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The square of the line graph and path ideals
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Abstract. For path ideals of the square of the line graph we compute the Krull dimension
and characterize the linear resolution property in combinatorial terms. We bound the
Castelnuovo–Mumford regularity and the projective dimension of these ideals in terms of
the corresponding invariants of two certain sub-hypergraphs. Finally, we present some open
questions.
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Introduction

Let G be a directed graph on the vertex set V = {1, . . . , n} and with the set of
directed edges E(G). By S = k[x1, . . . , xn] we denote the polynomial ring in n
variables over a field k. For an integer 2 ≤ t ≤ n, a sequence of vertices i1, . . . , it
with the property that (ij , ij+1) ∈ E(G), for all 1 ≤ j ≤ t − 1, is called a path of
length t in G. The t-path ideal of the graph G is the squarefree monomial ideal
whose minimal generators correspond to the paths of length t in G. Path ideals
were defined by A. Conca and E. De Negri [6] and they are generalizations of the
edge ideals introduced by R.H. Villarreal. In the recent years, path ideals have been
intensively studied; see for instance [1, 2, 3, 9, 14, 18, 20]. J. He and A. Van Tuyl
[14] proved that path ideals of the rooted trees are sequentially Cohen-Macaulay
and this result has been generalized to arbitrary trees [18]. Moreover, the Betti
numbers of path ideals of rooted trees have been computed [3] (see also [4]) and [17].
The Betti numbers of path ideals of cycles were computed in [1] and sequentially
Cohen-Macaulay path ideals of cycles have been characterized [20]. Being classes
of directed graphs which arise from the Hasse diagram of posets endowed with the
natural orientation induced from the poset, from the bottom to the top, path ideals
of posets also have been studied [18]. Moreover, in [18] connections between path
ideals of posets and two statistical ranking models have been established: the Luce-
decomposable model and the ascending model, [21].
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In this paper, we are mainly interested in studying the path ideal of the square of
the line graph. We focus on its algebraic and homological invariants and properties
such as being Cohen-Macaulay, having a linear resolution or being a set-theoretic
complete intersection. The structure of the paper is the following: in the first
section we recall the notions that will be used throughout the paper and we fix
the notations. In the second section, we give a lower bound for the Castelnuovo-
Mumford regularity of path ideals of the square of the line graph. Moreover, we
express the Castelnuovo-Mumford regularity and the projective dimension in terms
of the corresponding invariants of two certain sub-hypergraphs. The third section
is devoted to the study of the height of path ideals and a lower bound for their
projective dimension is given. A particular class of path ideals of the square of
the line graphs will be studied in the fourth section. For this particular class we
describe Cohen-Macaulay path ideals and we show that, in this case, path ideals
have a linear resolution. These results help us to give a complete characterization of
path ideals of the square of the line graph which have a linear resolution. We show
in fact that this property is equivalent to having linear first syzygies and to having
linear quotients, equivalences that, in general, do not hold. In the last section, we
formulate some open problems that follow from a large number of examples obtained
by using Singular [12].

1. Background and notations

Throughout this section we recall the notions that will be used throughout this
paper.

1.1. Algebraic and homological invariants of squarefree mono-

mial ideals

For more details about this section, one may see for instance [5]. Let S = k[x1, . . . , xn]
be the polynomial ring in n variables over a field k and I ⊆ S a squarefree monomial
ideal. Let F be the graded minimal free resolution of S/I as an S-module

F : 0 →
⊕

j

S(−j)βpj → · · · →
⊕

j

S(−j)β1j → S → S/I → 0.

The numbers βi =
∑

j

βij are called the Betti numbers of S/I. The Castelnuovo–

Mumford regularity is defined as

reg(S/I) = max{j − i : βij 6= 0}

and the projective dimension of S/I is

pd(S/I) = max{i : βij 6= 0}.

A particular class of monomial ideals which will be used is that of ideals with
linear quotients [16]:
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Definition 1. Let I be a monomial ideal of S. The ideal I has linear quotients (or it
is an ideal with linear quotients) if there exists an ordering u1, . . . , um of its minimal
monomial generators such that, for all 2 ≤ i ≤ m, the colon ideals 〈u1, . . . , ui−1〉 : ui
are generated by variables.

Let V = {1, . . . , n} and let S = k[x1, . . . , xn] be the polynomial ring in n variables
over a field k. For F ⊆ V , we denote xF =

∏

i∈F

xi. We will also refer to F as the

support of the monomial xF . We recall that, given a monomial m = xa1

1 · · ·xan
n , the

support of the monomial m is the set supp(m) = {j : aj 6= 0}.
If an ideal with linear quotients is squarefree, then one may use the following

equivalent definition [15, Corollary 8.2.4]:

Definition 2. The ideal I is said to have linear quotients if there is an ordering of
the minimal monomial generators xF1

< · · · < xFr
such that for all i < j there are

some k < j and some l ∈ [n] such that l ∈ Fi \ Fj and Fk \ Fj = {l}.

For a monomial ideal with linear quotients generated in one degree, we can com-
pute the Betti numbers. Let I be a monomial ideal of S with G(I) = {u1, . . . , um}
and assume that I has linear quotients with respect to the sequence u1, . . . , um.
We denote Lk = (u1, . . . , uk−1) : uk, set(uk) = {i ∈ [n] : xi ∈ G(Lk)} and
rk = | set(uk)|.

Proposition 1 ([15, Corollary 8.2.2]). Let I ⊂ S be a monomial ideal with linear
quotients generated in one degree. Then, with the above notations, one has

βi(I) =
m
∑

k=1

(

rk
i

)

,

for all i. In particular, it follows that

pd(I) = max{r1, . . . , rm}.

1.2. Path ideals

Let G be a finite, simple graph with the vertex set V (G) = {1, . . . , n} and the set
of edges E(G), and let S = k[x1, . . . , xn] be the polynomial ring in n variables over
a field k. R.H. Villarreal associated to the graph G the edge ideal, which is the
squarefree monomial ideal

I(G) = 〈xixj : {i, j} ∈ E(G)〉.

If G is also a directed graph, then a sequence of vertices i1, . . . , it from V (G) with
the property that {ij, ij+1} ∈ E(G) for all 1 ≤ j ≤ t− 1 is called a path of length t
in G (or simply a t-path). A. Conca and E. De Negri considered the path ideal of
the graph G which is a generalization of the edge ideal [6]. Let 2 ≤ t ≤ n be a fixed
integer. The squarefree monomial ideal

I = 〈xi1 · · ·xit : i1, . . . , it is a t-path in G〉
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is called the t-path ideal of G. If it is clear from the context, we will simply call it
the path ideal of G. It is obvious that, for t = 2, the path ideal is the edge ideal of
the graph G.

The square of the graph G, denoted as G2, is the graph with the same set of
vertices as G whose set of edges is

E(G) ∪ {{i, j} : there is some k ∈ V (G) such that {i, k}, {j, k} ∈ E(G)}.

We are interested in studying the properties of path ideals of the square of the
line graph. In order to do this, let us fix the notations. Let n ≥ 2 be an integer
and Ln the line graph, that is, the graph with the vertex set V = [n] := {1, . . . n}
and the set of edges E = {{i, i + 1} : 1 ≤ i ≤ n − 1}. The square of the line
graph Ln is the graph L2

n with the set of vertices V = [n] and the set of edges
{{i, j} : j − i ≤ 2, 1 ≤ i < j ≤ n}. One may view L2

n as a directed graph by
assigning to each edge {i, j}, i < j an orientation from i to j. In the next figure,
one may see L6 and L2

6.

r rr r r rL6 :
1 2 3 4 5 6

1 3 5

2 4 6

L2
6 :

Figure 1: The graphs L6 and L2

6

The t-path ideal of L2
n is the squarefree monomial ideal

It(L
2
n) = 〈xi1 · · ·xit : 1 ≤ ij − ij−1 ≤ 2, 2 ≤ j ≤ t〉 ⊆ S = k[x1, . . . , xn]. (1)

Since the square of line graphs are chordal graphs, they have nice properties.
Moreover, the only class of chordal graphs for which the path ideals have been
studied is that of trees.

1.3. Hypergraphs and edge ideals of hypergraphs

Let V be a finite set and 2V the set of all subsets of V . A simple hypergraph H is a
pair (V, E(H)), where V is the set of vertices of H and E(H) ⊆ 2V is the set of edges.
The hypergraph H is called d-uniform if all its edges have the same cardinality, d.
Graphs are particular classes of uniform hypergraphs. Let V = {1, . . . , n} and let
S = k[x1, . . . , xn] be the polynomial ring in n variables over a field k. The edge ideal
of the simple hypergraph H is the squarefree monomial ideal

I(H) = 〈xF : F ∈ E(H)〉.

Moreover, if I ⊆ S is a squarefree monomial ideal with the minimal set of monomial
generators G(I), one may consider the associated hypergraph H(I) with the set of
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edges {F ⊆ {1, . . . n} : xF ∈ G(I)}. Therefore, path ideals of a graph can be seen
as edge ideals of hypergraphs.

Let 2 ≤ t ≤ n be an integer and It(L
2
n) the t-path ideal. By Lt(n) we denote the

associated hypergraph of It(L
2
n). Taking into account equation (1), we get that

E(Lt(n)) = {{i1, . . . , it} : 1 ≤ ij − ij−1 ≤ 2, 2 ≤ j ≤ t}. (2)

Definition 3 ([8]). A monomial ideal I is splittable if I is the sum of two nonzero
monomial ideals J and K, that is, I = J +K, such that

(i) G(I) is the disjoint union of G(J) and G(K);

(ii) there is a splitting function

G(J ∩K) −→ G(J) × G(K)

w 7→ (φ(w), ψ(w))

satisfying

(a) for all w ∈ G(J ∩K), w = lcm(φ(w), ψ(w)),

(b) for every subset S ⊂ G(J ∩ K), both lcm(φ(S)) and lcm(ψ(S)) strictly
divide lcm(S).

If J and K satisfy the above properties, then I = J +K is a splitting of I.

Here G(I) denotes the set of minimal monomial generators of I.
If H is a hypergraph and E is an edge of H, then E is a splitting edge of H if

I(H) = 〈xE〉+ I(H \ E)

is a splitting of I(H). We write H \ E for the sub-hypergraph of H obtained by
removing the edge E (for more details, see [13]).

2. Invariants of path ideals of L2
n

Let H be a d-uniform hypergraph with the set of vertices V = {1, . . . , n} and the
set of edges E .

Definition 4 ([13]). A chain of length r in H is a sequence of edges and vertices
E0, i1, E1, i2, . . . , Er−1, ir, Er such that

(i) i1, . . . , ir ∈ V are all distinct,

(ii) E0, . . . , Er ∈ E are all distinct,

(iii) i1 ∈ E0, ir ∈ Er and ij , ij+1 ∈ Ej for all j ∈ {1, . . . , r − 1}.

The following notions have been defined in [13] and we will use the same termi-
nology in the sequel. For two edges F,G ∈ E the chain connecting F and G is called
proper if |Ei ∩Ei+1| = |Ei+1| − 1 for all i ∈ {0, . . . , r− 1}, where we denote F = E0
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and G = Er. Moreover, the chain is called irredundant if no proper subsequence is
a chain from F to G. The distance between F and G is

distH(F,G) = min{l : F = E0, i1, E1, . . . , El = G is a proper irredundant chain}.

In the sequel, we show that for any two edges of Lt(n) there is an irredundant
proper chain.

Construction 1. Let F,G ∈ E be two edges of Lt(n). We prove that there is a chain
F = E0, i1, E1, i2, . . . , Er−1, ir, Er = G which satisfies the conditions of Definition 4
and |Ei ∩ Ei+1| = |Ei+1| − 1 for all 0 ≤ i ≤ r − 1. We consider three cases:

Case I: If F ∩G 6= ∅, then let us denote d = t−|F ∩G|, F = E0 and i1 = min(F ∩G).
Let

E1 = (F \ {min(F \G)}) ∪ {min(G \ F )}
and i2 = min(G \ F ). Clearly, i1 ∈ E0, i1, i2 ∈ E1, i2 6= i1 and |E0 ∩E1| = |E1| − 1.
Next, we consider

E2 = (E1 \ {min(E1 \G)}) ∪ {min(G \ E1)}

and i3 = min(G \ E1). Again, one has that i2, i3 ∈ E2, i3 6= i2, i1 and |E1 ∩ E2| =
|E2| − 1. This construction will end after d steps since there are d distinct elements
in G \ F . The last edge, Ed = G, will be obtained as

Ed = (Ed−1 \ {min(Ed−1 \G)}) ∪ {min(G \ Ed−1)}
= (Ed−1 \ {max(F \G)}) ∪ {max(G \ F )}.

It is clear that each set Ei is a t-path in L2
n since the sets F and G are not

disjoint. Moreover, the sequence is irredundant. Since this is the minimal length
that such a sequence can have, we also get that distH(F,G) = d = t− |F ∩G|.
Case II: If F ∩ G = ∅ and min(G) ≤ max(F ) + 2. We may assume that min(F ) <
min(G) since otherwise we interchange F and G. Let E0 = F , i1 = max(F ) and

E1 = (E0 \ {min(E0)}) ∪ {min(G)}.

Since min(F ) < min(G) ≤ max(F ) + 2, it is clear, by using (2) that E1 ∈ E . Also,
one has that i1 is in both E0 and E1. Let i2 = min(G) and

E2 = (E1 \ {min(E1 \G)}) ∪ {min(G \ E1)}.

Again, it is clear that E2 ∈ E and that i2 satisfies the conditions from Definition 4.
Next, we continue by taking i3 = min(G \E1) and

E3 = E2 \ {min(E2 \G)}) ∪ {min(G \ E2)}.

After t steps, the process will stop. We will have that it = min(G \ Et−2) and

Et = Et−1 \ {min(Et−1 \G)}) ∪ {min(G \ Et−1)},
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where min(G \ Et−1) = max(G). By the construction, we note that this is also of
minimal length, so in this case, distH(F,G) = t.

Case III: If F ∩ G = ∅ and min(G) > max(F ) + 2. As before, let E0 = F , i1 =
max(E0) and

E1 = (E0 \ {min(E0)}) ∪ {max(E0) + 2}.
Now we check whether min(G) > max(E1)+2. If this is not the case, then we apply
the second case of this construction for E1 and G, so we will get that distH(F,G) =
t+ 1. If the inequality is true, then we take i2 = max(E0) + 2 and

E2 = (E1 \ {min(E1)}) ∪ {max(E1) + 2}

and we check again if min(G) > max(E2) + 2. By continuing the construction as
described below, we get an irrendundant chain of minimal length. In particular,
distH(F,G) ≥ t+ 1.

Definition 5 ([13]). A d-uniform hypergraph H is called properly-connected if for
any two edges F and G such that F ∩G 6= ∅ we have

distH(F,G) = d− |F ∩G|.

The following result is now straightforward by the first case of Construction 1:

Proposition 2. The hypergraph Lt(n) is properly-connected.

Definition 6 ([13]). Let H be a properly-connected d-uniform hypergraph and E an
edge in H. The vertex neighbour set of E is the set of vertices

N =
⋃

{H∈H : distH(E,H)=1}

H \ E.

One may describe the splitting edges in terms of their vertex neighbour sets.

Theorem 1 ([13, Theorem 4.8]). Let E be an edge of a d-uniform properly-connected
hypergraph H and assume that N(E) = {z1, . . . , zr}. Then E is a splitting edge if
and only if there exists a vertex z ∈ E such that (E \ {z}) ∪ {zi} ∈ H for each
zi ∈ N(E).

If we consider that E = {1, . . . , t} ∈ Lt(n), then its vertex neighbour set is
{t+ 1, t+ 2}.

Proposition 3. The set E = {1, . . . , t} is a splitting edge of Lt(n).

Proof. Let i ∈ E, i 6= t. Then it is clear by the definition of the edges of Lt(n)
that the sets {1, . . . , î, . . . , t, t+1} and {1, . . . , î, . . . , t, t+2} are edges of Lt(n). The
statement follows by Theorem 1.

If E is an edge of the hypergraph H, then let H′ = {H ∈ H : distH(E,H) ≥
d+ 1}. If H = Lt(n) and E = {1, . . . , t}, then according to Construction 1,

L′
t(n) = {H ∈ Lt(n) : min(H) ≥ t+ 3}.
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It is clear that L′
t(n) is the hypergraph associated to the path ideal of the square of

the line graph on the vertex set {t+ 3, . . . , n}.
If H is a d-uniform properly-connected hypergraph and E is a splitting edge of

H, then the Castelnuovo-Mumford regularity and the projective dimension of the
edge ideal of H can be expressed in terms of the corresponding invariants of the edge
ideals of the hypergraphs H \ E and H′.

Theorem 2 ([13, Theorem 6.2]). Let H be a d-uniform properly-connected hyper-
graph, E a splitting edge of H and r = |N(E)|. Then

(a) reg(I(H)) = max{reg(I(H \ E)), reg(I(H′)) + d− 1}.
(b) pd(I(H)) = max{pd(I(H \ E)), pd(I(H′)) + r + 1}.
In our case, we get

Theorem 3. Let 2 ≤ t ≤ n be an integer, It(L
2
n) the path ideal of L2

n and E =
{1, . . . , t}.Then
(a) reg(It(L

2
n)) = max{reg(I(Lt(n) \ E)), reg(I(L′

t(n))) + t− 1}.
(b) pd(It(L

2
n)) = max{pd(I(Lt(n) \ E)), pd(I(L′

t(n))) + 3}.
Proof. The statement follows directly from Theorem 2, and using the fact that
N(E) = {t+ 1, t+ 2}.

In order to define a lower bound for the Castelnuovo-Mumford regularity, we
recall the following definition:

Definition 7 ([13]). Let H be a d-uniform properly connected hypergraph. Two
edges E,H of H are t-disjoint if distH(E,H) ≥ t. A set of edges E ′ ⊆ E is called
pairwise t-disjoint if every pair of edges of E ′ is t-disjoint.

Theorem 4 ([13, Theorem 6.5]). Let H be a d-uniform properly-connected hyper-
graph. Then βi−1,di(I(H)) equals the number of sets of i pairwise (d + 1)-disjoint
edges of H. In particular, if c is the maximal number of pairwise (d + 1)-disjoint
edges of H, then

reg(I(H)) ≥ (d− 1)c+ 1.

For our case, we get

Lemma 1. The maximal number of pairwise (t + 1)-disjoint edges of Lt(n) is at

least
[

n
t+2

]

.

Proof. Let us denote by c =
[

n
t+2

]

. It is clear that the set of edges E0 = {1, . . . , t},
E1 = {t+3, . . . , 2t+2}, · · · , Ec−1 = {(c−1)(t+2)+1, . . . , c(t+2)−2} is a pairwise
(t+ 1)-disjoint set of edges. The statement follows.

The following corollary is now straightforward due to Theorem 4:

Corollary 1. Let 2 ≤ t ≤ n and let It(L
2
n) be the corresponding t-path ideal of L2

n.
Then

reg(S/It(L
2
n)) ≥

[

n

t+ 2

]

(t− 1).
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3. The height and the projective dimension of path ideals of

L
2
n

In this section, we will give a complete description of the height of path ideals of
L2
n. In order to do this we split the proof in several cases. First, we consider the

case when n ≤ 2t and we describe all the minimal prime ideals of height 2. By
Min(It(L

2
n)) we denote the set of minimal prime ideals which contain It(L

2
n).

Proposition 4. If n ≤ 2t, then {p ∈ Min(It(L
2
n)) : ht p = 2} = {〈xi, xi+1〉 : n− t ≤

i ≤ t}.
Proof. Assume that p ∈ Min(It(L

2
n)) has ht p = 2. Since the monomials x1 · · ·xt,

xn−t+1 · · ·xn,∈ G(It(L2
n)), there are 1 ≤ α ≤ t and n − t + 1 ≤ β ≤ n such

that p = 〈xα, xβ〉. If α and β are not consecutive integers, then the monomial
m = x[n]\{α,β} ∈ It(L

2
n) and m /∈ p. Therefore p = 〈xi, xi+1〉 with n− t ≤ i ≤ t.

Conversely, we prove that p = 〈xi, xi+1〉 ∈ Min(It(L
2
n)) for n − t ≤ i ≤ t.

Let n − t ≤ i ≤ t and assume by contradiction that there is m ∈ G(It(L2
n)) such

that m /∈ p. It follows that max(supp(m)) < i or min(supp(m)) > i + 1. If
max(supp(m)) < i and since i ≤ t, then deg(m) < t, a contradiction with m ∈
G(It(L2

n)). If min(supp(m)) > i + 1 and since n − t + 1 ≤ i + 1, it follows that
min(supp(m)) > n− t+ 2, s contradiction with deg(m) = t.

Next, we consider the case when n = 2t+ r, with 1 ≤ r ≤ t− 1.

Proposition 5. Let n = 2t+ r, with 2 ≤ r ≤ t− 1. Then

p = 〈xt, xt+1, x2t+1, x2t+2〉 ∈ Min(It(L
2
n))

is of minimal height. Moreover, ht(It(L
2
n)) = 4. If n = 2t+ 1, then

p = 〈xt, xt+1, x2t+1〉 ∈ Min(It(L
2
n))

is of minimal height and ht(It(L
2
n)) = 3.

Proof. If n = 2t+ r, then we consider the sets A1 = {1, . . . , t}, A2 = {t+1, . . . , 2t}
and B = {2t+ 1, . . . , 2t + r}, where |Ai| = t and |B| = r. It is clear that in both
cases, p ∈ Min(It(L

2
n)), since any path of length t has a corresponding vertex in p

and if we remove a variable from p, then one may construct a path of length t such
that its corresponding monomial does not belong to p.

Assume by contradiction that there is a minimal prime ideal q of It(L
2
n) such that

ht(q) < ht(p). It is clear that ht(q) ≥ 2 since the monomials x1 · · ·xt, xt+1 · · ·x2t ∈
G(It(L

2
n)).

For the case when n = 2t+ 1, if we assume that q = 〈xi, xj〉, with 1 ≤ i ≤ t and
t+ 1 ≤ j ≤ 2t, then we may consider the monomial m = xt+1···x2t

xj
x2t+1 ∈ G(It(L2

n))

such that m /∈ q.
For the case n = 2t + r, with 2 ≤ r < t, it follows as before that ht(q) should

be strictly greater than 2. Assume that ht(q) = 3, that is q = (xi, xj , xs) such that
1 ≤ i ≤ t and t+1 ≤ j ≤ 2t. Then the monomial m = x1···x2t+r

xixjxs
∈ It(L

2
n) since there

is at least one path of length t on the set {1, . . . , 2t+ r} \ {i, j, s} and m /∈ q.
In both cases we obtain a contradiction, therefore the ideal p is of minimal

height.
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We analyze the case when 3t ≤ n, that is n = kt+ r, k ≥ 3 and 0 ≤ r ≤ t − 1.
We consider the sets:

A1= {1, . . . ,t}, A2= {t+1, . . . ,2t}, . . . , Ak= {(k−1)t+1, . . . ,kt}, B= {kt+1, . . . ,n},

where |Ai| = t and |B| = r, 1 ≤ i ≤ k.

Proposition 6. Let n = kt+ r, 3 ≤ k, 0 ≤ r ≤ t− 1. An ideal of the form

p = 〈xt, xt+1〉+ 〈x(s−1)t+1, x(s−1)t+2 : 3 ≤ s ≤ k〉+ 〈xkt+1, xkt+2〉, if r > 2,

p = 〈xt, xt+1〉+ 〈x(s−1)t+1, x(s−1)t+2 : 3 ≤ s ≤ k〉+ 〈xkt+1〉, if 1 ≤ r ≤ 2,

p = 〈xt, xt+1〉+ 〈x(s−1)t+1, x(s−1)t+2 : 3 ≤ s ≤ k〉, if r = 0,

has the property that p ∈ Min(It(L
2
n)) and it is of minimal height.

Moreover,

ht(It(L
2
n)) =







2k, r > 2
2k − 1, 1 ≤ r ≤ 2
2k − 2, r = 0

Proof. We claim that p ⊃ I since there is no path of length t which may be
constructed on the vertices which are not in p. Furthermore, p ∈ Min(It(L

2
n)),

because if we remove any vertex from p, then one may find a path of length t with
the vertices which are not in p.

Next, we consider I to be the Stanley–Reisner ideal of the simplicial complex ∆.
Assume, by contradiction, that there is a minimal prime ideal q of I, q = PHc :=
〈xi : i ∈ Hc〉, where H is a face of ∆, such that ht(q) < ht(p). We denote
H = {j1, j1 + 1, . . . , j1 + s1, j2, j2 + 1, . . . , j2 + s2, . . . , ja, ja + 1, . . . , ja + sa}, with
ji − (ji−1 + si−1) > 2, for all 2 ≤ i ≤ a, since H is a face of ∆.

One may note that ht(q) ≥ k since q must contain at least one variable from each
set Ai, 1 ≤ i ≤ k, because the monomials xAi

∈ G(I), for all i. This implies that in
H we have at least k sequences of consecutive integers. Moreover, |H | ≤ n− k, thus
(ja + sa)− j1 + 1 ≤ n− k.

Case 1: We consider n = kt + r, with r > 2, and ht(q) < 2k = ht(p), that is,
|H | = s1 + · · ·+ sa + a > n− 2k. Since ji − (ji−1 + si−1) > 2, for all 2 ≤ i ≤ a, by
summing all relations we obtain that ja − j1 > 2(a− 1) + (s1 + . . .+ sa−1). Thus

ja − j1 > a− 2 + (s1 + · · ·+ sa−1 + a) > a− 2 + n− 2k − sa

implies that (ja + sa)− j1 > n− 2k − 1 + a.
Therefore n − 2k + a < (ja + sa) − j1 + 1 ≤ n − k, that is, a < k. This means

that in H there are at most k− 1 sequences of consecutive integers, a contradiction.
Case 2: We take n = kt+ r, with 1 ≤ r ≤ 2, and ht(q) < 2k− 1 = ht(p), that is,

|H | = s1 + · · ·+ sa + a > n− 2k + 1. As before, we get

ja − j1 > a− 2 + (s1 + · · ·+ sa−1 + a) > a− 2 + n− 2k + 1− sa,

that is, (ja + sa)− j1 > n− 2k + a.
We get n − 2k + 1 + a < (ja + sa) − j1 + 1 ≤ n − k, that is, a < k − 1, a

contradiction.
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Case 3: For n = kt and |H | = s1 + · · ·+ sa + a > n− 2k + 2, we obtain

ja − j1 > a− 2 + (s1 + · · ·+ sa−1 + a) > a− 2 + n− 2k + 2− sa,

that is, (ja + sa)− j1 > n− 2k + 1 + a.
It follows that n − 2k + 2 + a < (ja + sa) − j1 + 1 ≤ n − k, that is, a < k − 2.

This means that in H there are at most k − 3 sequences of consecutive integers, a
contradiction.

Therefore, we proved the following:

Theorem 5. Let 2 ≤ t ≤ n and let It(L
2
n) be the t-path ideal of L2

n. Then

dim(S/It(L
2
n)) =































n− 2, if n ≤ 2t
n− 3, if n = 2t+ 1
n− 4, if n = 2t+ r and 2 ≤ r ≤ t− 1

n− 2k + 2, if n = kt, k ≥ 3
n− 2k + 1, if n = kt+ r, k ≥ 3 and 1 ≤ r ≤ 2
n− 2k, if n = kt+ r, k ≥ 3 and r > 2

.

Next, we pay attention to the projective dimension of path ideals of L2
n.

Proposition 7. Assume that t <
[

n
2

]

and denote n = 2tk+ r, with 1 ≤ r ≤ 2t− 1.
The ideals

p =〈x2, x4, . . . , x2tk〉+ 〈x1, x2t+1, x4t+1, . . . , x2tk+1〉, if 1 ≤ r ≤ t,

p =〈x2, x4, . . . , x2tk〉+ 〈x1, x2t+1, x4t+1, . . . , x2tk+1〉+ 〈x2tk+2, x2tk+4,

. . . , x2tk+2(r−t)〉, if t < r ≤ 2t− 1,

is a minimal prime of It(L
2
n). In particular,

pd(S/It(L
2
n)) ≥

{

(t+ 1)k + 1 if 1 ≤ r ≤ t
(t+ 1)k + 1 + r − t if t < r ≤ 2t− 1.

Proof. If we assume that 1 ≤ r ≤ t, then the variables which are not in p belong
to the sets:

({i ∈ [2tk + 1] : i odd number} \ {1, 2t+ 1, 4t+ 1, . . . , 2tk + 1})
∪ {2tk + 2, 2tk + 3, . . . , 2tk + r}.

Therefore, there is no path of length t which may be constructed with these vertices.
For the second case, we obtain that the variables which are not in p belong to

the sets:

({i ∈ {1, . . . , 2tk + 1} : i odd number} \ {1, 2t+ 1, 4t+ 1, . . . , 2tk + 1})
∪ {2tk + 3, 2tk + 5, . . . , 2tk + 2(r − t)− 1}
∪ {2tk + 2(r − t) + 1, 2tk + 2(r − t) + 2, . . . , 2tk + r}.

In either of these cases there is no path of length t on these vertices.
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4. Properties of particular classes of path ideals of L2
n

In this section, we study the case when t ≥
[

n
2

]

. We pay attention to properties
such as being Cohen-Macaulay or having a linear resolution.

Proposition 8. If t ≥
[

n
2

]

, then It(L
2
n) has linear quotients.

Proof. Let us assume that G(It(L2
n)) = {xF1

, . . . ,xFr
}, r ≥ 2, where xF1

>lex

· · · >lex xFr
.

Let 1 ≤ α < β ≤ r, that is, xFα
>lex xFβ

. One has to show that there are
integers l ∈ [n] and γ < β such that l ∈ Fα \ Fβ and l = Fγ \ Fβ . Let us assume
that Fα = {i1, . . . , it} and Fβ = {j1, . . . , jt}, so min(Fα) = i1, min(Fβ) = j1,
max(Fα) = it, max(Fβ) = jt.

If i1 = j1, then, since xFα
>lex xFβ

, there is some l such that for all 1 ≤ s < l,
is = js and il < jl. By using that xFα

and xFβ
are in G(It(L2

n)), the following
inequalities hold: il − il−1 ≤ 2, jl − jl−1 ≤ 2, which, taking into account that
il−1 = jl−1, give il = il−1 + 1 and jl = il−1 + 2. Let Fγ = (Fβ ∪ {il}) \max(Fβ). It
is clear that xFγ

∈ G(It(L2
n)) and γ < β since xFγ

>lex xFβ
.

If i1 6= j1, then i1 < j1 and we consider il = max{is ∈ Fα \ Fβ : is < max(Fβ)}.
Then the set Fγ = (Fβ ∪{il}) \max(Fβ) has the property that xFγ

∈ G(It(L2
n)) and

γ < β since xFγ
>lex xFβ

.

The following corollary is now straightforward.

Corollary 2. If t ≥
[

n
2

]

, then It(L
2
n) has a linear resolution.

In order to compute the projective dimension, one has to determine the genera-
tors of ideals Lk, (see Proposition 1 and the above notations).

Proposition 9. Let t ≥
[

n
2

]

and G(It(L2
n)) = {xF1

, . . . ,xFr
}, r ≥ 2, where xF1

>lex

· · · >lex xFr
. Then

〈xF1
, . . . ,xFk−1

〉 : 〈xFk
〉 = 〈xα : min(Fk)− 2 ≤ α < max(Fk) and xα ∤ xFk

〉.
Proof. We prove by double inclusion.

“⊇” Let us choose some α such that min(Fk)− 2 ≤ α < max(Fk) and xα ∤ xFk
.

Then
xαxFk

=
xαxFk

xmax(Fk)
xmax(Fk) ∈ 〈xF1

, . . . ,xFk−1
〉

since xαxFk
/xmax(Fk) ∈ G(It(L2

n)) and xαxFk
/xmax(Fk) >lex xFk

.
“⊆” Let m ∈ 〈xF1

, . . . ,xFk−1
〉 : 〈xFk

〉, that is mxFk
∈ 〈xF1

, . . . ,xFk−1
〉.

If m ∈ 〈xF1
, . . . ,xFk−1

〉, then there is some xFi
which divides m. Since It(L

2
n)

has linear quotients, there is some γ < k and some l ∈ Fi such that Fγ = (Fk ∪
{l}) \ {max(Fk)}. One has that l ≥ min(xFk

)− 2 and l < max(Fk) according to the
proof of Proposition 8. Moreover, xl | xFi

| m so m ∈ 〈xα : min(Fk) − 2 ≤ α <
max(Fk) and xα ∤ xFk

〉.
We assume now that m /∈ 〈xF1

, . . . ,xFk−1
〉. Therefore, there is some i < k such

that xFi
| mxFk

, that is, Fi ⊆ supp(m)∪ Fk. Since It(L
2
n) is a squarefree monomial

ideal which has linear quotients, there is some l ∈ Fi \Fk and some γ < k such that
l = Fγ \ Fk. By the proof of Proposition 8, l ≥ min(xFk

) − 2 and l < max(Fk).
Moreover, xl | xFi

| m so m ∈ 〈xα : min(Fk)−2 ≤ α < max(Fk) and xα ∤ xFk
〉.
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We can now compute the projective dimension of It(L
2
n) for t ≥

[

n
2

]

.

Corollary 3. If t ≥
[

n
2

]

, then pd(S/It(L
2
n)) = n− t+ 1.

Proof. According to Proposition 1, pd(It(L
2
n)) = max{rk : 1 ≤ k ≤ r}. One may

note that there is a monomialm in G(It(L2
n)) such that min(m) = 1 and max(m) = n

since t ≥
[

n
2

]

. Therefore, set(m) = [n] \ supp(m). Hence pd(It(L
2
n)) ≥ n − t and

this is the maximal possible. The statement follows.

We may also characterize in this case the property of path ideals of being Cohen-
Macaulay.

Corollary 4. If t ≥
[

n
2

]

, then S/It(L
2
n) is Cohen-Macaulay if and only if t = n− 1.

Proof. One has that S/It(L
2
n) is Cohen-Macaulay if and only if depth(S/It(L

2
n) =

dim(S/It(L
2
n)), that is, pd(S/It(L

2
n)) = ht(S/It(L

2
n)), which is equivalent to n− t+

1 = 2 and t = n− 1.

We recall that if I ⊂ S is a homogeneous ideal and
√
I its radical, then the

arithmetical rank of I is defined as

ara(I) = min{r ∈ N : there exist a1, . . . , ar ∈ I such that
√
I =

√

(a1, . . . , ar)}.

For the squarefree monomial ideal case, an upper bound of the arithmetical rank is
given by H.G. Gräbe [11].

Theorem 6 ([11, Theorem 1]). Let I ⊂ S be a squarefree monomial ideal. Then

ara(I) ≤ n− indeg(I) + 1,

where indeg(I) is the initial degree of I, that is, indeg(I) = min{q : Iq 6= 0}.
A lower bound for the arithmetical rank of a squarefree monomial ideal is given

in [19].

Corollary 5 ([19, Theorem 1]). Let I ⊂ S be a squarefree monomial ideal. Then
pdS(S/I) ≤ ara(I) ≤ n− indeg(I) + 1.

Corollary 6. If t ≥
[

n
2

]

, then pd(S/It(L
2
n)) = ara(S/It(L

2
n)).

Proof. One has that n− t+ 1 ≤ pd(S/It(L
2
n)) ≤ ara(S/It(L

2
n)) ≤ n− t+ 1, where

the last inequality is given in [11].

Next, we aim at characterizing all path ideals of L2
n which have a linear resolution.

In order to do this, we need to recall the notion of edge diameter of a d-uniform
properly connected hypergraph defined in [13].

Definition 8. Let H be a d-uniform properly-connected hypergraph. The edge di-
ameter of H is

diam(H) = max{distH(E,H) : E,H ∈ H}.
One may characterize the property of having linear first syzygies in terms of edge

diameter:
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Theorem 7 ([13, Theorem 7.4]). Suppose that H is a d-uniform properly-connected
hypergraph. Then I(H) has linear first syzygies if and only if diam(H) ≤ d.

Now we can characterize all path ideals of L2
n which have a linear resolution.

Theorem 8. Let Lt(n) be the hypergraph whose edge ideal is It(L
2
n). The following

are equivalent:

(i) It(L
2
n) has linear quotients.

(ii) It(L
2
n) has a linear resolution.

(iii) It(L
2
n) has linear first syzygies.

(iv) diam(Lt(n)) ≤ t.

(v) t ≥
[

n
2

]

.

Proof. The implications (v) ⇒ (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are known to be true.
Indeed, (v) ⇒ (i) follows by Proposition 8, (i) ⇒ (ii) is known by [7, Lemma 4.1]
and (iii) ⇒ (iv) is true by Theorem 7. We only have to prove that (iv) ⇒ (v).

Let us assume that diam(H) ≤ t, that is, distH(E,H) ≤ t for all E,H edges of
H. Since the sets E = {1, . . . , t} and H = {n − t + 1, . . . , n} are edges in H, we
must have dist(E,H) ≤ t. If t ≥ n− t+ 1, then n ≤ 2t − 1. If t < n− t + 1, then
dist(E,H) ≤ t implies that there is an irredundant proper chain of length t which
connects E and H and, by Construction 1, we must have that n− t+1 ≤ t+2, that
is, n ≤ 2t+ 1. Thus t ≥

[

n
2

]

.

5. Open questions and remarks

The study of path ideals of powers of the line graph is the next step in order to
understand and compute invariants of path ideals of an arbitrary graph. There has
been an intensive work in this direction and invariants of path ideals of trees, cycles
and cycle posets have been studied [1, 2, 3, 9, 14, 20, 18].

The property of being sequentially Cohen-Macaulay has been characterized for
trees, cycles and partial answers were given for cycle posets. In the case of path
ideals if L2

n, it is clear that they are sequentially Cohen-Macaulay for t = 2, that is,
for edge ideals of the graph since L2

n is a chordal graph [10]. Moreover, the examples
show that the following question has a positive answer for arbitrary t:

Question 1. Is it true that the path ideal It(L
2
n) is sequentially Cohen–Macaulay,

for all t ≥ 2?

Moreover, the examples show that the bounds obtained for the projective di-
mension are sharp. For the Castelnuovo-Mumford regularity, one may see that the
bounds from Corollary 1 are not sharp. Examples show that the following result
could be true:

Question 2. Let n = c(t+ 1) + r, where c =
[

n
t+1

]

and 0 ≤ r ≤ t. Is it true that

reg(S/It(L
2
n)) =







[

n
t+1

]

(t− 1), if 2 ≤ r ≤ t
([

n
t+1

]

− 1
)

(t− 1), if 0 ≤ r ≤ 1?
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