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Abstract. The paper considers a family of probability distributions depending on a pa-
rameter. The goal is to derive the generalized versions of Cramér-Rao and Bhattacharyya
inequalities for the weighted covariance matrix and of the Kullback inequality for the
weighted Kullback distance, which are important objects themselves [9, 23, 28]. The asymp-
totic forms of these inequalities for a particular family of probability distributions and for
a particular class of continuous weight functions are given.
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1. Introduction

The concept of the discrete weighted mean can be extended to the concept of the
weighted mean of continuous functions [16] which, for instance, plays an important
role in the systems of weighted differential and integral calculus [13]. The corre-
sponding weighted covariance matrix naturally arises in the problem of continuous
weighted mean [23]. Generally, the need of the weight function in statistics appears
when observations cannot be considered as equivalent or when the estimation of
parameter is especially sensitive in a neighbourhood of some value. Regarding the
former one, in financial studies it is common to judge the information from recent
events as more valuable than from remote ones. This judgement can be taken into
account by the Pearson weighted correlation matrix [23]. On the other hand, the
problem of sensitive estimation is very common in statistics as well, i.e., in medical
dose finding studies it is necessary to find the dose which has the closest probability
of toxicity to the specific value γ. Thus, costs of the wrong estimation are greater
in a neighbourhood of this value of a specific interest γ, which usually lies in the
interval (0.2, 0.33) (see [17, 6, 2]). The weighted covariance matrix naturally arises
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in both cases [23, 21] as well as in a variety of other fields, i.e., in the weighted
principal component analysis [9], in the comparison of two multiple regressions by
means [24], etc. Regarding the discussion above, the goal of this paper is to derive
a weighted version of the Bhattacharyya [3] and Cramér-Rao [4] inequalities for the
weighted covariance matrix.

It is natural to assume that a bound of the weighted covariance matrix will
involve the recently studied weighted version of the Fisher information matrix [21]
which is connected to the weighted Kullback-Leibler divergence [28] (in a similar
way the unweighted Fisher information is connected to the unweighted Kullback-
Leibler divergence [8]). Moreover, it is shown in [20] that weighted versions of
measures of information which have already attracted considerable attention in the
literature [7, 10, 14, 25, 26, 27] arise in the problems of sensitive estimation. Consider
the following example of the dose-escalation study as an illustration of sensitive
estimation. A statistician has a range of doses of the drug and after a series of
toxic and non-toxic realizations he needs to estimate the probability of toxicity of
this dose. The goal of this study is to find the dose whose probability is the closest
to the target probability γ. Therefore, if he wrongly declares that the probability
of a toxicity for particular dose is in a specified small neighbourhood of particular
value γ, the penalty for this error should be more severe than for a similar mistake
far from the sensitive area. This penalty arises as the result of the declared dose
is investigated in further studies and if the true probability is greater than target
γ, one will observe a lot of toxic responses and otherwise, a lot of patients will
be undertreated which causes additional costs. It was shown in [21] that weighted
measures of information naturally arise in this framework.

Consider the family of RVs Zθ ∈ Rd with PDF fθ, where θ ∈ Θ ⊂ Rm is the
vector of parameters of PDF fθ and z = [z1, . . . , zd]

T. Let T (Z) = T (Z1, . . . , Zd) be
an arbitrary estimator of τ(θ), where τ(θ) is a preassigned function of parameter θ.
Let φ(z, θ, γ) be a continuous and positive weight function such that

∫

Rd

fθ(z)φ(z, θ, γ)dz = 1. (1)

In this paper, we consider the class of weight functions which can be represented in
the following form

φ(z, θ, γ) =
1

κ(θ, γ)
φ̃(z, γ). (2)

Here κ(θ, γ) ∈ Ck, where Ck is the family of functions with continuous derivatives
up to order k (k will be specified below), and κ(θ, γ) is found from the normalizing
condition (1). Note that condition (1) can be rewritten in the following form

∫

Rd

φ̃(z, γ)fθ(z)dz = κ(θ, γ) (3)

where φ̃(z, γ) is a function that does not depend on θ. Let Eφ
θ (T (Z)) be the weighted

expectation of T (Z)

g(θ) ≡ E
φ
θ (T (Z)) =

∫

Rd

T (z)fθ(z)φ(z)dz, (4)
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and let Eθ(T (Z)) be the classic expectation of T (Z)

e(θ) ≡ Eθ(T (Z)) =

∫

Rd

T (z)fθ(z)dz. (5)

Recall the definition of the weighted version of a quantitative measure of information
gain, [1, 10, 14, 18, 21]. The weighted (m×m) Fisher information matrix

Iφ(θ) = E
φ
θ

[

(∇logfθ(Z)) (∇logfθ(Z))
T
]

, (6)

where ∇ is the notation for the gradient (the vector ∇logfθ(Z) is the score), and
the weighted Kullback-Leibler divergence of g from f [28]

D
φ(f ||g) =

∫

Rd

φ(z)f(z)log
f(z)

g(z)
dz. (7)

For simplicity, we assume that the inverse Fisher matrix exists. However, in a
general case, we understand under inverse the Moore-Penrose pseudoinverse. It is
shown that it is more convenient to study the calibrated Kullback-Leibler divergence
defined in [28]:

Kφ(f ||g) =
∫

Rd

φ̃(z)
f(z)

κf
log

f(z)κg
g(z)κf

dz = D(f̃ ||g̃), (8)

where κf and κg are normalizing constants for the weight function φ̃ and PDFs f

and g, respectively, f̃ = φ̃(z)f(z)κ−1
f and D(f ||g) is the standard Kullback-Leibler

divergence of g from f

D(f ||g) =
∫

Rd

f(z)log
f(z)

g(z)
dz. (9)

The main goal of this paper is to derive the generalization of the Bhattacharyya
and Cramér-Rao inequalities for the weighted covariance matrix of T (Z)

V
φ
θ (T (Z)) ≡ E

φ
θ

[

(T (Z)− e(θ))(T (Z)− e(θ))T
]

(10)

and consider the weighted Kullback-Leibler divergence derived [28] for the class of
two close distributions.

We will use the Beta and Dirichlet distributions as examples throughout the
paper as these distributions are quite common in problems of sensitive estimation
in medical statistics, i.e., see [5, 11]. As a unidimensional example, let us consider

the family of RVs Z
(n)
α with PDF f

(n)
α

f (n)
α (p) =

1

B(αn + 1, n− αn+ 1)
pαn(1− p)(1−α)n, 0 ≤ p ≤ 1, (11)

where α is the parameter of distribution. Note that as n→ ∞, E(Z
(n)
α ) = α+O

(

1
n

)

and V(Z
(n)
α ) = O

(

1
n

)

, where E(Z) and V(Z) are expectation and variance of RV Z,
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respectively. We would like to find the explicit asymptotic expansions (as n → ∞)

for the lower bound of V φ(Z
(n)
α ) in the case of the following weight function

φ(n)(p) =
1

κ(α, γ)
pγ

√
n(1− p)(1−γ)

√
n, (12)

where κ(α, γ), is found from condition (1). As a multidimensional example, let us

consider the family of Dirichlet RVs Z
(n)
β1,β2

with PDF f
(n)
β1,β2

f
(n)
β1,β2

=
1

B(β1, β2)
pβ1n
1 pβ2n

2 (1 − p1 − p2)
(1−β1−β2)n, 0 ≤ p1, p2 ≤ 1, (13)

where β1 and β2 are parameters of the distribution and

B(β1, β2) =
Γ(β1n+ 1)Γ(β2n+ 1)Γ(n− β1n− β2n+ 1)

Γ(n+ 3)
.

As before, we would like to find the explicit asymptotic expansions for the lower

bound of V φ(T (Z
(n)
β1,β2

)) in the case of the following weight function

φ̂(n)(p) =
1

κ̂(β1, β2, γ1, γ2)
p
γ1

√
n

1 p
γ2

√
n

2 (1− p1 − p2)
(1−γ1−γ2)

√
n,

where κ(β1, β2, γ1, γ2) is defined in (50).

2. Main results

Recall that Zθ ∈ Rd is the family of RVs with PDF fθ, where θ ∈ Θ ⊂ Rm is
the vector of parameters of PDF fθ. Let φ(z, θ, γ) be the continuous positive weight
function defined in (2), Iφ(θ) the weighted Fisher information (m×m) matrix given in

(6), g(θ) the weighted expectation given in (4) and V
φ
θ (T (Z)) the weighted covariance

matrix of T (Z) given in (10). We assume that in (4) and (1) differentiation w.r.t.
the parameters up to order to be considered under the sign of integration is valid. A
sufficient condition for this is that the integrand after the operation of differentiation
η(θ) is bounded by an integrable function χ which does not depend on θ

|η(θ)| ≤ χ,

i.e., the integral converges uniformly in θ. Also, let us denote the partial derivative
of order j

f (j) =
∂jf

∂θj
.

Theorem 1 (Weighted Bhattacharyya inequality, uniparametric case). Let θ be a
scalar parameter, and τ(θ) a preassigned scalar function of parameter θ. An unbiased
estimator of τ(θ) is a scalar function T (Z) such that

e(θ) = Eθ[T (Z)] = τ(θ).
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Consider the weight function that satisfies condition (1). Recall

g(θ) ≡
∫

Rd

T (z)φ(z, θ, γ)fθ(z)dz. (14)

Assume that integrands in (14) and (1) converge uniformly in θ after operation of
differentiation up to order ν. Then the following inequality for the weighted variance
of T (Z) holds

V
φ
θ (T (Z)) ≥

ν
∑

i,j=1

(

g(i)(θ)−Qi
1 + τQi

2

)(

g(j)(θ) −Qj
1 + τQj

2

)

Jφij , (15)

where Qj
i , i = 1, 2 are given in (35) and (37), respectively, and Jφ

ij are the elements

of the matrix Jφ defined in (33).

Remark 1. Note that this inequality includes the weighted version of the Cramér-
Rao inequality. One can obtain the Cramér-Rao inequality when ν = 1. In this
particular case

(

Jφ
11

)−1

≡ Iφ(θ) =

∫

Rd

(f ′
θ)

2f−1
θ φdz,

∫

Rd

φf
(j)
θ dz =

κ′(θ, γ)

κ(θ, γ)

and
∫

Rd

T (z)φf
(1)
θ dz = g′(θ) +

κ′(θ, γ)

κ(θ, γ)
g(θ).

Thus, we obtain the following inequality

V
φ
θ (T (Z)) ≥

(

∂g(θ)

∂θ
− κ′(θ, γ)

κ(θ, γ)
(e(θ)− g(θ))

)

Iφ(θ)−1

×
(

∂g(θ)

∂θ
− κ′(θ, γ)

κ(θ, γ)
(e(θ)− g(θ))

)T

.

(16)

It is easy to see that if φ(z, θ, γ) ≡ 1, then inequality (16) gives the well-known
Cramér-Rao lower bound for the unweighted variance.

Example 1. Consider RV Z
(n)
α with PDF f

(n)
α given in (11) with x = αn, where

0 < α < 1. When ν = 1, θ = α, T (Z) = Z
(n)
α for the weight function φ(n)(p),

inequality (15) takes the following form

V
φ(T (Z(n)

α )) ≥ α(1 − α) + (α− γ)2

n
+
−2α+ α2 + γ + 2αγ − 2γ2

n3/2
+O

(

1

n2

)

. (17)

Due to cumbersome computations, all details are given in Section 3.2.
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Theorem 2 (Weighted Bhattacharyya inequality, multiparametric case). Let θ ∈
Θ ⊂ Rm be a vector of parameters, τ(θ) = (τ1(θ), . . . , τl(θ))

T ∈ Rl the preassigned
vector function of parameter θ and T (Z) an unbiased estimate of τ(θ):

e(θ) = Eθ(T ) =

∫

Rd

T (z)fθ(z)dz = τ(θ).

Consider the weight function φ(z, θ, γ) such that condition (1) holds. Assume that
the following positively definite matrix exists

Iφ = E
φ
θ [ββ

T], (18)

where
β = (β1(θ), . . . , βr(θ))

T

is r-dimensional RV, components of which are all possible expressions of the following
form

1

fθ(Z)

∂i1,...,im

∂θi11 , . . . ∂θ
im
m

fθ(Z), (19)

where (1 ≤ i1 + . . .+ im ≤ s) and r is the total number of all these expressions.
Let Fφ be the (r × l) matrix whose rows have the following form

∫

Rd

(T (z)− τ(θ)) φ(z, θ, γ)
∂i1,...,im

∂θi11 , . . . ∂θ
im
m

fθ(z)dz (20)

numbered in the same order as expressions (19). Assume that integrands in (20) and
(1) converge uniformly in θ after the operation of differentiation. Then the following
inequality for a weighted variance of T holds

V
φ
θ (T ) ≥ (Fφ)TIφ(θ)−1

F
φ. (21)

Remark 2. Here and below for (d × d) matrices of the same dimension d, A and
B, the inequality

A ≥ B

means that
C = A− B

is a non-negative definite matrix.

Example 2. Consider a random vector Z
(n)
β1,β2

= (Z
(n)
1 , Z

(n)
2 )T with PDF f

(n)
β1,β2

given in (13), where 0 < β1, β2 < 1 and τ = β1/β2. If

T (Z
(n)
β1,β2

) =
Z

(n)
1

Z
(n)
2

for the weight function φ
(n)
γ1,γ2 the asymptotics of the lower bound of the weighted

variance of this estimator has the form

V
φ(T (Z

(n)
β1,β2

)) ≥ β2
1(1 − β1 − β2)

2C(β1, β2, γ1, γ2)

n
+O

(

1

n3/2

)

, (22)

where C(β1, β2, γ1, γ2) is a constant that depends on the parameters only and is
explicitly given in (54).
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Theorem 3 (Weighted Kullback inequality).

(a) For given PDFs f ,g

Kφ(f ||g) ≥ Ψ∗
g̃(µφ(f̃)) = sup

t

[

〈t, µφ(f)〉 − logM̄g(t)
]

, (23)

where

M̄g(t) =

∫

Rd

φ(z)e〈t,z〉g(z)dz (24)

is a weighted moment generating function, t ∈ Rd, and

µφ(f) =
Ef [Zφ(Z)]

Ef [φ(Z)]
∈ R

d

is the classical expectation of f̃ .

(b) Let Z
(n)
α and Z

(n)
ρ be Beta RVs with PDF f

(n)
α given in (11) with x = αn and

with PDF f
(n)
ρ given in (11) with x = ρn, respectively, where 0 < α, ρ < 1 and the

weight function φ(n)(p). Denote ǫ = α− ρ. Then

Kφ(f (n)
α ||f (n)

ρ ) ≥ ǫ2 (1 +
√
n− n)

2

2(1− α)αn
+O (1) .

As ǫ→ 0,

∃ lim
ǫ→0

1

ǫ2
Kφ(f (n)

α ||f (n)
ρ ) =

1

2
I(f̃α) ≥

n

2α(1− α)
−

√
n

α(1− α)
+O (1) , (25)

where I(f̃α) is the standard Fisher information.

3. Proofs

Let us denote by ψ(0)(x) = ψ(x) and by ψ(1)(x) the digamma function and its first
derivative, respectively,

ψ(n)(x) =
dn+1

dxn+1
log (Γ(x)) ,

where Γ(x) is the Gamma-function. In further calculations, the asymptotics of these
functions for x→ ∞ will be used [12, #8.362.2]

ψ(x) = log(x)− 1

2x
+O

(

1

x2

)

as x→ ∞, (26)

ψ(1)(x) =
1

x
+

1

2x2
+O

(

1

x3

)

as x→ ∞. (27)
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3.1. Proof of Theorem 1

Consider Rν(Z, θ):

Rν(Z; θ) = T (Z)− τ(θ) −
ν
∑

i=1

λif
(i)
θ f−1

θ , (28)

where λi are undefined parameters. It is easy to note that

E[Rν(Z; θ)] = 0. (29)

Consider the weighted variance given in (2) of Rν . Because of (29), it can be written
in the following form

V
φ
θ (Rν) =

∫

Rd

(

T (z)− τ(θ) −
ν
∑

i=1

λif
(i)
θ f−1

θ

)2

φ(z, θ, γ)fθdz. (30)

By conditions of the Theorem, the differentiation is justified and leads to the follow-
ing condition:

∫

Rd

(

T (z)− τ(θ) −
ν
∑

i=1

λ⋆i f
(i)
θ f−1

θ

)

φf
(j)
θ dz = 0. (31)

It can be rewritten as

ν
∑

i=1

λ⋆i

∫

Rd

f
(i)
θ f−1

θ f
(j)
θ φdz =

∫

Rd

T (z)φf
(j)
θ dz− τ(θ)

∫

Rd

φf
(j)
θ dz. (32)

Let Iφθ be the ν × ν matrix whose elements are

Iφij =

∫

Rd

f
(i)
θ f−1

θ f
(j)
θ φdz,

i, j ≤ ν. Let

J
φ
θ =

(

I
φ
θ

)−1

(33)

be the inverse ν × ν matrix and elements of this matrix are Jφ
ij . Note that in the

case i = j = 1, Iφ11 equals to the weighted Fisher information given in (6).
Consider integrals in RHS of (32) separately. Firstly,

∫

Rd

T (z)φ̃

(

1

κ(θ, γ)
fθ

)(j)

dz = g(j)(θ),

∫

Rd

T (z)φ̃

[

j−1
∑

k=0

(

j

k

)(

1

κ(θ, γ)

)(j−k)

f
(k)
θ

]

dz+

∫

Rd

T (z)φf
(j)
θ dz = g(j)(θ).

Thus,
∫

Rd

T (z)φf
(j)
θ dz = g(j)(θ)−Qj

1, (34)
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where

Qj
1 =

∫

Rd

T (z)φ̃

[

j−1
∑

k=0

(

j

k

)(

1

κ(θ, γ)

)(j−k)

f
(k)
θ

]

dz. (35)

Similarly to condition (1), the following equality can be derived:

∫

Rd

φf
(j)
θ dz = −Qj

2, (36)

where

Qj
2 =

∫

Rd

φ̃

[

j−1
∑

k=0

(

j

k

)(

1

κ(θ, γ)

)(j−k)

f
(k)
θ

]

dz. (37)

So, (32) takes the form

g(j)(θ) =

ν
∑

i=1

λ⋆i I
φ
ij +Qj

1 − τQj
2 (38)

and

λ⋆i =

ν
∑

j=1

(

g(j)(θ) −Qj
1 + τQj

2

)

Jφ
ij . (39)

Thus, we obtain the following equality

V(R∗
ν) = V

φ
θ (T )−

ν
∑

i,j=1

(

g(i)(θ)−Qi
1 + τQi

2

)(

g(j)(θ)− Qj
1 + τQj

2

)

Jφ
ij .

The non-negativity of variance implies the lower bound for a weighted variance of T
given in (15).

It is easy to see that this inequality includes the weighted version of the Cramér-
Rao inequality. It appears when i = j = ν = 1. In this particular case

Iφ11 = Iφ(θ) =

∫

Rd

(f ′
θ)

2f−1
θ φdz,

∫

Rd

φf
(j)
θ dz =

κ′(θ, γ)

κ(θ, γ)

and
∫

Rd

T (z)φf
(1)
θ dz = g′(θ) +

κ′(θ, γ)

κ(θ, γ)
g(θ).

Thus, we obtain inequality (16). The weighted version of the Cramér-Rao inequality
was initially proposed in [28], where a slightly different definition of the weighted
variance was used. According to our definition of the weighted variance (10), the
standard (unweighted) mean should be subtracted while in setting [28] the weighted
mean is subtracted.
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3.2. Example 1 revised

Consider the weight function φ(n)(p) with κ(α, γ) is found from the normalizing
condition (1),

1

κ(α, γ)
=

Γ(x+ 1)Γ(n− x+ 1)Γ(n+ 2 +
√
n)

Γ(x+ γ
√
n+ 1)Γ(n− x+ 1 +

√
n− γ

√
n)Γ(n+ 2)

.

For a given weight function (12) the Fisher information equals

Iφ(f (n)
α )=n2

(

ψ(1)(x+ z + 1) + ψ(1)(n− x+ 1 +
√
n− z)

)

+n2
[

(ψ(x+z+1)−ψ(x+1))
2
+
(

ψ(n−x+1+
√
n−z)−ψ(n−x+1)

)2
]

+2n2
[(

ψ(n−x+1)−ψ(n−x+
√
n−z+1)

)

(ψ(x+z+1)−ψ(x+1))
]

,

(40)

where z = γ
√
n.

For the weight function (12)
∫ 1

0

pφ(n)f (n)
α dp =

Γ(n+
√
n+ 2)Γ(x+ γ

√
n+ 2)

Γ(n+
√
n+ 3)Γ(x+ γ

√
n+ 1)

≡ g(α). (41)

Then

∂g(α)

∂α
= n

Γ(n+
√
n+2)Γ(x+γ

√
n+2)

Γ(n+
√
n+3)Γ(x+γ

√
n+1)

(

ψ(x+γ
√
n+2)−ψ(x+γ

√
n+1)

)

. (42)

Differentiating κ(α, γ) we obtain

κ′(α, γ)

κ(α, γ)
= n

(

ψ(n−x+1)−ψ(n−x+1−γ
√
n+1)+ψ(x+γ

√
n+1)−ψ(x+1)

)

.(43)

Inserting in (40),(41),(42),(43) in (16) we get

V
φ(Z(n)

α ) ≥ α(1− α) + (α− γ)2

n
+

−2α+ α2 + γ + 2αγ − 2γ2

n3/2
+O

(

1

n2

)

.

First of all, it might be of interest to consider the cases when the obtained bound is
achieved. In the considered case, the weighted variance can be computed explicitly
and one can conclude that the lower bound is achieved asymptotically.

Moreover, one can find the family of distributions for which the Cramér-Rao
bound is attained. For this purpose, let us consider the proof of the weighted Cramér-
Rao inequality itself. Consider the following integral

g(θ) ≡
∫

Rd

T (z)φ(z, θ, γ)fθ(z)dz. (44)

Differentiating both sides in (44) and in (3) w.r.t. θ and multiplying the latter by
e(θ) defined in (5)

∫ 1

0

T (z)φ(z, θ, γ)
∂fθ
∂θ

dz− κ′(θ, γ)

κ2(θ, γ)

∫ 1

0

T (z)φ̃(z, γ)fθ(z)dz =
∂g(θ)

∂θ
, (45)

e(θ)

∫ 1

0

φ(z, θ, γ)
∂fθ
∂θ

dz =
κ′(θ, γ)

κ(θ, γ)
e(θ). (46)
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Subtracting (46) from (45),

∫ 1

0

(T (z)− e(θ))φ(z, θ, γ)
∂fθ
∂θ

dz =
∂g(θ)

∂θ
− κ′(θ, γ)

κ(θ, γ)
(e(θ)− g(θ)) .

Multiplying and dividing by
√
fθ, multiplying by the conjugate vector and by ap-

plying the Cauchy-Schwarz inequality we obtain inequality(16). Thus, the bound
is attained when the equality holds for the Cauchy-Schwarz inequality that is true
when

c(T (z)− e(θ))
√

φ(z, θ, γ)
√

fθ =
√

φ(z, θ, γ)
∂fθ
∂θ

1√
fθ
.

The weight is cancelled out and we obtain a special form of the exponential family
which can be expressed through T (z)

f(z, θ) = h(z)ecθ(T (z)−e(θ)).

Note that conditions when the standard Bhattachrayya inequality is attained are
not trivial (see [29]). In the weighted case this problem needs special consideration
as well.

It is important to say that by using a relation between the weighted variance

for the RV Z
(n)
α with PDF f and the standard variance of the RV Z̃

(n)
α with PDF

f̃ ≡ φ̃f
κ

V
φ(Z(n)

α ) = V(Z̃(n)
α ) + (g(α)− e(α))2

one can find the lower bound for the weighted variance applying the standard in-

equality for V(Z̃
(n)
α ) and it is of interest which of the bounds is better. By computing

the standard bound routinely we deduce that two leading terms of asymptotics co-
incide in both cases in the context of Example 1. The bounds are equivalent when
α = 0.5, 1 − 2γ − 2γ2 6= 0 or α = γ. It appears that the bound obtained with
the standard inequality for PDF f̃ is better in other cases. However, it does not
generally hold. Indeed, using the relation between the weighted Fisher Information
and the standard Fisher Information

I(f̃) ≡
∫

φ̃f

κ

(

[ln
φ̃f

κ
]′
)2

= Iφ(f)− (κ′)2

κ2
(47)

one can find the condition when the weighted bound is more tight. By inserting the
relation for the weighted Fisher Information, the standard Fisher Information and
the weighted variance, the standard variance in the weighted Cramér-Rao inequality
and the standard Cramér-Rao inequality one can obtain that the weighted lower
bound is more tight if

(

g(1)(θ)κ(θ) + (g(θ)− e(θ))κ(1)(θ)
)2

κ(θ)2Iφ
+

(g(1)(θ)κ)2
(

κ(1)(θ)
)2 − κ2(θ)Iφ

> (e(θ)− g(θ))
2
. (48)



36 M.Kelbert and P.Mozgunov

3.3. Proof of Theorem 2

Note that elements of matrix Fφ can be found from condition (1).
Consider a one-dimensional RV

δ = [(T − τ) − β⋆(Iφ)−1
F
φ]y,

where yT = (y1, . . . , yl) ∈ Rl is a non-random vector. It is easy to see that Eθ(δ) = 0.
Taking the weighted expectation of both sides in the equality

δ2 = yT
[

(T−τ)(T−τ)⋆−2(T−τ)β⋆(Iφ)−1
F
φ+(Fφ)⋆(Iφ)−1ββ∗(Iφ)−1

F
φ
]

y, (49)

for any y we obtain

E
φ
θ (δ

2) = yT
[

V
φ
θ (T )− (Fφ)T(Iφ)−1

F
φ
]

y.

The non-negativity of variance implies a multi-parametric version of the Bhat-
tacharyya inequality given in (21). One can easily see that in a uni-parametric
and a 1D case this inequality is equivalent to the weighted Cramér-Rao inequality.

3.4. Example 2 revised

Let us consider the random vector Z
(n)
β1,β2

= (Z
(n)
1 , Z

(n)
2 )T that has a Dirichlet distri-

bution given by (13) with parameters θ = (β1, β2)
T. Assume that one would like to

estimate the ratio τ(β1, β2) = β1/β2 and to study the lower bound of the variance of

the estimator T (Z
(n)
β1,β2

) = Z
(n)
1 /Z

(n)
2 given the point of a particular interest γ1/γ2.

The weight function φ̂(n)(p) of the form (2) with κ̂ ≡ κ(β1, β2, γ1, γ2) could be found
from the normalizing condition (1) and has the form

1

κ̂
=

Γ(n+
√
n+ 3)Γ(x1 + 1)Γ(x2 + 1)Γ(n− x1 − x2 + 1)

Γ(n+ 3)Γ(x1 + z1 + 1)Γ(x2 + z2 + 1)Γ(n+
√
n− x1 − x2 − z1 − z2 + 1)

, (50)

where x1 = β1n, x2 = β2n, z1 = γ1
√
n and z2 = γ2

√
n. Therefore, one can obtain

that

g(θ) =
x1 + z1 + 1

x2 + z2
and

e(θ) =
x1 + 1

x2
.

Computing the gradients one can obtain that

∂

∂θ
g(θ) = (g1, g2)

T and
1

κ

∂

∂θ
κ(θ) = (κ1, κ2)

T,

where

g1 =
n

x2 + z2
,

g2 = −n(x1 + z1 + 1)

(x2 + z2)2
,

κ1 = n (ψ(x1 + z1 + 1)− ψ(x1 + 1) + ψ(n− x1 − x2 + 1)

−ψ(n+
√
n− x1 − x2 − z1 − z2 + 1)

)
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and

κ2 = n (ψ(x2 + z2 + 1)− ψ(x2 + 1) + ψ(n− x1 − x2 + 1)

−ψ(n+
√
n− x1 − x2 − z1 − z2 + 1)

)

.

The weighted Fisher Information matrix takes the form

Iφ =

(

I11 I12
I12 I22

)

, (51)

where the elements of the weighted Fisher Information matrix (51) I11,I12 and I22
have the following form. For i = 1, 2,

n2Iii = ψ(1)(xi + zi + 1) + ψ(1)(n+
√
n− x1 − x2 − z1 − z2 + 1)

+ (ψ(xi + 1)− ψ(n− x1 − x2)− ψ(xi + zi + 1)

+ψ(n+
√
n− x1 − x2 − z1 − z2 + 1)

)2

and

n2I12 = ψ(1)(n+
√
n− x1 − x2 − z1 − z2 + 1)

+
∏

i=1,2

(ψ(n− x1 − x2 + 1)− ψ(xi + 1) + ψ(xi + zi + 1) (52)

−ψ(n+
√
n− x1 − x2 − z1 − z2 + 1)

)

.

Let us denote

ci =
γi
βi

− 1− γ1 − γ2
1− β1 − β2

,

t = β1γ2 − β2γ1

and

s =
(γ1 − β2γ1 − β1(1 − γ2))(β2 − β2γ1 − γ2(1− β1)))

β1β2

Inserting all the terms and applying the asymptotics of the digamma function we
can obtain that

V
φ(T (Z

(n)
β1,β2

)) ≥ β2
1(1− β1 − β2)

2C(β1, β2, γ1, γ2)

n
+O

(

1

n3/2

)

, (53)

where

C(β1, β2, γ1, γ2) =
∑

i=1,2

(

(βi + tci)

(

(β1 + β2 − 1 + s)(β−i − tci)

(1− β1 − β2)2

)

+

(

1

β1
+

1

1− β1 − β2
+ c2i

)

(βi − tc−i)
)

and c−i is a notation for the element different from ci (say, for i = 1, c−i = c2).
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3.5. Proof of Theorem 3

(a): The inequality similar to inequality (23) without assumption of the normaliza-
tion (1) is proved in [28]. The result is the direct consequence of this Theorem.

(b): The weighted generating function of RV Z
(n)
ρ with PDF f

(n)
ρ equals:

M̄
f
(n)
ρ

(t) =

∫ 1

0

φ(n)etpf (n)
ρ dp = 1F1(ρn+ γ

√
n+ 1, n+

√
n+ 2; t)

= 1 +

∞
∑

k=1

tk

k!

k−1
∏

j=0

ρn+ γ
√
n+ 1 + j

n+
√
n+ 2 + j

,

where 1F1(x, y; z) is the confluent hypergeometric function.
For large n, the expression for a weighted generating function can be written in

the following way [15, formula 12]:

M̄
f
(n)
ρ

(t) = 1 +

∞
∑

k=1

tk

k!

k−1
∏

j=0

ρn+ γ
√
n+ 1 + j

n+
√
n+ 2+ j

=

∞
∑

k=0

tk

k!

(

ρk − k(ρk − ρk−1γ)
1√
n

+
ρk−2k(ρ− 2ρ2 − γ2 + ρk − 2ργk + γ2k)

2n
+O

(

1

n3/2

))

= eρt
(

1− (ρ− γ)t
1√
n
+

2(1− ρ− γ)t+ (ρ− 2ργ + γ2)t2

2n
+O

(

1

n3/2

))

.

Thus, we have that

logM̄
f
(n)
ρ

(t) = ρt+ log

(

1− (ρ− γ)t
1√
n

+
2(1− ρ− γ)t+ (ρ− 2ργ + γ2)t2

2n
+O

(

1

n3/2

))

= ρt− (ρ− γ)t
1√
n
+

(1− ρ− γ)t+ ρt2

2 (1− ρ)

n
+ O

(

1

n3/2

)

.

The first term in (23) for PDF f
(n)
α and weight function φ(n) takes the following

form

µφ(f
(n)
α ) =

αn+ γ
√
n+ 2

n+
√
n+ 2

= α+ (γ − α)
1√
n
+

1− α− γ

n
+O

(

1

n3/2

)

.

Then

Ψ∗
fρ(µφ(f̃α)) = sup

t

[

(α−ρ)t−(α−ρ) t√
n
+
ρ−α
n

t− (1−ρ)ρ
2n

t2+O

(

1

n3/2

)]

. (54)
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Finding the supremum of the expression above, we obtain

τ =
(α− ρ) (n− 1−√

n)

(1− α)α
+O

(

1

n1/2

)

.

So,

Ψ∗
fρ(µφ(f̃α)) =

(α− ρ)2 (1 +
√
n− n)

2

2(1− α)αn
+O (1) .

Denote ǫ = α− ρ. When ǫ→ 0, we obtain

1

ǫ2
Ψ∗

fρ(µφ(f̃α)) =
n

2α(1− α)
−

√
n

α(1 − α)
+O (1) .

Thus,

∃ lim
ǫ→0

1

ǫ2
Kφ(f (n)

α ||f (n)
ρ ) =

1

2
I(f̃α) ≥

n

2α(1− α)
−

√
n

α(1 − α)
+O (1)

which completes the proof of Theorem 3.
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