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Abstract. In the present paper, we make use of local properties of the recently estab-
lished definition of a conformable fractional derivative. Sturm’s separation and Sturm’s
comparison theorems are proved for differential equations involving a conformable frac-
tional derivative of order 0 < α ≤ 1.
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1. Introduction

In the last decades, the interest in fractional differential equations is rapidly growing,
and classic fractional derivatives such as Caputo, Riemann-Liouville or Hadamard
seem to be well-developed (see e.g. [8, 9]). One thing that all these have in common is
that they are defined as integrals with different singular kernels, i.e., they have a non-
local structure. Due to this fact, none of the classic fractional derivatives satisfies an
analog of integer-order product rule: (fg)′ = f ′g+fg′ for C1-functions f , g. On the
other hand, a recently introduced definition of the so-called conformable fractional
derivative (see Definition 1 below) involves a limit instead of an integral. This local
definition enables us to prove many properties analogous to those of integer-order
derivative (cf. [1, 7]). Nowadays, the Cauchy problems involving a conformable
fractional derivative [4] and fractional semigroups [2] are also investigated. We
note that the notion of a conformable fractional derivative was generalized in [5] to
time scales. In this paper, we state and prove Sturm’s theorems (see e.g. [6] for
classic statements) for differential equations with conformable fractional derivatives.
Our results may be used as a foundation for studies of oscillatory properties of
conformable fractional differential equations.

For the simplicity, we denote by |u| the Euclidean norm of a vector u ∈ R
n

without any respect to the dimension n ∈ N. In the present paper, we always
assume 0 < α ≤ 1.

The paper is organized as follows. In the next section, we recall some basic
definitions and known results that will be in force when proving the main results.
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Here we also prove a result on the existence and uniqueness of a solution of an
initial value problem. Section 3 is devoted to the main results of this paper, and
at the end, we present an example comparing solutions of fractional equations with
constant coefficients.

2. Preliminary results

Here we recall basic notions, and provide results helpful for the main section. The
basic definition is from [7].

Definition 1. Let 0 < α ≤ 1. The conformable fractional derivative of a function
f : [a,∞) → R

n is defined as

aDα f(t) = lim
ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
, t > a,

aDα f(a) = lim
t→a+

aDα f(t).

If aDα f(t0) exists and is finite, we say that f is α–differentiable at t0. For 2 ≤ n ∈ N

we denote aD
n
α f(t) = aDα aD

n−1
α f(t).

The conformable fractional integral is defined as

aIα f(t) =

∫ t

a

f(s)

(s− a)1−α
ds, t ≥ a.

Whenever a = 0, we omit the lower index a.

Note that if f : [a,∞) → R
n is differentiable at t0 ≥ a, then aDα f(t0) =

(t0 − a)1−αf ′(t0). We add several lemmas on properties of conformable fractional
derivative. The next one is from [7].

Lemma 1. Let f : [a,∞) → R
n be a continuous function, and 0 < α ≤ 1. Then

aDα a Iα f(t) = f(t), t > a.

It is elementary to prove the next two lemmas using the continuity of an α–
differentiable function [7, Theorem 2.1] in the first case, and the mean value theorem
for α–differentiable functions [7, Theorem 2.4] in the second.

Lemma 2. Let 0 < α ≤ 1, f be differentiable at g(t), and g α–differentiable at
t > a. Then

aDα(f ◦ g)(t) = f ′(g(t)) aDα g(t).

Lemma 3. If f : (a, b) → R is α–differentiable in (a, b) and aDα f is positive (neg-
ative) on the whole (a, b), then f is increasing (decreasing) on (a, b).

The interested reader might compare Lemma 2 with the chain rule in [1, Theorem
2.11]. Note that we immediately obtain the statement complementary to Lemma 3:
If the function f is α–differentiable on (a, b) and increasing (decreasing) on (a, b),
then aDα f(c) ≥ 0 (aDα f(c) ≤ 0) for all c ∈ (a, b).
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In the present paper, when talking about a solution of a fractional differential
equation with the conformable fractional derivative we shall always have a continuous
solution on mind.

Next, we present an integral equation corresponding to the initial value problem
for a conformable fractional differential equation

aDα x(t) = f(t, x(t)), t > a,

x(a) = xa.
(1)

Lemma 4. Let f ∈ C([a,∞)×R
n,Rn) be a given function. Then the solution x of

the initial value problem (1) satisfies

x(t) = xa +

∫ t

a

f(s, x(s))

(s− a)1−α
ds, t ≥ a. (2)

Proof. Since f and x are continuous, aIα f(t) exists. That means that a Iα aDα x(t)
exists. Then by [1, Corollary 2.7], x is differentiable, and by [1, Lemma 2.8]

aIα aDα x(t) = x(t)− x(a). (3)

Therefore, applying the operator aIα on equation (1) yields

x(t)− x(a) = aIα f(t)

for any t > a. That was to be proved.

Note that the latter lemma holds for f defined on [a, T ]×B(u, r), where T > a
and

B(u, r) =

{

x ∈ C([a, T ],Rn) | max
t∈[a,T ]

|x(t) − u| ≤ r

}

is a closed ball in C([a, T ],Rn).
The following result gives a sufficient condition for the existence of a unique

solution.

Theorem 1. Let 0 < α ≤ 1 and let f : [a, T ]×B(xa, r) → R
n be a given continuous

function, where T > a. Suppose that |f(t, x)| ≤ M for all t ∈ [a, T ], x ∈ B(xa, r),
for some M > 0. Moreover, let f(t, ·) be Lipschitz continuous with the constant L
for all t ∈ [a, T ]. Then there exists a unique solution of the initial value problem (1)

defined on [a, T1] with T1 = min
{

T, a+
(

αr
M

)
1
α

}

.

Proof. Let us introduce the Banach space Z = C([a, T1],R
n) equipped with the

Bielicki norm ‖x‖Z = maxt∈[a,T1] e
−Lβt|x(t)|, where

β :=

(

α+ LeL

α

)

1
α

.

Define the operator F : Z → Z as

(Fx)(t) := xa +

∫ t

a

f(s, x(s))

(s− a)1−α
ds.
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Clearly, F is well defined. Moreover, F maps B(xa, r) into itself. Indeed, for any
t ∈ [a, T1] we have

|(Fx)(t) − xa| ≤
∫ t

a

|f(s, x(s))|
(s− a)1−α

ds ≤ M(t− a)α

α
≤ M(T1 − a)α

α
≤ r.

Next we show that F is a contraction. Let t ∈ [a, T1] be arbitrary and fixed, and
x, y ∈ B(xa, r). Then

|(Fx)(t) − (Fy)(t)| ≤
∫ t

a

|f(s, x(s)) − f(s, y(s))|
(s− a)1−α

ds

≤ L

∫ t

a

eLβs

(s− a)1−α
ds‖x− y‖Z .

Now, we split
∫ t

a
=

∫ a+ε

a
+
∫ t

a+ε
for ε := β−1. If t < a+ ε, omit the second integral

in the following inequalities for the estimations to hold.

|(Fx)(t) − (Fy)(t)| ≤ L

(

eLβ(a+ε)

∫ a+ε

a

ds

(s− a)1−α
+

1

ε1−α

∫ t

a+ε

eLβsds

)

‖x− y‖Z

= L

(

eLβ(a+ε) ε
α

α
+

eLβt − eLβ(a+ε)

Lβε1−α

)

‖x− y‖Z.

Hence

e−Lβt|(Fx)(t) − (Fy)(t)| ≤ εα
(

LeLβ(a−t+ε)

α
+

1− eLβ(a−t+ε)

βε

)

‖x− y‖Z

≤ εα
(

LeL

α
+ 1− eL

)

‖x− y‖Z = (1 − εαeL)‖x− y‖Z .

Taking the maximum over all t ∈ [a, T1], one obtains ‖Fx−Fy‖Z ≤ (1− εαeL)‖x−
y‖Z . The statement follows by the Banach fixed point theorem and Lemma 4.

The following definition of α–Wronskian is from [3], and will be in force in the
next section.

Definition 2. Let x, y be given functions α–differentiable on [a, b], α ∈ (0, 1]. We
set

aWα[x, y](t) :=

∣

∣

∣

∣

x(t) y(t)

aDα x(t) aDα y(t)

∣

∣

∣

∣

.

3. Sturm’s theorems

In this section, we consider the scalar fractional differential equation of second order
of the form

aD
2
α x(t) + (aDα x(t))p(t) + x(t)q(t) = 0, t > a (4)

with continuous functions p, q. Classically [6], two functions x, y continuous on [a, b]
will be called linearly dependent if there exist c1, c2 ∈ R such that |c1|+ |c2| > 0 and
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c1x(t) + c2y(t) ≡ 0 for all t ∈ [a, b]. In the other case, they are linearly independent.
Clearly, if one of two functions is identically equal to zero, they cannot be linearly
independent. Using the formula

aWα[x, y](t) = e
−
∫ t

a1

p(s)

(s− a)1−α
ds

aWα[x, y](a1), t ∈ (a, b)

for two solutions, x and y, of (4) and some a1 ∈ (a, b), which follows from [3,
Theorem 2.2], we immediately obtain the next equivalent condition.

Lemma 5. Two solutions x, y of equation (4) defined on (a, b) for some a < b are
linearly independent if and only if aWα[x, y](t) 6= 0 for all t ∈ (a, b).

One of the main results of this paper follows. It is Sturm’s separation theorem
for fractional differential equations with the conformable derivative.

Theorem 2. Let x, y be linearly independent solutions of (4) defined on (a, b) (b
is allowed to be +∞), p and q given continuous functions, and 0 < α ≤ 1. Then x
has a zero between any two successive zeros of y. Thus the zeros of x and y occur
alternately.

Proof. Linear independence yields

aWα[x, y](t) = x(t) aDα y(t)− (aDα x(t))y(t) 6= 0, t ∈ (a, b). (5)

So aWα[x, y] does not change the sign over (a, b). Suppose that t1, t2 ∈ (a, b) are two
successive zeros of y. Note that aDα y(ti) 6= 0 for each i = 1, 2. Otherwise, Theorem
1 gives y ≡ 0 — a contradiction with linear independence. This also means that the
zeros of y (and also of x) are isolated.

Hence, from (5),

x(t1)(aDα y(t1))x(t2) aDα y(t2) > 0. (6)

Let us assume without any loss of generality that aDα y(t1) > 0. By Lemma 3, y is
increasing at t1. Since y is continuous, and t2 is a zero of y next to t1, y is decreasing
at t2. By the corollary of Lemma 3, aDα y(t2) < 0. Similarly, the case aDα y(t1) < 0
gives aDα y(t2) > 0. Therefore, (aDα y(t1)) aDα y(t2) < 0, i.e., x(t1)x(t2) < 0 by
(6). The continuity of x yields the existence of t3 ∈ (t1, t2) such that x(t3) = 0.
Note that x has only one zero in (t1, t2). Indeed, if there were t4 6= t3 in (t1, t2) such
that x(t4) = 0, then applying the above arguments would result in the existence of
t5 ∈ (t3, t4) or t5 ∈ (t4, t3) such that y(t5) = 0, i.e. there is another zero of y between
t1 and t2, what is a contradiction.

The next result is Sturm’s comparison theorem for conformable fractional differ-
ential equations.

Theorem 3. Let x and y be nontrivial solutions of the equations

aD
2
α x(t) + x(t)r(t) = 0, t > a,

aD
2
α y(t) + y(t)r1(t) = 0, t > a,

respectively, where r(t) ≥ r1(t) for t > a are given continuous functions. Then
exactly one of the following conditions holds:
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(1) x has at least one zero between any two zeros of y,

(2) r(t) = r1(t) for all t > a, and x is a constant multiple of y.

Proof. Let us suppose that (1) does not hold. Let a < t1 < t2 be two consecutive
zeros of y. Thus aWα[x, y](ti) = x(ti) aDα y(ti) for i = 1, 2. Without any loss of
generality, we assume that x(t), y(t) > 0 on (t1, t2) (otherwise, take −x or −y).
Similarly to the proof of Theorem 2,

aDα y(t1) > 0 > aDα y(t2).

Therefore,

aWα[x, y](t1) = x(t1) aDα y(t1) ≥ 0,

aWα[x, y](t2) = x(t2) aDα y(t2) ≤ 0.
(7)

For the derivative, we have

aDα aWα[x, y](t) = x(t)y(t)(r(t) − r1(t)) ≥ 0, t ∈ (t1, t2).

If there is some t0 ∈ (t1, t2) such that aDα aWα[x, y](t0) > 0, then from

f(t1) = f(a) + a Iα aDα f(t1),

f(t2) = f(a) + a Iα aDα f(t2)

for a continuous function f , and using (7), we obtain

0 ≥ aWα[x, y](t2) = aWα[x, y](t1) +

∫ t2

t1

aDα aWα[x, y](s)

(s− a)1−α
ds > 0,

what is a contradiction. Hence, r(t) = r1(t) for all t ∈ (t1, t2). Note that now x and
y solve the same equation. So, Theorem 2 yields that x and y are linearly dependent.

Obviously, if (2) is valid, then x cannot have a zero between two successive zeros
of y, i.e., (1) does not hold. The proof is complete.

For the final result of this section, we shall need the fractional version of the
Picone identity. For the simplicity, we omit the argument t.

Lemma 6. Let u, v be nontrivial solutions of the equations

aDα(p aDα u) + qu = 0 on (a,∞),

aDα(p1 aDα v) + q1v = 0 on (a,∞),
(8)

respectively, where q and q1 are given continuous functions, p and p1 are α–differentiable.
Then

aDα

(u

v
(p(aDα u)v −p1u(aDα v)))

= (q1 − q)u2 + (p− p1)(aDα u)2 + p1

(

aDα u− (aDα v)
u

v

)2

.
(9)
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Proof. The statement is obtained by direct differentiation of the left-hand side,
applying the rules for the derivative of a product and fraction of two functions [7]

aDα(fg) = (aDα f)g + f(aDα g), aDα

(

f

g

)

=
(aDα f)g − f(aDα g)

g2
,

and using (8).

The following result is a generalization of Theorem 3.

Theorem 4. Let u, v be nontrivial solutions of equations (8), where 0 < p1(t) ≤
p(t), q(t) ≤ q1(t) for t > a are given continuous functions, and p and p1 are α–
differentiable. Then between any two zeros t1, t2 > a of u, there exists at least one
t0 ∈ [t1, t2] such that v(t0) = 0.

Proof. Let a < t1 < t2 be two consecutive zeros of u. Let us assume that u(t) > 0
for all t ∈ (t1, t2), and conversely, that v(t) > 0 for all t ∈ [t1, t2] (take −u or −v if
needed). Then applying the operator a Iα · (t2)− aIα · (t1) to the Picone identity (9),
we get

0 =

[

u(t)

v(t)
(p(t)(aDα u(t))v(t)− p1(t)u(t)(aDα v(t)))

]t2

t=t1

=

∫ t2

t1

(q1(t)− q(t))u2(t)

(t− a)1−α
dt+

∫ t2

t1

(p(t)− p1(t))(aDα u(t))2

(t− a)1−α
dt

+

∫ t2

t1

p1(t)

(t− a)1−α

(

aDα u(t)− (aDα v(t))
u(t)

v(t)

)2

dt

≥
∫ t2

t1

p1(t)

(t− a)1−α

(

aDα u(t)− (aDα v(t))
u(t)

v(t)

)2

dt

=

∫ t2

t1

p1(t)v
2(t)

(t− a)1−α

(

aDα

(

u(t)

v(t)

))2

dt ≥ 0

with the aid of (3). Now, the right-hand side of the above inequality is zero if and
only if

aDα

(

u(t)

v(t)

)

= 0

for all t ∈ (t1, t2), i.e., u/v is constant on (t1, t2). Then continuity of u yields that
u(t) = 0 for all t ∈ [t1, t2], which is in contradiction with the positivity of u on
(t1, t2).

Finally, we present an example of equations with constant coefficients, illustrating
the application of the latter theorem.

Example 1. Let us consider the couple of equations

aD 1
2
(4 aD 1

2
u) + u = 0 on (a,∞), (10)

aD 1
2
(4 aD 1

2
v) + q1v = 0 on (a,∞) (11)

for a ∈ R and parameter q1 ∈ R.
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It can be easily verified that

u(t) = sin
(π

4
+
√
t− a

)

(12)

solves (10) along with u(a) =
√
2
2 , aD 1

2
u(a) =

√
2
4 . Similarly, equation (11) has a

solution
v(t) = sin

(

c1 +
√

q1(t− a)
)

(13)

satisfying v(a) = sin(c1), aD 1
2
v(a) =

√
q1
2 cos(c1). Therefore, if q1 < 1, function v

oscillates more slowly than u, and eventually one of its zeros will not lie between
two successive zeros of u. On the other hand, v oscillates faster than u whenever
q1 > 1. This coincides with the statement of Theorem 4, and is depicted in Figure
1.

Figure 1: For a = 0, function u of (12) (solid), v of (13) with c1 = 0 and q1 = 5

8
(dashed), q1 = 2

(dotted)
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