1), (κ+1, 3−γ), (1+λ−1, 1+λ−1), (3−
γ, 3− γ)}.

Another four resulting bounds coming from (32) are built similarly to the ones

listed earlier. Moreover, because bound (32) consists of the minimal expression of

R6, R7, and the above presented Pochhammer symbol minimization (s)m ≥ sm could

be applied separately to both cases, this approach results in exactly 25 different upper

bounds (including (32)), whose derivation is too complex to be presented here.

However, appropriate changes of the constraints defining the parameter space are

necessary, too. By these considerations we exhaust a whole family of related bounding

inequalities.

The same remark holds for (33).
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To end this section we treat (30) as above. Therefore, obviously

∣∣∣z2 (Dn,γ
λ ϕν,b,c(z))

′′
∣∣∣ ≤ Λ′

n

{
C5 +

[
3(1 + 2λ)

(1 + λ)(3 − γ)

]n |c|
8(κ+ 1)

C6

}
, (34)

where

C6 := 2nF2n−1

[
((3 + 1

λ))
n, ((4))n

κ+ 2, ((2 + 1
λ ))

n−1, ((4 − γ))n−1

∣∣∣
λ|c|

4(1 + 2λ)(4− γ)

]
.

Here we achieve the bound C6 by intervention s = 2 + λ−1, 4− γ.
Both C5 and C6 are prepared now for the use of Luke’s rational bounding in-

equalities (17) the use of which results in

C6 ≤ 1− θ + θ

(
1− |c|λ

4(1 + 2λ)(4 − γ)

)−σ

=: R8, (35)

and (18), respectively:

C6 ≤ 1+
λθ(1 + σ)|c|

8(1 + λ)(3 − γ)

(
2− ψ1 + ψ1

(
1− |c|λ

4(1 + 2λ)(4− γ)

)−σ−1
)

=: R9. (36)

The upper bound for C5 remains the same as in the proof of Theorem 5; in turn,
the parameters σ, θ, ψ1 for C6, that is, in R8, R9 become

σ′ = 3 +max{1, 1λ}; θ =
σ′

2 + min{κ, 1λ , 2− γ} ; ψ1 =
1 + σ′

3 + min{κ, 1λ , 2− γ} ,

pointing out that all the parameters involved are positive, in turn c ∈ C. By this we
proved

Theorem 6. Let ν, b ∈ R so constrained that κ > 0. Let γ ∈ (0, 3), λ > 0 and c ∈ C

and θ, ψ1 < 1. Then for all z ∈ U we have

∣∣∣z2 (Dn,γ
λ ϕν,b,c(z))

′′
∣∣∣ ≤ Λ′

n

{
min{R6, R7}+

[
3(1 + 2λ)

(1 + λ)(3 − γ)

]n |c| min{R8, R9}
8(κ+ 1)

}
,

where σ′, θ, ψ1 have the same meaning as above and R8 and R9 are given by (35)
and (36), respectively.

Remark 4. Other choices of the minimization (s)m ≥ sm in evaluating the de-

nominator Pochhammer symbols in both addends of the right-hand side expression

in (34), namely five couples (s1, s2) ∈ {(1 + λ−1, 3 − γ), (κ + 1, 1 + λ−1), (κ +
1, 3 − γ), (1 + λ−1, 1 + λ−1), (3 − γ, 3 − γ)} for C5 and five couples (s1, s2) ∈
{(2+λ−1, 4− γ)(κ+2, 2+λ−1), (κ+2, 4− γ), (2+λ−1, 2+λ−1), (4− γ, 4− γ)} ap-

plicable to the second hypergeometric term C6 form 25 possible bounding inequalities

together with the one reported in Theorem 6.
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We point out that there are further possibilities to build hypergeometric type

bounds for the convolution operators

(Dn,γ
λ ϕν,b,c(z))

′ − z−1D
n,γ
λ ϕν,b,c(z); z (Dn,γ

λ ϕν,b,c(z))
′
; z2 (Dn,γ

λ ϕν,b,c(z))
′′
,

either by the Gaussian 2F1 minimizing 2n−2 denominator Pochhammer expressions

by virtue of (s)m ≥ sm, and maximizing numerator ones by (s)m ≤ (s +m − 1)m;

by 3F2, etc. However, we exposed here an optimal minimal number of modifications

to achieve the sharpest possible bounds.

The adequate exponential type inequalities by Luke (23), (24) were not applied to

differential operators due to the similar conclusions as above.

3. Univalence criteria

In our considerations we need the next two univalence criteria.

Lemma 1 (see [18]). Let η,ℜ(η) > 0 and c ∈ C be such, that |c| ≤ 1, c 6= −1. If the
function f ∈ A satisfies

∣∣∣∣c|z|
2η +

(
1 + |z|2η

) zf ′′(z)

ηf ′(z)

∣∣∣∣ ≤ 1, z ∈ U,

then the function Fη defined by

Fη(z) =

(
η

∫ z

0

tη−1f ′(t)dt

)1/η

is in the class S of normalized univalent functions in U.

Lemma 2 (see [17]). If for some f ∈ A there holds

(
1− |z|2ℜ(µ)

) ∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ ℜ(µ), z ∈ U; ℜ(µ) > 0,

then for all η ∈ C such that Re(η) ≥ ℜ(µ) the function Fη ∈ S .

The next result follows by Becker’s univalence criterion [19] and the Schwarz
lemma.

Lemma 3 (see [19]). Let ζ ∈ C, ℜ(ζ) ≥ 1 and θ > 1 be so constrained that

2θ|ζ| ≤ 3
√
3. When for q ∈ A it is fulfilled |zq′(z)| ≤ θ, z ∈ U, then the function

Gζ : U → C, defined by

Gζ(z) =

[
ζ

∫ z

0

tζ−1eζq(t)dt

]1/ζ
,

belongs to the class S .
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In the past two decades, several authors have obtained sufficient conditions of
different kind for the univalence of general families of integral operators, see among
others [7, 11, 13, 19, 20, 22, 23, 24] and the references therein. In this paper, we will
focus on the integral operators of types (7), (8), choosing hj = fj = D

n,γ
λ ϕνj ,b,c, j =

1,m; and specifying in (9) g = D
n,γ
λ ϕν,b,c, involving by this choice the normalized

forms of generalized Bessel functions of the first kind, that is,

Hν1,...,νm,b,c,µ1,...,µm,η(z) =



η

∫ z

0

tη−1
m∏

j=1

[
D

n,γ
λ ϕνj ,b,c(t)

t

]1/µj
dt





1/η

, (37)

Fν1,...,νm,b,c,µ(z) =

{
(mµ+ 1)

∫ z

0

m∏

j=1

[
D

n,γ
λ ϕνj ,b,c(t)

]µ
dt

}1/(mµ+1)

,(38)

Gν,b,c,ζ(z) =

{
ζ

∫ z

0

tζ−1eζD
n,γ

λ
ϕν,b,c(t)dt

}1/ζ

. (39)

Theorem 7. Let the parameters ν1, · · · , νm, b ∈ R and c ∈ C be so constrained that

κj = νj +
b+ 1

2
> 0, j = 1,m.

Consider the functions D
n,γ
λ ϕνj ,b,c : U → C defined by (5). Also, let ℜ(η) > 0; c ∈

U; µj ∈ C \ {0}, j = 1,m be constrained so that

|c|+ min{R6, R7}
L1|η|

m∑

j=1

1

|µj |
≤ 1. (40)

Then the function Hν1,...,νm,b,c,µ1,...,µm,η : U → C belongs to the normalized univalent

functions class S .

Proof. Without loss of generality, we consider Hν1,...,νm,b,c,µ1,...,µm,1. First of all,
we point out that since Dn,γ

λ ϕνj ,b,c ∈ A , that is,

D
n,γ
λ ϕνj ,b,c(0) = (Dn,γ

λ ϕνj ,b,c)
′(0)− 1 = 0,

it is obvious that Hν1,...,νm,b,c,µ1,...,µm,1 ∈ A as well. On the other hand,

H′
ν1,...,νm,b,c,µ1,...,µm,1(z) =

m∏

j=1

(
D

n,γ
λ ϕνj ,b,c(z)

z

)1/µj

.

We thus find

zH′′
ν1,...,νm,b,c,µ1,...,µm,1(z)

H′
ν1,...,νm,b,c,µ1,...,µm,1(z)

=

m∑

j=1

1

µj

(
z
(
D

n,γ
λ ϕνj ,b,c(z)

)′

D
n,γ
λ ϕνj ,b,c(z)

− 1

)
.

Now, applying inequality (33) of Theorem 5 to each νj , j = 1,m, we obtain
∣∣∣∣∣
z H′′

ν1,...,νm,b,c,µ1,...,µm,1(z)

H′
ν1,...,νm,b,c,µ1,...,µm,1(z)

∣∣∣∣∣ ≤
m∑

j=1

1

|µj |

∣∣∣∣∣
z
(
D

n,γ
λ ϕνj ,b,c(z)

)′

D
n,γ
λ ϕνj ,b,c(z)

− 1

∣∣∣∣∣

≤
m∑

j=1

1

|µj |
1

L1
min{R6, R7}.
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Finally, by assuming that all z ∈ U we conclude

∣∣∣∣∣c|z|
2η +

(
1− |z|2η

) z H′′
ν1,...,νm,b,c,µ1,...,µm,1(z)

H′
ν1,...,νm,b,c,µ1,...,µm,1(z)

∣∣∣∣∣ ≤ |c|+ min{R6, R7}
L1|η|

m∑

j=1

1

|µj |
,

which, in view of Lemma 1, implies that Hν1,...,νm,b,c,µ1,...,µm,η ∈ S .

Remark 5. Discussing constraint qualification (40), we see that |c| > 1 implies

A =
min{R6, R7}

L1|η|

m∑

j=1

1

|µj |
< 0,

which is not possible, with the involved building parameters positive. The only com-

mon sense not mentioned is |c| = 1. Then we have A = 0, which occurs when

µ∗ = min1≤j≤m µj → +∞, that is,

lim
µ∗→∞

Hν1,··· ,νm,b,0,µ1,··· ,µm,η(z) = z ;

this result is the expected one, compare (5) et seq.

Upon setting µ1 = . . . = µm = µ above in Theorem 7, we immediately arrive at
the following result.

Corollary 1. Let the parameters ν1, . . . , νm, b, c, η and κj , j = 1,m be prescribed as

in Theorem 7 and suppose that there holds

|c|+ mmin{R6, R7}
L1|ηµ|

≤ 1.

Then Hν1,...,νm,b,c,((µ))m,η(z) ∈ S .

Our second result provides sufficient conditions for the integral operator F de-
scribed in (38). The key tools in the proof are Lemma 2 and Theorem 4, that is,
(33) from Theorem 5.

Theorem 8. Let the parameters ν1, · · · , νm, b ∈ R, c ∈ C be so constrained that

κj = νj +
b+ 1

2
> 0, j = 1,m.

Also, let ℜ(µ) > 0 and

|µ|
ℜ(µ) ≤ L1

mmin{R6, R7}
. (41)

Then Fν1,...,νm,b,c,µ(z) ∈ S .

Proof. Consider the auxiliary function

F̃ν1,...,νm,b,c,µ(z) = (mµ+ 1)−1[Fν1,...,νm,b,c,µ(z)]
mµ+1.
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Remarking that, Fν1,...,νm,b,c,µ ∈ A , that is, that

F̃ν1,...,νm,b,c,µ(0) = F̃ ′
ν1,...,νm,b,c,µ(0)− 1 = 0,

by virtue of inequality (33), Theorem 5 and by (41), we deduce

1− |z|2ℜ(µ)

ℜ(µ)

∣∣∣∣∣
zF̃ ′′

ν1,...,νm,b,c,µ(z)

F̃ ′
ν1,...,νm,b,c,µ(z)

∣∣∣∣∣ ≤
|µ|
ℜ(µ)

m∑

j=1

∣∣∣∣∣
z
(
D

n,γ
λ ϕνj ,b,c(z)

)′

D
n,γ
λ ϕνj ,b,c(z)

− 1

∣∣∣∣∣

≤ m|µ|
ℜ(µ)

1

L1
min{R6, R7} ≤ 1.

Now since Fν1,...,νm,b,c,µ(z) can be rewritten into

Fν1,...,νm,b,c,µ(z) =




(mµ+ 1)

∫ z

0

tmµ
m∏

j=1

(
D

n,γ
λ ϕνj ,b,c(t)

t

)µ

dt






1/(mµ+1)

,

in view of Lemma 2, these imply that Fν1,...,νm,b,c,µ ∈ S .

Choosing m = 1 in Theorem 8 we have obtained

Corollary 2. Let the parameters ν1, b ∈ R; c, µ ∈ C,ℜ(µ) > 0 satisfy (41). Then

Fν1,b,c,µ ∈ S .

Finally, applying Lemma 3 and Theorem 4 we get the following result.

Theorem 9. Let the parameters ν, b ∈ R and c, ζ ∈ C be so constrained that 2κ =
2ν+b+1 > 0. When ℜ(ζ) ≥ 1 and 2max{0, 2−R5} |ζ| ≤ 3

√
3, then Gν,b,c,ζ : U → C

defined by (39) belongs to S .

Remark 6. Taking n = 0 in previous results, we recover the same results of [13].

Forced by the facts exposed in Remark 5, we see that our parameter space does
not contain c = 1 when the operator Hν1,...,νm,b,c,µ1,...,µm,η(z) is in our focus of
interest. Therefore, the results achieved here are not completely comparable to
the results by Baricz and Frasin [7]. Namely, they proved that the general integral
operatorsHν1,...,νm,1,1,µ1,...,µm,η(z), Fν1,...,νm,1,1,µ(z), Gν,1,1,ζ(z) defined by (37), (38)
and (39), respectively, are univalent for all min1≤j≤m νj ≃ −0.69098.

However, this is not the situation with another integral operators F , G, which
do not suffer from this insufficiency, since then c ∈ C, so c = 1 can also be used.
Further exhaustive comparison analysis will be postponed for some other time.

Finally, we can conclude that a significant extension of parameter spaces for
integral operators H,F ,G by our derivation method in establishing hypergeometric
type bilateral inequalities in Theorems 1, 4 and their bounding inequalities given
in Theorems 2, 3, 5 and 6 leaving in mind the appropriate remarks cannot be fully
compared to the earlier results for similar generalized integral operators considered
by Baricz and Frasin [7] and the authors mentioned in our introductory section.
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[6] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debre-

cen 73(2008), 155–178.
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