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Abstract. Recently, Witula and Slota have given decompositions of the Cauchy and
Ferrers-Jackson polynomials [Cauchy, Ferrers-Jackson and Chebyshev polynomials and
identities for the powers of elements of some conjugate recurrence sequences, Central Eu-
ropan J. Math., 2006]. Our main purpose is to derive a different decomposition of the
Cauchy and Ferrers-Jackson polynomials. Our approach is to use the Waring formula and
the Saalschütz identity to prove the claimed results. Also, we obtain generalizations of the
results of Carlitz, Hunter and Koshy as corollaries of our results about sums and differences
of powers of the Fibonacci and Lucas numbers.
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1. Introduction

For n ∈ N, the Cauchy and Ferrers-Jackson polynomials are defined by

pn (x, y) := (x+ y)
2n+1

− x2n+1 − y2n+1

and
qn (x, y) := (x+ y)2n + x2n + y2n,

respectively. Some authors have studied their decompositions. Recently, Witula and
Slota [8] have obtained the following decompositions

pn (x, y) =

⌊n−1

2 ⌋
∑

k=0

2n+ 1

n− k

(

n− k

2k + 1

)

(xy (x+ y))
2k+1 (

x2 + xy + y2
)n−3k−1

(1)

and

qn (x, y) =

⌊n−1

2 ⌋
∑

k=0

2n

n− k

(

n− k

2k

)

(xy (x+ y))2k
(

x2 + xy + y2
)n−3k

. (2)
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The proof of these decompositions was given by induction based on simple recurrence
dependence between polynomials pn (x, y) and qn (x, y) .

In this paper, our main purpose is to derive alternative approach to obtain dif-
ferent decompositions of the Cauchy and Ferrers-Jackson polynomials. To prove
the claimed result, our approach is to use the Waring formula and the Saalschütz
identity given by

am + bm =

⌊m/2⌋
∑

k=0

(−1)
k m

m− k

(

m− k

k

)

(ab)
k
(a+ b)

m−2k
, m > 0,

and for n ≥ 0

F

(

a, b,−n

c, a+ b− c− n+ 1

∣

∣

∣

∣

1

)

=
(c− a)

n
(c− b)

n

cn (c− a− b)
n

,

respectively, where n is the rising factorial power: n = x (x+ 1) . . . (x+ n− 1) (for
more details about the Saalschütz identity and the rising factorial power, we refer
to [4]).

It would be much valuable to note that the decompositions of the Cauchy and
Ferrers-Jackson polynomials are very closely related to the identities given by Carlitz,
Hunter and Koshy on differences and sums of powers of the Fibonacci and Lucas
numbers up to seventh and eighth powers, respectively.

We also present generalizations of the identities of Carlitz [1], Hunter and Koshy
[5] including the Fibonacci and Lucas numbers for any odd and even powers as
applications of our main results

Recall that the well-known Fibonacci sequence {Fn} is defined by the recurrence

Fn = Fn−1 + Fn−2, n > 1

with initials F0 = 0 and F1 = 1. The Lucas sequence {Ln} satisfies the same
recurrence relation but the initials are L0 = 2 and L1 = 1. A formula for the
generating functions of powers of general cases of these sequences and squaring
terms of an ℓ-sequence were also given in [6] and [7], respectively.

Now we recall the results of Carlitz [1]. He proposed the following interesting
identities as advanced problems for n > 1

F 3
n+1 − F 3

n − F 3
n−1 = 3Fn+1FnFn−1,

L3
n+1 − L3

n − L3
n−1 = 3Ln+1LnLn−1,

F 5
n+1 − F 5

n − F 5
n−1 = 5Fn+1FnFn−1

(

2F 2
n + (−1)

n)
,

L5
n+1 − L5

n − L5
n−1 = 5Ln+1LnLn−1

(

2L2
n − 5 (−1)

n)
,

F 7
n+1 − F 7

n − F 7
n−1 = 7Fn+1FnFn−1

(

2F 2
n + (−1)

n)2
,

L7
n+1 − L7

n − L7
n−1 = 7Ln+1LnLn−1

(

2L2
n − 5 (−1)

n)2
. (3)

Then Carlitz proved his propositions two years later. Also, Charles Wall inde-
pendently solved the problem at the same time (see [2]). For the sums of powers
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of Fibonacci and Lucas numbers, Carlitz, Hunter and Koshy gave the following
identities,

F 4
n+1 + F 4

n + F 4
n−1 = 2

(

2F 2
n + (−1)

n)2
,

L4
n+1 + L4

n + L4
n−1 = 2

(

2L2
n − 5 (−1)n

)2
,

F 6
n+1 + F 6

n + F 6
n−1 = 2

(

2F 2
n + (−1)

n)3
+ 3F 2

n−1F
2
nF

2
n+1,

F 8
n+1 + F 8

n + F 8
n−1 = 2

(

2F 2
n + (−1)

n)4
+ 8F 2

n−1F
2
n

×
(

F 4
n−1 + F 4

n + 4F 2
n−1F

2
n + 3Fn−1FnF2n−1

)

. (4)

2. Decomposition of the Cauchy and Ferrers-Jackson polyno-

mials

Before our main results, we give a lemma playing a crucial point.

Lemma 1. For m > 0 and r ∈ {0, 1} , then

⌊ t−r+1

3 ⌋
∑

k=0

(

t− k + 1

t− 3k − r + 1

)

3,2

(

t− 3k − r + 1

m− 2k

)

=
2t+ r + 2

2t−m+ 2

(

2t−m+ 2

m+ r

)

,

where
(

n

k

)

3,2

=
3n− k

n

(

n

k

)

.

Proof. Assume that r = 1. In a much clear form we have to prove that

⌊t/3⌋
∑

k=0

(

t+ 1− k

t− 3k

)(

t− 3k

m− 2k

)

1

t+ 1− k
=

1

m+ 1

(

2t−m+ 1

m

)

.

Consider the LHS of the claimed identity

⌊t/3⌋
∑

k=0

(

t+ 1− k

t− 3k

)(

t− 3k

m− 2k

)

1

t+ 1− k
=

⌊t/3⌋
∑

k=0

(t− k)!

(2k + 1)! (m− 2k)! (t−m− k)!
.

Define

Tk :=
(t− k)!

(2k + 1)! (m− 2k)! (t−m− k)!
.

Consider

Tk+1

Tk
=

(t− k − 1)! (2k + 1)! (m− 2k)! (t−m− k)!

(2k + 3)! (m− 2k − 2)! (t−m− k − 1)! (t− k)!

=
(m− 2k) (m− 2k − 1) (t−m− k)

(2k + 3) (2k + 2) (t− k)

=

(

k − m
2

) (

k − m−1
2

)

(k +m− t)

(k − t)
(

k + 3
2

)

(k + 1)
.
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Since

⌊t/3⌋
∑

k=0

(

t+ 1− k

t− 3k

)(

t− 3k

m− 2k

)

1

t+ 1− k
= T0F

(

−m
2 , −m−1

2 , m− t
3
2 , −t

∣

∣

∣

∣

1

)

,

the LHS of the above sum yields the Saalschütz identity. Thus

⌊t/3⌋
∑

k=0

(

t+ 1− k

t− 3k

)(

t− 3k

m− 2k

)

1

t+ 1− k
=

(

t

m

)

F

(

−m
2 , −m−1

2 , m− t
3
2 , −t

∣

∣

∣

∣

1

)

=

(

t

m

)

(

m+3
2

)t−m (

m+2
2

)t−m

(

3
2

)t−m
(m+ 1)

t−m

=
1

m+ 1

(

2t−m+ 1

m

)

,

as claimed.
Now suppose that r = 0. Thus the claim takes the form

⌊ t+1

3 ⌋
∑

k=0

(

t− k + 1

t− 3k + 1

)(

t− 3k + 1

m− 2k

)

1

t− k + 1
=

1

2t−m+ 2

(

2t−m+ 2

m

)

.

Define

Tk :=

(

t− k + 1

t− 3k + 1

)(

t− 3k + 1

m− 2k

)

1

t− k + 1
.

Thus

Tk =
(t− k + 1)!

(t− 3k + 1)! (2k)!

(t− 3k + 1)!

(m− 2k)! (t−m− k + 1)!

1

t− k + 1

=
(t− k)!

(2k)! (m− 2k)! (t−m− k + 1)!

and so

Tk+1

Tk
=

(t− k − 1)!

(2k + 2)! (m− 2k − 2)! (t−m− k)!

(2k)! (m− 2k)! (t−m− k + 1)!

(t− k)!

=
(m− 2k) (m− 2k − 1) (t−m− k + 1)

(t− k) (2k + 2) (2k + 1)

=

(

k − m
2

) (

k − m−1
2

)

(k +m− t− 1)

(k − t) (k + 1)
(

k + 1
2

) .

Thus we write

⌊ t+1

3 ⌋
∑

k=0

(

t− k + 1

t− 3k + 1

)(

t− 3k + 1

m− 2k

)

1

t− k + 1
= T0F

(

−m
2 , −m−1

2 , m− t− 1
1
2 , −t

∣

∣

∣

∣

1

)

,
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which, by the Saalschütz identity and T0 =
(

t+1
m

)

1
t+1 , equals

(

t+ 1

m

)

1

t+ 1

(

m+1
2

)t−m+1 (m
2

)t−m+1

(

1
2

)t−m+1
mt−m+1

=
1

2t−m+ 2

(

2t−m+ 2

m

)

,

as claimed.

Now we are ready to give our main first result:

Theorem 1. For m ≥ 0 and r ∈ {0, 1}; then

(a+ b)
2m+r

+ (−a)
2m+r

+ (−b)
2m+r

=

⌊(m−r)/3⌋
∑

i=0

(

m− i

m− 3i− r

)

3,2

(ab (a+ b))
2i+r (

a2 + ab+ b2
)m−3i−r

. (5)

Proof. Firstly, assume that r = 0. By the Waring formula, we have

(a+ b)2m + a2m + b2m

= (a+ b)
2m

+

m
∑

k=0

2m

2m− k

(

2m− k

k

)

(−1)
k
(ab)

k
(a+ b)

2m−2k

which, after an arrangement, equals

2 (a+ b)2m +
m
∑

k=1

2m

2m− k

(

2m− k

k

)

(−1)k (ab)k (a+ b)2m−2k

=

(

m

m

)

3,2

(a+ b)
2m

+

m
∑

k=1

2m

2m− k

(

2m− k

k

)

(−1)
k
(ab)

k
(a+ b)

2m−2k
,

which, by Lemma 1, yields

m
∑

k=0

⌊m

3 ⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(

m− 3i

k − 2i

)

(−1)k (ab)k (a+ b)2m−2k

=

⌊m

3 ⌋
∑

i=0

(

m− i

m− 3i

)

3,2

m−i
∑

k=2i

(

m− 3i

k − 2i

)

(−1)
k
(ab)

k
(a+ b)

2m−2k

=

⌊m

3 ⌋
∑

i=0

(

m− i

m− 3i

)

3,2

m−3i
∑

k=0

(

m− 3i

k

)

(−1)
k
(ab)

k+2i
(a+ b)

2m−2k−4i

=

⌊m

3 ⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(ab+ (a+ b))
2i
(

(a+ b)
2
− ab

)m−3i

,

which completes the proof for the case r = 0.
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Consider the case r = 1:

(a+ b)
2m+1

− a2m+1 − b2m+1

= (a+ b)
2m+1

−

m
∑

k=0

(−1)
k 2m+ 1

2m+ 1− k

(

2m+ 1− k

k

)

(ab)
k
(a+ b)

2m+1−2k

=
m
∑

k=1

(−1)k+1 2m+ 1

2m+ 1− k

(

2m+ 1− k

k

)

(ab)k (a+ b)2m+1−2k

=

m−1
∑

k=0

(−1)k
2m+ 1

2m− k

(

2m− k

k + 1

)

(ab)k+1 (a+ b)2m−2k−1
,

which, by the Lemma 1, equals

m−1
∑

k=0

(−1)k
⌊(m−1)/3⌋

∑

i=0

(

m− i

m− 3i− 1

)

3,2

(

m− 3i− 1

k − 2i

)

(ab)k+1 (a+ b)2m−2k−1

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

m−1
∑

k=0

(

m− 3i− 1

k − 2i

)

(−1)
k
(ab)

k+1
(a+ b)

2m−2k−1

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(ab (a+ b))
2i+1

(

(a+ b)
2
− ab

)m−3i−1

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(ab (a+ b))
2i+1

(

(a+ b)
2
− ab

)m−3i−1

.

2.1. Generalizations of the results of Carlitz

In this section, we give a general form of identities (3) and (4) as corollaries of
Theorem 1. If we take a = Fn and b = Fn−1 in (5) with the case r = 1, then we get

F 2m+1
n+1 − F 2m+1

n − F 2m+1
n−1

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(Fn+1FnFn−1)
2i+1 (

F 2
n+1 − FnFn−1

)m−1−3i

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(Fn+1FnFn−1)
2i+1 (

2F 2
n + (−1)

n)m−1−3i
. (6)

Similarly, when a = Ln and b = Ln−1, we obtain
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L2m+1
n+1 − L2m+1

n − L2m+1
n−1

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(Ln+1LnLn−1)
2i+1 (

L2
n+1 − LnLn−1

)m−1−3i

=

⌊(m−1)/3⌋
∑

i=0

(

m− i

m− 3i− 1

)

3,2

(Ln+1LnLn−1)
2i+1 (2L2

n − 5 (−1)n
)m−1−3i

. (7)

For r = 0, we have the following identities

F 2m
n+1 + F 2m

n + F 2m
n−1

=

⌊m/3⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(Fn+1FnFn−1)
2i (

F 2
n+1 − FnFn−1

)m−3i

=

⌊m/3⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(Fn+1FnFn−1)
2i (

2F 2
n + (−1)

n)m−3i
(8)

and

L2m
n+1 + L2m

n + L2m
n−1

=

⌊m/3⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(Ln+1LnLn−1)
2i (

L2
n+1 − LnLn−1

)m−3i

=

⌊m/3⌋
∑

i=0

(

m− i

m− 3i

)

3,2

(Ln+1LnLn−1)
2i (

2L2
n − 5 (−1)

n)m−3i
. (9)

The case m = 1, 2 and 3 coincides with Carlitz’s, Hunter’s and Koshy’s proposi-
tions.

Now, we give modular identities belonging to the sequence of Fibonacci and
Lucas without proofs.

Corollary 1. For m,n ≥ 0, the following identities hold

E2m+1
n+1 − E2m+1

n − E2m+1
n−1 ≡ 0 (mod En+1EnEn−1)

and

E2m
n+1 + E2m

n + E2m
n−1 ≡ 2

(

E2
n+1 − EnEn−1

)m
(mod En+1EnEn−1),

where {En}n≥0 is the Fibonacci or Lucas sequence.
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