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Abstract. This paper presents the necessary optimality conditions of Euler–Lagrange type
for variational problems with natural boundary conditions and problems with holonomic
constraints where the fuzzy fractional derivative is described in the combined Caputo sense.
The new results are illustrated by computing the extremals of two fuzzy variational prob-
lems.
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1. Introduction

Fuzzy calculus of variations extends classical variational calculus by considering
fuzzy variables and their derivatives into variational integrals to be extremized. This
may occur naturally in many problems in physics and mechanics. Although the
notion of fuzzy set is widely spread to various research areas such as linear program-
ming, optimization, differential equations and even fractional differential equations,
very few papers have been written on fuzzy calculus of variations and fuzzy optimal
control [6, 7, 8, 9, 10, 18, 19]. Farhadinia [9] studied necessary optimality condi-
tions for fuzzy variational problems by using the fuzzy differentiability concept due
to Buckley and Feuring [5]. In [8], by using α–differentiability concept Fard and
Zadeh obtained extended fuzzy Euler–Lagrange conditions. Fard et al. [6] presented
fuzzy Euler–Lagrange conditions for fuzzy constrained and unconstrained variational
problems under the generalized Hukuhara differentiability.

Fractional derivatives play an increasing role in mathematics, physics and engi-
neering [12, 13, 17, 21]. The theory of calculus of variations and optimal control
has been extended in order to deal with more general systems containing noninte-
ger order derivatives [1, 14, 20]. The most famous fuzzy fractional derivatives are
Riemann–Liouville and Caputo. Salahshour et al. [22] proposed the concept of
Riemann–Liouville fuzzy fractional differentiability. The Caputo–type fuzzy frac-
tional derivative is based on Hukuhara difference and strongly generalized fuzzy
differentiability was introduced by Mazandarani and Kamyad [16].
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In this paper, we propose a combined Caputo–type fuzzy fractional derivative.
To this end, a direct procedure is adopted to derive such concept which is constructed
based on the combination of strongly generalized differentiability [3] and a combined
Caputo derivative [15]. The combined Caputo derivative operator (CDα,β

γ ) is a convex
combination of the left Caputo fractional derivative of order α and the right Caputo
fractional derivative of order β. The advantage of the fractional combined Caputo–
type derivative (CDα,β

γ ) lies in the fact thatby using this derivative we can describe
a more general class of variational problems [15]. It is also worth pointing out that
the fractional derivative (CDα,β

γ ) allows us to generalize the results presented in [7].

The paper is organized as follows. Section 2 presents some preliminaries needed in
the sequel. The notion of the combined Caputo fuzzy fractional derivative is defined
in Section 3. In Section 4, fuzzy fractional Euler-Lagrange conditions for fractional
variational problems with natural boundary conditions are obtained. In Section
5, we obtain the necessary conditions for optimization problems with holonomic
constraints. Finally, we give a conclusion in Section 6.

2. Preliminaries

This section presents some definitions and basic concepts which will be used in this
paper. By R, we denote the set of all real numbers and by R

F̃
, the space of n-

dimensional fuzzy numbers ũ(x) : Rn → [0, 1], satisfying the following requirements:

(i) ũ(x), is normal, i.e. ∃x0 ∈ R
n, for which ũ(x0) = 1,

(ii) ũ(x), is fuzzy convex, i.e. ∀x1, x2 ∈ R
n, λ ∈ [0, 1], ũ(λx1 + (1 − λ)x2) ≥

min{ũ(x1), ũ(x2)},

(iii) suppũ(x) = {x ∈ R
n|ũ(x) ≥ 0} is the support of the ũ(x) and its closure

cl(suppũ(x)) is compact,

(iv) ũ(x) is upper semi-continuous.

For 0 < r ≤ 1, let [ũ]r = {x ∈ R; ũ(x) ≥ r} and [ũ]0 = {x ∈ R; ũ(x) ≥ 0}. Then, it
is well known that [ũ]r is a bounded closed interval for any r ∈ [0, 1].

Lemma 1 (see Theorem 1.1 of [11] and Lemma 2.1 of [24]). If ar : [0, 1] → R and
ar : [0, 1] → R satisfy the conditions

(i) ar : [0, 1] → R is a bounded nondecreasing function,

(ii) ar : [0, 1] → R is a bounded nonincreasing function,

(iii) a1 ≤ a1,

(iv) for 0 < k ≤ 1, limr→k− ar = ak and limr→k− ar = ak,

(v) limr→0+ ar = a0 and limr→0+ ar = a0,
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then ã : R → [0, 1], characterized by ã(t) = sup{r|ar ≤ t ≤ ar}, is a fuzzy number
with [ã]r = [ar, ar]. The converse is also true: if ã(t) = sup{r|ar ≤ t ≤ ar} is a
fuzzy number with parametrization given by [ã]r = [ar, ar], then functions ar and ar

satisfy conditions (i)–(v).

Addition ũ+ ṽ and ũ⊙ ṽ and scalar multiplication by λ are defined as

[ũ+ ṽ]r = [ũ]r + [ṽ]r,

[λũ]r = λ[ũ]r,

[ũ⊙ ṽ]r = [min{urvr, urvr, urvr, urvr},max{urvr, urvr, urvr, urvr}],

for all r ∈ [0, 1], where [ũ]r + [ṽ]r means a usual addition of two intervals (subsets)
of R and λ[ũ]r means the usual product between a scalar and a subset of R. The
metric structure is given by the Hausdorff distance D : R

F̃
× R

F̃
→ R+ ∪ {0},

D(ũ, ṽ) = supr∈[0,1]max{|ur − vr|, |ur − vr|}.

We say that the fuzzy number ũ is triangular if u1 = u1, ur = u1−(1−r)(u1−u0)
and ur = u1 − (1− r)(u0 − u1). The triangular fuzzy number u is generally denoted
by ũ =< u0, u1, u0 >. We define the fuzzy zero 0̃x as

0̃x =

{

1 if x = 0,

0 if x 6= 0.

Definition 1 (see [9]). We say that fuzzy function f̃ : [a, b] → R
F̃

with r-level set

[f̃(.)]r = [f r(.), f
r
(.)] is continuous at x ∈ [a, b], if crisp functions f r(.) and f

r
(.)

are continuous functions at x ∈ [a, b] for all r ∈ [0, 1].

Definition 2. Let f̃ : [a, b] → R
F̃

and x ∈ [a, b]. We say that fuzzy function f̃(.)

with r-level set [f̃(.)]r = [f r(.), f
r
(.)] is a fuzzy smooth function if crisp functions

f r(.) and f
r
(.) are smooth functions (in the usual sense).

Definition 3 (see [3]). Let ũ, ṽ ∈ R
F̃
. If there exists w̃ ∈ R

F̃
such that ũ = ṽ + w̃,

then w̃ is called the Hukuhara difference (H-difference for short) of ũ, ṽ, and it is
denoted by ũ⊖ ṽ. Note that ũ⊖ ṽ 6= ũ+ (−1)ṽ.

Definition 4 (see [16]). Let f̃ : [a, b] → R
F̃

and x0 ∈ (a, b), then:

f̃(.) is differentiable at x0, in the first form, if for h > 0 sufficiently near 0, there
exist the H-differences f̃(x0 + h)⊖ f̃(x0), f̃(x0)⊖ f̃(x0 − h) and the limits

˙̃
f(x0) = lim

h→0+

f̃(x0 + h)⊖ f̃(x0)

h
= lim

h→0+

f̃(x0)⊖ f̃(x0 − h)

h
(1)

or
f̃(.) is differentiable at x0, in the second form, if for h > 0 sufficiently near 0,

there exist the H-differences f̃(x0)⊖ f̃(x0 + h), f̃(x0 − h)⊖ f̃(x0) and the limits

˙̃
f(x0) = lim

h→0+

f̃(x0)⊖ f̃(x0 + h)

(−h)
= lim

h→0+

f̃(x0 − h)⊖ f̃(x0)

(−h)
. (2)
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Remark 1. Please notice that the subject of switching points of fuzzy-valued func-
tions in order to determine types of strongly generalized differentiability are out of
the scope of this paper and will be studied carefully in the future.

If the fuzzy function f̃(.) is continuous in the metric D, then its definite integral
exists. Furthermore,

(

∫ b

a

f̃(x)dx

)r

=

∫ b

a

f r(x)dx,

(

∫ b

a

f̃(x)dx

)r

=

∫ b

a

f
r
(x)dx.

Definition 5 (see [9]). Let ã, b̃ ∈ R
F̃
. We write ã � b̃, if ar ≤ br and ar ≤ b

r
for

all r ∈ [0, 1]. We also write ã ≺ b̃, if ã � b̃ and there exists an r′ ∈ [0, 1] so that

ar
′

< br
′

or ar
′

< b
r′

. Moreover, ã ≈ b̃ if ã � b̃ and ã � b̃, that is, [ã]r = [b̃]r for all
r ∈ [0, 1].

We say that ã, b̃ ∈ R
F̃
are comparable if either ã � b̃ or ã � b̃; and noncomparable

otherwise.

Definition 6. Let T is an open subset of R and f̃ : T → R
F̃

and x0 ∈ T . We say

f̃(x0) is a locally minimum(maximum) of f̃(.) if there exists some ǫ > 0 such that
f̃(x0) � (�)f̃(x) when x ∈ Nǫ(x0).

Theorem 1 (see [4]). Let f be a real–valued function differentiable on the open
interval I. If f has a local extremum at x ∈ I, then d

dx
f(x) = 0.

Lemma 2. Let f̃ : [a, b] → R
F̃

be a fuzzy function. If the local minimum of f̃(.) is
attended in the point x∗ ∈ R, then the local minimum of real–valued crisp functions

f r(.) and f
r
(.) is attended in x∗ for all r ∈ [0, 1]. So we have

dfr

dx
(x∗) = df

r

dx
(x∗) = 0.

Proof. In the neighborhood Nǫ(x
∗) we have f̃(x∗) � f̃(x) for all x ∈ Nǫ(x

∗). Using
Definition 5 we get

fr(x∗) ≤ f r(x), f
r
(x∗) ≤ f

r
(x)

for all r ∈ [0, 1] and x ∈ Nǫ(x
∗). So fr(x∗) and f

r
(x∗) are local minimum of real–

valued functions f r(.) and f
r
(.), respectively, for all r ∈ [0, 1]. We can consider r to

be aconstant and by Theorem 1 we arrive at
dfr

dx
(x∗) = df

r

dx
(x∗) = 0.

3. Fuzzy fractional calculus

Following [23], we denote the space of all continuous fuzzy valued functions on
[a, b] ∈ R by CF [a, b]; the class of fuzzy functions with continuous first derivatives
on [a, b] ∈ R by CF1[a, b]; and the space of all Lebesgue integrable fuzzy valued
functions on the bounded interval [a, b] is indicated by LF [a, b].

Definition 7 (see [2]). Let f̃ ∈ CF [a, b] ∩ LF [a, b] be a fuzzy valued function and
α > 0. Then the Riemann–Liouville fractional integral of order α is defined by

aI
α
x f̃(x) =

1

Γ(α)

∫ x

a

f̃(t)(x − t)α−1dt,

where Γ(α) is the Gamma function and x > a.
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Definition 8 (see [2]). Let f̃ ∈ CF [a, b] ∩ LF [a, b] be a fuzzy valued function. The
fuzzy (left) Riemann–Liouville integral of f̃(.), based on its r-level representation,
can be expressed as follows:

[aI
α
x f̃(x)]

r = [aI
α
x f

r(x), aI
α
x f

r
(x)], 0 ≤ r ≤ 1,

where

aI
α
x f

r(x) =
1

Γ(α)

∫ x

a

fr(t)(x − t)α−1dt, aI
α
x f

r
(x) =

1

Γ(α)

∫ x

a

f
r
(t)(x − t)α−1dt.

The definition of the right fuzzy fractional operator xI
α
b of order α is completely

analogous.
Now we introduce our definition of the fuzzy combined Caputo fractional deriva-

tives of order α, β ∈ (0, 1) and γ ∈ [0, 1]. The definition is similar to the concept of
the combined Caputo derivative in crisp case and is a direct extension of strongly
generalized differentiability (Bede and Gal [3]) to the fractional context.

Lemma 3 (see [16]). Let f(.) be a crisp continuous function and differentiable in the
independent variable x over the interval of differentiation (integration) [a, b]. Then
the following relations hold for 0 < α < 1, 0 < β < 1:

C
a D

α
t f(x) =a Dα

t (f(x)− f(a)), C
t D

β
b f(x) =t D

β
b (f(x) − f(b)),

where, C
a D

α
t ,

C
t D

β
b are the Caputo derivative operators and aD

α
t , tD

β
b are the Riemann-

Liouville derivative operators which can be defined as follows:

C
aD

α
xf(x) =

1

Γ(1− α)

∫ x

a

(x− t)−α d

dt
f(t)dt, C

xD
β
b f(x) =

−1

Γ(1− α)

∫ b

x

(t− x)−β d

dt
f(t)dt,

aD
α
x f(x) =

1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt, xD

β
b f(x) =

−1

Γ(1− β)

d

dx

∫ b

x

f(t)

(t− x)β
dt.

Definition 9. Let f̃ ∈ CF [a, b] ∩ LF [a, b] and consider Φ̃(.) as follows

Φ̃(x) = γ

(

1

Γ(1− α)

∫ x

a

f̃(t)⊖ f̃(a)

(x − t)α
dt

)

+ (1− γ)

(

1

Γ(1− β)

∫ b

x

f̃(t)⊖ f̃(b)

(t− x)β
dt

)

.

We say that f̃(x) is a combined Caputo fuzzy fractional differentiable function of or-
der α, β ∈ (0, 1) and γ ∈ [0, 1], at x0 ∈ (a, b), if there exists an element CDα,β

γ f̃(x0) ∈

CF [a, b] such that for h > 0 sufficiently near zero, either

(a) CDα,β
γ f̃(x0) = lim

h→0+

Φ̃(x0 + h)⊖ Φ̃(x0)

h
= lim

h→0+

Φ̃(x0)⊖ Φ̃(x0 − h)

h
, or

(b) CDα,β
γ f̃(x0) = lim

h→0+

Φ̃(x0)⊖ Φ̃(x0 + h)

(−h)
= lim

h→0+

Φ̃(x0 − h)⊖ Φ̃(x0)

(−h)
.

If the fuzzy valued function f̃(.) is differentiable as in Definition 9 cases (a), it

is combined Caputo-type differentiable in the first form and denoted by CD
α,β
γ,1 f̃(.).

If f̃(.) is differentiable as in Definition 9 case (b), it is the combined Caputo-type

differentiable in the second form and denoted by CD
α,β
γ,2 f̃(.).
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Theorem 2. Let f̃ ∈ CF [a, b]∩LF [a, b] with an r-level set [f̃(.)]r = [f r(.), f
r
(.)] be

a fuzzy function and x0 ∈ (a, b). Then

(a) if f̃(.) is a combined Caputo fuzzy fractional differentiable function in the first
form, then for α, β ∈ (0, 1) and γ ∈ [0, 1],

[CDα,β
γ,1 f̃(x0)]

r = [CDα,β
γ fr(x0),

CDα,β
γ f

r
(x0)],

(b) if f̃(.) is a combined Caputo fuzzy fractional differentiable function in the sec-
ond form, then for α, β ∈ (0, 1) and γ ∈ [0, 1],

[CDα,β
γ,2 f̃(x0)]

r = [CDα,β
γ f

r
(x0),

CDα,β
γ f r(x0)],

where

CDα,β
γ f r(x0) = γC

aD
α
xf

r(x0) + (1− γ)CxD
β
b f

r(x0),

CDα,β
γ f

r
(x0) = γC

aD
α
xf

r
(x0) + (1− γ)CxD

β
b f

r
(x0),

C
aD

α
xf(x0) =

[

1

Γ(1− α)

∫ x

a

(x− t)−α d

dt
f(t)dt

]

x=x0

,

C
xD

β
b f(x0) =

[

−1

Γ(1− α)

∫ b

x

(t− x)−β d

dt
f(t)dt

]

x=x0

.

Proof. Let us consider f̃(.) as a combined Caputo-type fuzzy fractional differen-
tiable function in the first form and x0 ∈ (a, b), then we have the following:

[Φ̃(x0 + h)⊖ Φ̃(x0)]
r = [Φr(x0 + h)− Φr(x0),Φ

r
(x0 + h)− Φ

r
(x0)]

[Φ̃(x0)⊖ Φ̃(x0 − h)]r = [Φr(x0)− Φr(x0 − h),Φ
r
(x0)− Φ

r
(x0 − h)].

Multiplying both sides by 1
h
> 0

[

Φ̃(x0 + h)⊖ Φ̃(x0)

h

]r

=

[

Φr(x0 + h)− Φr(x0)

h
,
Φ

r
(x0 + h)− Φ

r
(x0)

h

]

,

[

Φ̃(x0)⊖ Φ̃(x0 − h)

h

]r

=

[

Φr(x0)− Φr(x0 − h)

h
,
Φ

r
(x0)− Φ

r
(x0 − h)

h

]

.

Passing to the limit we obtain:

[

lim
h→0+

Φ̃(x0)⊖ Φ̃(x0 − h)

h

]r

=
[

γaD
α
x (f

r(x0)− fr(a)) + (1 − γ)xD
β
b (f

r(x0)− f r(a)),

γaD
α
x (f

r
(x0)− f

r
(a)) + (1− γ)xD

β
b (f

r
(x0)− f

r
(a))

]

.
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Using Lemma 3 and Definition 9 leads to

[CDα,β
γ f̃(x0)]

r = [CDα,β
γ f r(x0),

CDα,β
γ f

r
(x0)].

We proved the theorem for case (a). For the other cases, the proof is similar to the
previous one and hence omitted.

Note that for crisp function f, CD
α,β
0 f(x) =C

xD
β
b f(x) and

CD
α,β
1 f(x) =C

a D
α
xf(x).

In the discussion to follow, we will also need the following formula for fractional
integrations by parts (see [15]):

∫ b

a

g(x)CDα,β
γ f(x)dx =γ[f(x)xI

1−α
b g(x)]x=b

x=a

+ (1 − γ)[−f(x)aI
1−β
x g(x)]x=b

x=a +

∫ b

a

f(x)Dβ,α
1−γg(x)dx, (3)

where D
β,α
1−γ := (1 − γ)aD

β
x + γxD

α
b .

Let N ∈ N and f̃ = (f̃1, ..., f̃N) : [a, b] → R
N

F̃
and α, β, γ ∈ R

N with αi, βi ∈ (0, 1)
and γi ∈ [0, 1], i = 1, ..., N. Then,

CDα,β
γ f̃(x) := (CDα1,β1

γ1
f̃1(x), ...,

CDαN ,βN

γN
f̃N (x)).

Throughout the paper we denote by ∂iK, i = 1, ...,M(M ∈ N) the partial deriva-
tive of function K : RM → R with respect to its ith argument.

4. Fuzzy fractional natural boundary conditions

Definition 10 (Admissible curve). We say that ỹ = ỹ(.) is admissible if it satisfies
the end-conditions and has a continuous combined Caputo fuzzy fractional derivative
of order α, β ∈ (0, 1) and γ ∈ [0, 1]. We denote the set of all admissible curves by
X̃ad.

Let us consider the following problem:

J̃(ỹ) =

∫ b

a

L̃(x, ỹ,CDα,β
γ ỹ(x))dx −→ min,

(ỹ(a) = ỹa), (ỹ(b) = ỹb),

(4)

where x ∈ [a, b] is the independent variable; ỹ(x) ∈ R
N

F̃
is a fuzzy vector variable

and the Lagrange function L̃ is assumed to be of class CF1 on all its arguments. To
develop the necessary conditions for the extremum for (4), assume that ỹ(.) is the
desired function. Let ǫ ∈ R, and define a family of curves ỹ(x) + ǫh̃(x), where h̃(.)
is an arbitrary admissible variation. We do not require h̃(a) = 0̃ or h̃(b) = 0̃ in the
case when ỹ(a) or ỹ(b), respectively, is free (it is possible that both are free). Let

J̃(ǫ) =

∫ b

a

L̃
(

x, ỹ + ǫh̃,CDα,β
γ

(

ỹ(x) + ǫh̃(x)
))

dx.
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The lower bound and upper bounds of J̃ are

Jr(ǫ) =

∫ b

a

{

Lr
[

x, ỹ + ǫh̃,CDα,β
γ

(

ỹ(x) + ǫh̃(x)
)]r}

dx

and

J
r
(ǫ) =

∫ b

a

{

L
r
[

x, ỹ+ ǫh̃,CDα,β
γ

(

ỹ(x) + ǫh̃(x)
)]r}

dx,

respectively, where

[

x, ỹ+ ǫh̃,
C
D

α,β
γ

(

ỹ(x) + ǫh̃(x)
)]r

:= (x, yr

1
(x) + ǫh

r
1
(x), . . . , yr

N
(x) + ǫh

r
N (x),

y
r
1
(x) + ǫh

r

1(x), . . . , y
r
N (x) + ǫh

r

N (x),CDα1,β1
γ1

(

y
r

1
(x) + ǫh

r
1
(x)

)

, . . . ,

C
D

αN ,βN

γN

(

y
r

N
(x) + ǫh

r
N(x)

)

,
C
D

α1,β1
γ1

(

y
r
1
(x) + ǫh

r

1(x)
)

, . . . ,
C
D

αN ,βN

γN

(

y
r
N (x) + ǫh

r

N (x)
)

.

By Lemma 2, J̃(ǫ) is extremum at ǫ = 0, therefore necessary conditions for ỹ to be

an extremizer are given by set dJr

dǫ
|ǫ=0 = 0, dJ

r

dǫ
|ǫ=0 = 0,

dJr

dǫ
|ǫ=0 = 0 −→

∫ b

a

[

N+1
∑

i=2

(

∂iL
r·hr

i−1(x) + ∂2N+iL
r·CDαi−1,βi−1

γi−1
hr
i−1(x)

)

+
2N+1
∑

i=N+2

(

∂iL
r·h

r

i−N−1(x) +∂2N+iL
r·CDαi−N−1,βi−N−1

γi−N−1
h
r

i−N−1(x)
)]

dx = 0 (5)

and dJ
r

dǫ
|ǫ=0 = 0 −→

∫ b

a

[

N+1
∑

i=2

(

∂iL
r
·hr

i−1(x) + ∂2N+iL
r
·CDαi−1,βi−1

γi−1
hr
i−1(x)

)

+

2N+1
∑

i=N+2

(

∂iL
r
·h

r

i−N−1(x) +∂2N+iL
r
·CDαi−N−1,βi−N−1

γi−N−1
h
r

i−N−1(x)
)]

dx = 0. (6)

For the moment, we consider only equation (5). Using (3) for integration by
parts, we get
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∫ b

a

{(

N+1
∑

i=2

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r

)

· hr
i−1(x)

+

(

2N+1
∑

i=N+2

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

·h
r

i−N−1(x)
}

dx

+ γ

(

N+1
∑

i=2

hr
i−1(x)

(

xI
1−αi−1

b ∂2N+iL
r
)

)

|x=b
x=a + γ

(

2N+1
∑

i=N+2

h
r

i−N−1(x)

·
(

xI
1−αi−1

b ∂2N+iL
r
))

|x=b
x=a − (1− γ) ·

(

N+1
∑

i=2

hr
i−1(x) ·

(

aI
1−βi−1

x ∂2N+iL
r
)

)

|x=b
x=a

−(1− γ) ·

(

2N+1
∑

i=N+2

h
r

i−N−1(x) · (aI
1−βi−1

x ∂2N+iL
r

))

|x=b
x=a = 0. (7)

Let ỹ(a) = ỹa and ỹ(b) = ỹb. Since hr
i (a) = h

r

i (a) = hr
i (b) = h

r

i (b) = 0, for
i = 1, ..., N, and by the fundamental lemma of the calculus of variations we deduce
that
(

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, ..., 2N + 1, (8)

for all x ∈ [a, b]. Following the scheme of obtaining (8) and adapting it to the case
under consideration involving (6), one can show that

∫ b

a

{(

N+1
∑

i=2

∂iL
r
+D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

· hr
i−1(x)

+

(

2N+1
∑

i=N+2

∂iL
r
+D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

·h
r

i−N−1(x)
}

dx

+ γ

(

N+1
∑

i=2

hr
i−1(x)

(

xI
1−αi−1

b ∂2N+iL
r
)

)

|x=b
x=a + γ

(

2N+1
∑

i=N+2

h
r

i−N−1(x)

·
(

xI
1−αi−1

b ∂2N+iL
r
))

|x=b
x=a − (1− γ) ·

(

N+1
∑

i=2

hr
i−1(x) ·

(

aI
1−βi−1

x ∂2N+iL
r
)

)

|x=b
x=a

−(1− γ) ·

(

2N+1
∑

i=N+2

h
r

i−N−1(x) · (xI
1−αi−1

b ∂2N+iL
r

))

|x=b
x=a = 0 (9)

and
(

∂iL
r
+D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, ..., 2N + 1. (10)

Let l ∈ {1, ..., N}. Assume that ỹ(a) = ỹa, ỹi(b) = ỹbi , i = 1, ..., N, i 6= l, but ỹl(b)
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is free. Then, h̃l(b) is free and by equations (7) and (9) we obtain

[

(

γ xI
1−αl

b ∂2N+l+1L
r − (1 − γ) aI

1−βl

x ∂2N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[

(

γ xI
1−αl

b ∂3N+l+1L
r − (1 − γ) aI

1−βl

x ∂3N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[(

γ xI
1−αl

b ∂2N+l+1L
r
− (1 − γ) aI

1−βl

x ∂2N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[(

γ xI
1−αl

b ∂3N+l+1L
r
− (1 − γ) aI

1−βl

x ∂3N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,

where

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= (x, yr

1
(x), . . . , yr

N
(x), yr1(x), . . . , y

r
N (x),CDα1,β1

γ1

(

yr
1
(x)
)

,

. . . ,CDαN ,βN

γN

(

yr
N
(x)
)

,CDα1,β1

γ1
(yr1(x)) , . . . ,

CDαN ,βN

γN
(yrN (x)) .

Now we are in a position to state the necessary conditions for a relative (local)
minimum of problem (4) as follows:

Theorem 3. Let ỹ = (ỹ1, ..., ỹN) be a local minimizer to problem (4). Then, ỹ

satisfies the following system of fractional Euler–Lagrange equations:

(

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, ..., 2N + 1,

(

∂iL
r
+D

βi−1,αi−1

1−γi−1
∂2N+iL

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, ..., 2N + 1.

(11)

Moreover, let l ∈ {1, ..., N} and ỹ(a) = ỹ
a, ỹi(b) = ỹbi , i = 1, ..., N, i 6= l, but ỹl(b) is

free. Then

[

(

γ xI
1−αl

b ∂2N+l+1L
r − (1− γ) aI

1−βl

x ∂2N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[

(

γ xI
1−αl

b ∂3N+l+1L
r − (1− γ) aI

1−βl

x ∂3N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[(

γ xI
1−αl

b ∂2N+l+1L
r
− (1− γ) aI

1−βl

x ∂2N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,
[(

γ xI
1−αl

b ∂3N+l+1L
r
− (1− γ) aI

1−βl

x ∂3N+l+1L
r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
]

|x=b = 0,

for all x ∈ [a, b].

Example 1. Find the extremal of the following problem:

J̃(ỹ) =

∫ 2

1

x2
(

CDα,β
γ ỹ(x)

)2
+
(

CDα,β
γ ỹ(x)

)

dx −→ min, (12)

where ỹ(1) =< −1, 0, 1 > and ỹ(2) is free.

Solution. According to the strongly generalized fuzzy combined Caputo differ-
entiability of ỹ and the product of two fuzzy numbers, the following four cases may
occur:
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Case (1): First, we suppose that ỹ is a combined Caputo differentiable function
in the first form of Definition 9 and

0 ≤CDα,β
γ

(

yr(x)
)

≤ 1, 0 ≤CDα,β
γ (yr(x)) ≤ 1

(

0 �CDα,β
γ (ỹ(x)) � 1

)

or
CDα,β

γ

(

yr(x)
)

≤ −1, CDα,β
γ (yr(x)) ≤ −1

(

CDα,β
γ (ỹ(x)) � −1

)

for all r ∈ [0, 1] and x ∈ [1, 2]. Then the r–level set of J̃ is:

[

J̃(ỹ)
]r

=

[∫ 2

1

x2
(

CDα,β
γ (yr(x))

)2
+CDα,β

γ

(

yr(x)
)

dx ,

∫ 2

1

x2
(

CDα,β
γ

(

yr(x)
))2

+CDα,β
γ (yr(x)) dx

]

.

Case (2): If ỹ is a combined Caputo differentiable function in the first form of
Definition 9 and

−1 ≤CDα,β
γ

(

yr(x)
)

≤ 0, −1 ≤CDα,β
γ (yr(x)) ≤ 0

(

−1 �CDα,β
γ (ỹ(x)) � 0

)

or
CDα,β

γ

(

yr(x)
)

≥ 1, CDα,β
γ (yr(x)) ≥ 1

(

CDα,β
γ (ỹ(x)) � 1

)

for all r ∈ [0, 1] and x ∈ [1, 2], then the r–level set of J̃ is:

[

J̃(ỹ)
]r

=

[∫ 2

1

x2
(

CDα,β
γ

(

yr(x)
))2

+CDα,β
γ

(

yr(x)
)

dx ,

∫ 2

1

x2
(

CDα,β
γ (yr(x))

)2
+CDα,β

γ (yr(x)) dx

]

.

Case (3): If ỹ is a combined Caputo differentiable function in the second form of
Definition 9 and

0 ≤CDα,β
γ

(

yr(x)
)

≤ 1, 0 ≤CDα,β
γ (yr(x)) ≤ 1

(

0 �CDα,β
γ (ỹ(x)) � 1

)

or
CDα,β

γ

(

yr(x)
)

≤ −1, CDα,β
γ (yr(x)) ≤ −1

(

CDα,β
γ (ỹ(x)) � −1

)

for all r ∈ [0, 1] and x ∈ [1, 2], then the r–level set of J̃ is:

[

J̃(ỹ)
]r

=

[∫ 2

1

x2
(

CDα,β
γ

(

yr(x)
))2

+CDα,β
γ (yr(x)) dx,

∫ 2

1

x2
(

CDα,β
γ (yr(x))

)2
+CDα,β

γ

(

yr(x)
)

dx

]

.

Case (4): If ỹ is a combined Caputo differentiable function in the second form of
Definition 9 and

−1 ≤CDα,β
γ

(

yr(x)
)

≤ 0, −1 ≤CDα,β
γ (yr(x)) ≤ 0

(

−1 �CDα,β
γ (ỹ(x)) � 0

)



210 J. Soolaki, O. S. Fard and A.H.Borzabadi

or
CDα,β

γ

(

yr(x)
)

≥ 1, CDα,β
γ (yr(x)) ≥ 1

(

CDα,β
γ (ỹ(x)) � 1

)

for all r ∈ [0, 1] and x ∈ [1, 2], then the r–level set of J̃ is:

[

J̃(ỹ)
]r

=

[
∫ 2

1

x2
(

CDα,β
γ (yr(x))

)2
+CDα,β

γ (yr(x)) dx ,

∫ 2

1

x2
(

CDα,β
γ

(

yr(x)
))2

+CDα,β
γ

(

yr(x)
)

dx

]

.

From fuzzy Euler–Lagrange conditions and natural boundary conditions for cases
(2), (4) we get the following equations

D
β,α
1−γ

(

1 + 2x2 ·CDα,β
γ

(

y
r(x)

)

)

= 0,

D
β,α
1−γ

(

1 + 2x2 ·CDα,β
γ (yr(x))

)

= 0,
[

γ xI
1−α
b

(

1 + 2x2 ·CDα,β
γ

(

y
r(x)

)

)

− (1− γ) aI
1−β
x

(

1 + 2x2 ·CDα,β
γ

(

y
r(x)

)

)]

|x=2 = 0,
[

γ xI
1−α
b

(

1 + 2x2 ·CDα,β
γ (yr(x))

)

− (1− γ) aI
1−β
x

(

1 + 2x2 ·CDα,β
γ (yr(x))

)]

|x=2 = 0.

(13)

Note that it is difficult to solve the above fractional equations to get the extremals.
For 0 < α < 1, 0 < β < 1 and 0 ≤ γ ≤ 1, a numerical method should be used. When
α → 1 and γ → 1, problem (12) reduces to

J̃(ỹ) =

∫ 2

1

˙̃y(x) + x2 ˙̃y2(x)dx −→ min, (14)

where ỹ(1) =< −1, 0, 1 > and ỹ(2) is free.

The extremals for (14) are obtained from (13) and the initial conditions, consid-
ering α → 1 and γ → 1:

x2ÿr + 2xẏr = 0,

x2ÿ
r
+ 2xẏr = 0,

(

1 + 2x2ẏr = 0) |x=2,
(

1 + 2x2ẏ
r
= 0) |x=2.

(15)

By solving equations (15) we have

yr(x) =
1

2x
+ r −

3

2
, yr(x) =

1

2x
− r +

1

2
.

One can easily show that yr(x) and yr(x) satisfy Lemma 1. This solution is shown

in Figure 1, where the solid lines are y1(x) = y1(x); the dashed lines are y0(x); the

doted lines are y0(x).
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Figure 1: Fuzzy extremals for fuzzy variational problem (14) in Example 1

5. Fuzzy fractional variational problem with holonomic con-

straints

In this section, we consider the following problem,

J̃(ỹ) =

∫ b

a

L̃(x, ỹ,CDα,β
γ ỹ(x))dx −→ min,

G̃j(x, ỹ(x)) = 0̃, j = 1, . . . ,m, m < n,

ỹ(a) = ỹa, ỹ(b) = ỹb,

(16)

where ỹ(x) ∈ R
N

F̃
and L̃, G̃j , j = 1, . . . ,m, are smooth functions and the equations

Gr
j

(

x, yr
1
(x), . . . , yr

N
(x), yr1(x), . . . , y

r
N (x)

)

= 0, j = 1, . . . ,m,

G
r

j

(

x, yr
1
(x), . . . , yr

N
(x), yr1(x), . . . , y

r
N (x)

)

= 0, j = 1, . . . ,m,

are independent, i.e., one of the Jacobians of order 2m is different from zero, for
instance

D
(

Gr
1, . . . , G

r
m, G

r

1, . . . , G
r

m

)

D
(

yr
1
, . . . , yr

m
, yr1, . . . , y

r
m

) 6= 0.

As will be seen in the next theorem, we will show the necessary conditions for the
extremal of problem (16).

Theorem 4. A function ỹ which is a solution to problem (16) satisfies, for suitably
chosen functions λj , µj , j = 1, . . . ,m, the following system of fractional Euler–
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Lagrange equations
(

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, . . . , 2N + 1,

(

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, . . . , 2N + 1,

for all x ∈ [a, b], where

F r [x, ỹ, CDα,β
γ (ỹ(x))

]r
=Lr [x, ỹ, CDα,β

γ (ỹ(x))
]r

+

m
∑

j=1

λj(x)G
r
j

(

x, yr
1
, . . . , yr

N
, yr1, . . . , y

r
N

)

,

F
r
[x, ỹ, CDα,β

γ (ỹ(x))
]r

=L
r
[x, ỹ, CDα,β

γ (ỹ(x))
]r

+

m
∑

j=1

µj(x)G
r

j

(

x, yr
1
, . . . , yr

N
, yr1, . . . , y

r
N

)

.

Proof. Suppose that ỹ = (ỹ1, . . . , ỹN ) is the solution to problem (16) and define a
family of curves ỹ+ ǫh̃, where h̃ = (h̃1, . . . , h̃N ) is an arbitrary admissible variation,
i.e., h̃i(a) = h̃i(b) = 0̃, i = 1, . . . , N, and G̃j(ỹ+ǫh̃) = 0̃, j = 1, . . . ,m, where ǫ ∈ R

is a small parameter. Under these assumptions, the functionals Jr and J
r
become

simple functions of the parameter ǫ and are extremized at ǫ = 0. It follows that

d

dǫ
Jr(ǫ)|ǫ=0 = 0,

d

dǫ
J
r
(ǫ)|ǫ=0 = 0.

that is,

∫ b

a

[

N+1
∑

i=2

∂iL
r · hr

i−1(x) +
N+1
∑

i=2

∂2N+iL
r ·CDαi−1,βi−1

γi−1
hr
i−1(x)

+

2N+1
∑

i=N+2

∂iL
r · h

r

i−N−1(x) +

2N+1
∑

i=N+2

∂2N+iL
r ·CDαi−1,βi−1

γi−1
h
r

i−N−1(x)

]

dx = 0

(17)

and
∫ b

a

[

N+1
∑

i=2

∂iL
r
· hr

i−1(x) +

N+1
∑

i=2

∂2N+iL
r
·CDαi−1,βi−1

γi−1
hr
i−1(x) +

2N+1
∑

i=N+2

∂iL
r
·

h
r

i−N−1(x) +
2N+1
∑

i=N+2

∂2N+iL
r
·CDαi−1,βi−1

γi−1
h
r

i−N−1(x)

]

dx = 0

(18)

and for j = 1, . . . ,m,

N+1
∑

i=2

∂iG
r
j · h

r
i−1(x) +

2N+1
∑

i=N+2

∂iG
r
j · h

r

i−N−1(x) = 0, (19)

N+1
∑

i=2

∂iG
r

j · h
r
i−1(x) +

2N+1
∑

i=N+2

∂iG
r

j · h
r

i−N−1(x) = 0. (20)
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Multiplying the jth equation of systems (19) and (20) by unspecified functions λj(.)
and µj(.), respectively, for all j = 1, . . . ,m, integrating with respect to x, and adding
the left-hand sides to the integrand of (17) and (18), by considering (17) and (19)
we obtain

∫ b

a

{

N+1
∑

i=2



∂iL
r +

m
∑

j=1

λj(x)∂iG
r
j



 hr
i−1(x) +

N+1
∑

i=2

∂2N+iL
r ·
(

CDαi−1,βi−1

γi−1
hr
i−1(x)

)

+

2N+1
∑

i=N+2



∂iL
r +

m
∑

j=1

λj(x)∂iG
r
j



h
r

i−N−1(x)

+
2N+1
∑

i=N+2

∂2N+iL
r ·
(

CDαi−N−1,βi−1

γi−1
h
r

i−N−1(x)
)

}

dx = 0.

Integrating by parts,

∫ b

a











N+1
∑

i=2

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r +
m
∑

j=1

λj(x)∂iG
r
j







hr
i−1(x)

+







2N+1
∑

i=N+2

∂iL
r +D

βi−1,αi−1

1−γi−1
∂2N+iL

r +

m
∑

j=1

λj(x)∂iG
r
j







h
r

i−N−1(x)



 dx = 0.

Or, if we introduce the notation F r in Theorem 4 we get

∫ b

a

[

N+1
∑

i=2

{

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
}

hr
i−1(x)

+

2N+1
∑

i=N+2

{

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

}

h
r

i−N−1(x)

]

dx = 0.

(21)

Following the scheme of obtaining (21) and adapting it to the case under consid-
eration involving (18) and (20), we have

∫ b

a

[

N+1
∑

i=2

{

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
}

hr
i−1(x)

+

2N+1
∑

i=N+2

{

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

}

h
r

i−N−1(x)

]

dx = 0.

(22)

Because of (19) and (20), we cannot regard 2N functions hr
1(.), . . . , h

r
N (.) and

h
r

1(.), . . . , h
r

N (.) as free for an arbitrary choice. There is a subset of 2m of these func-
tions whose assignment is restricted by the assignment of the remaining 2N − 2M .
We can assume, without loss of generality, that hr

1(.), . . . , h
r
m(.) and h

r

1(.), . . . , h
r

m(.)
are the functions of the set whose dependence upon the choice of the arbitrary



214 J. Soolaki, O. S. Fard and A.H.Borzabadi

hr
m+1, . . . , h

r
N and h

r

m+1(.), . . . , h
r

N (.) is governed by (19) and (20). We now as-
sign the functions λ1(.), . . . , λm(.) and µ1(.), . . . , µm(.) to be the set of 2m func-
tions that make (for all x between a and b) the coefficients of hr

1(.), . . . , h
r
m(.) and

h
r

1(.), . . . , h
r

m(.) in the integrand of (21) and (22) vanish. That is, λ1(.), . . . , λm(.)
and µ1(.), . . . , µm(.) are chosen so as to satisfy

(

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, . . . ,m+ 1,

(

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = 2, . . . ,m+ 1,

(

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = N + 2, . . . , N+m+1,

(

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = N + 2, . . . , N+m+1,

for all x ∈ [a, b]. With this choice, (21) and (22) give

∫ b

a

[

N+1
∑

i=m+2

{

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
}

hr
i−1(x)

+

2N+1
∑

i=N+m+2

{

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

}

h
r

i−N−1(x)

]

dx = 0

and

∫ b

a

[

N+1
∑

i=m+2

{

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
}

hr
i−1(x)

+

2N+1
∑

i=N+m+2

{

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

}

h
r

i−N−1(x)

]

dx = 0.

Since the functions hr
m+1(.), . . . , h

r
N (.) and h

r

m+1(.), . . . , h
r

N (.) are arbitrary, we may
employ the fundamental lemma of the calculus of variations to conclude that

(

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = m+ 2, . . . , N + 1,

(

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = m+ 2, . . . , N + 1,

(

∂iF
r +D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = N+m+2, . . . , 2N+1,

(

∂iF
r
+D

βi−1,αi−1

1−γi−1
∂2N+iF

r
)

[x, ỹ, CDα,β
γ (ỹ(x))

]r
= 0, i = N+m+2, . . . , 2N+1,

for all x ∈ [a, b].
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Example 2. Find the extremal of the following problem

J̃(ỹ) :=

∫ 1

0

(

CDα,β
γ ỹ1(x)

)2
+
(

CDα,β
γ ỹ2(x)

)2
+ 1dx −→ min,

ỹ1 + ỹ2 ⊖ (2̃.x2) = 0̃,

ỹ1(0) = ỹ2(0) = 0̃,

ỹ1(1) =< 1, 2, 3 >,

ỹ2(1) =< −1, 0, 1 >,

where 2̃ =< 0, 2, 4 > .

Solution. For the sake of avoiding the argument described in Example 1, here
we only focus on the following case. From the definition of F r and F

r
in Theorem

4, suppose that

F r =
(

CDα,β
γ yr

1
(x)
)2

+
(

CDα,β
γ yr

2
(x)
)2

+ 1 + λ
(

yr
1
+ yr

2
− 2rx2

)

,

F
r
=
(

CDα,β
γ yr1(x)

)2
+
(

CDα,β
γ yr2(x)

)2
+ 1 + µ

(

yr1 + yr2 + (2r − 4)x2
)

.

By considering fuzzy Euler–Lagrange conditions in Theorem 4, we get the following
equations

λ+D
β,α
1−γ

(

2CDα,β
γ yr

1
(x)
)

= 0,

λ+D
β,α
1−γ

(

2CDα,β
γ yr

2
(x)
)

= 0,

µ+D
β,α
1−γ

(

2CDα,β
γ yr1(x)

)

= 0,

µ+D
β,α
1−γ

(

2CDα,β
γ yr2(x)

)

= 0.

(23)

Similarly to Example 1, it is difficult to solve the above fractional equations, for
0 < α < 1, 0 < β < 1, 0 ≤ γ ≤ 1 and in that case, a numerical method should be
used. When α, γ tend to one, however, one has the following problem:

J̃(ỹ) :=

∫ 1

0

˙̃y21 + ˙̃y22 + 1dx −→ min,

ỹ1 + ỹ2 ⊖ (2̃.x2) = 0̃,

ỹ1(0) = ỹ2(0) = 0̃,

ỹ1(1) =< 1, 2, 3 >,

ỹ2(1) =< −1, 0, 1 >,

(24)

where 2̃ =< 0, 2, 4 > .

It follows from (23) that

ÿr
1
=

λ

2
, ÿ

r

1 =
µ

2
,

ÿr
2
=

λ

2
, ÿ

r

2 =
µ

2
,
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Figure 2: Fuzzy extremals for fuzzy variational problem (24) in Example 2

which have general solutions

yr
1
=

λ

4
x2 + c1x+ c2, yr1 =

µ

4
x2 + c3x+ c4

and

yr
2
=

λ

4
x2 + d1x+ d2, yr2 =

µ

4
x2 + d3x+ d4,

where ck and dk are constants for k = 1, . . . , 4. From the initial conditions and the
subsequent conditions

yr
1
+ yr

2
− 2rx2 = 0, yr1 + yr2 + (2r − 4)x2 = 0,

we find

λ = 4r, µ = 8− 4r, c1 = c3 = 1, c2 = d2 = c4 = d4 = 0, d1 = d3 = −1.

Thus, the required extremizing functions are

yr
1
= rx2 + x, yr1 = (2− r)x2 + x

and
yr
2
= rx2 − x, yr2 = (2 − r)x2 − x.

One can check that the conditions of Lemma 1 are satisfied, so ỹ1(x) and ỹ2(x) are
fuzzy functions in [0,1]. This solution is shown in Figure 2, where the solid lines are
y1
1
(x) = y11(x) and y1

2
(x) = y12(x); the dashed lines are y01(x) and y02(x); the doted

lines are y0
1
(x) and y0

2
(x).

6. Conclusion

We established fuzzy fractional Euler-Lagrange equations to variational problems
with natural boundary conditions, and problems with holonomic constraints. The
main features of our optimality conditions were summarized and highlighted with
two illustrative examples. The fuzzy fractional optimality conditions are in general
difficult to solve and, as future work, we intend to develop numerical methods to
address the issue.
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