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Abstract. We introduce some algebraic structures such as singularity, commutators and
central extension in modified categories of interest. Additionally, we introduce the cat1-
objects and internal categories with their connection to crossed modules in these categories,
which gives rise to unification of many notions about (pre)crossed modules in various alge-
bras of categories.
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1. Introduction

Categories of interest were introduced in order to study properties of different
algebraic categories and different algebras simultaneously. The idea comes from
P.G. Higgins [25] and the definition is due to M.Barr and G.Orzech [39]. Many
categories of algebraic structures are main examples of these categories (see [13, 17,
39, 33, 34, 35]). The categories of crossed modules and precrossed modules in the
category of groups, respectively, are equivalent to categories of interest as well, in
the sense of [11, 14]. Nevertheless, the cat1-Lie (associative, Leibniz, etc.) alge-
bras are not categories of interest. Consequently, in [5], Y. Boyacı et al. introduce
and study a new type of category of interest; namely, a category which satisfies
all axioms of a category of groups with operations stated in [40], except the one,
which is replaced by a new axiom; this category also satisfies two additional axioms
introduced in [39] for categories of interest. They called this category ”Modified
Category of Interest”, which will be denoted by MCI from now on. The exam-
ples are mainly those categories, which are equivalent to the categories of crossed
modules and precrossed modules in the categories of Lie algebras, Leibniz alge-
bras, associative and associative commutative algebras. For more examples, see
[3, 6, 7, 9, 12, 16, 18, 21, 22, 31, 36, 40].

Crossed modules were introduced by J.H.C Whitehead in [41] as a model of
homotopy 3-types and used to classify higher dimensional cohomology groups in
[42]. Since then, the whole property adapted to many algebras. The notions of
crossed modules were defined on various algebras such as (associative) commutative
algebras, Lie algebras, Leibniz algebras, Lie-Rinehart algebras in [3, 6, 7, 9, 12, 16,
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104 E. Ö. Uslu, S. Çetin and A. F.Arslan

18, 21, 22, 31, 36, 40]. The definition of crossed modules in modified categories of
interest unifies all these definitions. As a different model of homotopy types, Loday
defined cat1-groups in [32]. The categories of cat1-groups and crossed modules are
naturally equivalent and this result was adapted to many algebras as well. The
notions of cat1-algebras were introduced in [23].

In this paper our main purpose is to unify the notions of center, singularity,
commutator and central extensions in various categories of (pre)crossed modules
(see [1, 5, 9, 38]). For this, first we introduce the notions of center, singularity and
central extensions in modified categories of interest. Inspired by the equivalence
between the categories of (pre)cat1-groups and (pre)crossed modules, we introduce
the notion of (pre)cat1-objects and their connection to crossed modules in modified
categories of interest. Then applying those definitions to (pre)cat1-objects, we get
unification of many notions related to (pre)crossed modules in different types of
categories. Additionally, we show that our definitions coincide with those given in
[24, 28, 26].

The paper is organized as follows: In Section 2, we recall the notion of MCI
and some related structures with basic properties. In Section 3, we introduce the
notions of a (pre)cat1-object and the internal category in an arbitrary modified
category of interest C with their connection to crossed modules in C. Then we
introduce singularity, commutators and central extensions in MCI. In Section 4, as
an application of Section 3 we get a (pre)crossed module version of the introduced
notions. Finally, in the last section, we conclude by some generalizations to internal
category objects and crossed complexes which were indicated by referee in her/his
report.

2. Preliminaries

We will recall the notions of MCI and the main constructions from [5], which are
modified versions of those given in [14, 21, 39].

Let C be a category of groups a set of operations Ω and with a set of identities
E, such that E includes group identities and the following conditions hold. If Ωi is
the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(b) group operations (written additively : 0,−,+) are elements of Ω0, Ω1 and Ω2,
respectively. Let Ω′

2 = Ω2 \ {+}, Ω′

1 = Ω1 \ {−}. Assume that if ∗ ∈ Ω2, then
Ω′

2 contains ∗◦ defined by x ∗◦ y = y ∗ x and assume Ω0 = {0};

(c) for each ∗ ∈ Ω′

2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for each ω ∈ Ω′

1 and ∗ ∈ Ω′

2, E includes the identities ω(x+ y) = ω(x) + ω(y)
and either the identity ω(x∗y) = ω(x)∗ω(y) or the identity ω(x∗y) = ω(x)∗y.

Let C be an object of C and x1, x2, x3 ∈ C:

Axiom 1. x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′
2.



On crossed modules in modified categories of interest 105

Axiom 2. For each ordered pair (∗, ∗) ∈ Ω′
2 × Ω′

2 there is a word W such that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1,

(x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′
2.

Definition 1 (see [5]). A category of groups with operations C satisfying conditions
(a)− (d), Axiom 1 and Axiom 2, is called a modified category of interest.

The difference of this definition from the original one of the category of interest
is the identity ω(x) ∗ ω(y) = ω(x ∗ y), which is ω(x) ∗ y = ω(x ∗ y) in the definition
of the category of interest.

Example 1. The categories Cat1-Ass, Cat1-Lie, Cat1-Leibniz, PreCat1-
Ass, PreCat1-Lie and PreCat1-Leibniz are modified categories of interest, which
are not categories of interest. Also, the category of commutative Von Neumann reg-
ular rings is isomorphic to the category of commutative rings with a unary operation
( )∗ satisfying two axioms defined in [4], which is a modified category of interest.

Notation 1. From now on, C will denote an arbitrary modified category of interest.

Let B ∈ C. A subobject of B is called an ideal if it is the kernel of some
morphism. Then A is an ideal of B if and only if A is a normal subgroup of B and
a ∗ b ∈ A, for all a ∈ A, b ∈ B and ∗ ∈ Ω′

2.
For A,B ∈ C we say that we have a set of actions of B on A whenever there is

a map f∗ : A × B −→ A, for each ∗ ∈ Ω2. A split extension of B by A induces an
action of B on A corresponding to the operations in C. For a given split extension

0 // A
i // E

p
// B // 0 ,

we have

b · a = s(b) + a− s(b),

b ∗ a = s(b) ∗ a,

for all b ∈ B, a ∈ A and ∗ ∈ Ω2
′. Actions defined by previous equations are called

derived actions of B on A.
Given an action of B on A, a semi-direct product A ⋊ B is a universal algebra,

whose underlying set is A×B and the operations are defined by

ω(a, b) = (ω (a) , ω (b)),
(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),
(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b),

for all a, a′ ∈ A, b, b′ ∈ B. See [5], for details.

Example 2. A dialgebra (or diassociative algebra) over a field K introduced in [34]
is a K-vector space defined with two K-linear maps:

⊣ , ⊢ : A⊗A → A,
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such that

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z),

for all x, y, z ∈ A.
Let A and B be two dialgebras. A dialgebra action of B on A is defined with four

bilinear maps:

⊲⊢ , ⊲⊣ : B ×A → A

⊳⊢ , ⊳⊣ : A×B → A

satisfying the required 30 axioms. (For details about these axioms, see [7])
The semi-direct product A⋊B is the dialgebra whose underlying set is A×B with

usual scalar multiplication, component-wise addition and binary operations defined
by

(a, b) ⊣ (a′, b′) = (a ⊣ a′ + b ⊲⊣ a′ + a ⊳⊣ b′, b ⊣ b′),

(a, b) ⊢ (a′, b′) = (a ⊢ a′ + b ⊲⊢ a′ + a ⊳⊢ b′, b ⊢ b′),

for a, a′ ∈ A and b, b′ ∈ B.

Theorem 2 (see [5]). An action of B on A is a derived action if and only if A⋊B
is an object of C.

Proposition 1 (see [5]). A set of actions of B on A in CG is a set of derived actions
if and only if it satisfies the following conditions:

1. 0 · a = a,

2. b · (a1 + a2) = b · a1 + b · a2,

3. (b1 + b2) · a = b1 · (b2 · a),

4. b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,

5. (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,

6. (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,

7. (b1 ∗ b2) · (a ∗ b) = a ∗ b,

8. a1 ∗ (b · a2) = a1 ∗ a2,

9. b ∗ (b1 · a) = b ∗ a,

10. ω(b · a) = ω(b) · ω(a),



On crossed modules in modified categories of interest 107

11. ω(a ∗ b) = ω(a) ∗ ω(b),

12. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′

1, ∗ ∈ Ω2
′, b, b1, b2 ∈ B, a, a1, a2 ∈ A and for x, y, z, t ∈ A ∪ B

whenever each side of 12 has sense.

Definition 2 (see [5]). Let A ∈ C. The center of A is

Z(A) = {z ∈ A | a+ z = z + a, a+ ω(z) = ω(z) + a, a ∗ z = 0, a ∗ ω (z) = 0,
for all a ∈ A, ω ∈ Ω1 and ∗ ∈ Ω2

′}.

On the other hand, if A is an ideal of B, then the centralizer of A in B is the ideal

Z(B,A) = {b ∈ B | a+ b = b+ a, a+ ω(b) = ω(b) + a, a ∗ b = 0, a ∗ ω (b) = 0,
for all a ∈ A, ω ∈ Ω1 and ∗ ∈ Ω2

′}.

A precrossed module in C is a triple (C1, C0, ∂), where C0, C1 ∈ C, C0 has a
derived action on C1 and ∂ : C1 −→ C0 is a morphism in C satisfying

a) ∂(c0 · c1) = c0 + ∂(c1)− c0,

b) ∂(c0 ∗ c1) = c0 ∗ ∂(c1),

for all c0 ∈ C0, c1 ∈ C1, and ∗ ∈ Ω2
′. In addition, if

c) ∂(c1) · c
′

1 = c1 + c′1 − c1,

d) ∂(c1) ∗ c
′

1 = c1 ∗ c
′

1,

for all c1, c
′

1 ∈ C1, and ∗ ∈ Ω2
′, then the triple (C1, C0, ∂) is called a crossed module

in C.

Definition 3. A morphism between two (pre)crossed modules (C1, C0, ∂) −→
(C′

1, C
′

0, ∂
′) is a pair (µ1, µ0) of morphisms µ0 : C0 −→ C′

0, µ1 : C1 −→ C′

1, such
that

a) µ0∂ = ∂′µ1,

b) µ1(c0 · c1) = µ0(c0) · µ1(c1),

c) µ1(c0 ∗ c1) = µ0(c0) ∗ µ1(c1),

for all c0 ∈ C0, c1 ∈ C1 and ∗ ∈ Ω2
′.

Consequently, we have categories PXMod(C) of precrossed modules and
XMod(C) of crossed modules.
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Example 3. A crossed module in the category of dialgebras is a homomorphism
∂ : D1 −→ D0 with an action of D0 on D1 such that

1) ∂(d0 ⊲⊣ d1) = d0 ⊣ ∂(d1),

∂(d0 ⊲⊢ d1) = d0 ⊢ ∂(d1),

∂(d1 ⊳⊣ d0) = ∂(d1) ⊣ d0,

∂(d1 ⊳⊢ d0) = ∂(d1) ⊢ d0,

2) ∂(d1) ⊲⊣ d′1 = d1 ⊣ d′1 = d1 ⊳⊣ ∂(d′1),

∂(d1) ⊲⊢ d′1 = d1 ⊢ d′1 = d1 ⊳⊢ ∂(d′1),

for all d1, d
′

1 ∈ D1, d0 ∈ D0. The definition is equivalent to the definition given
in [7].

Example 4. Let ∂ : D1 −→ D0 and ∂′ : D′

1 −→ D′

0 be crossed modules of dialgebras.
The pair (µ1, µ0) consists of dialgebra homomorphisms µ1 : D1 −→ D′

1, µ0 : D0 −→
D′

0 which satisfies ∂′µ1 = µ0∂ and

µ1(d0 ⊲⊢ d1) = µ0(d0) ⊲⊢ µ1(d1),

µ1(d1 ⊳⊣ d0) = µ1(d1) ⊳⊣ µ0(d0),

µ1(d0 ⊲⊣ d1) = µ0(d0) ⊲⊣ µ1(d1),

µ1(d1 ⊳⊢ d0) = µ1(d1) ⊳⊢ µ0(d0),

for all d1 ∈ D1 and d0 ∈ D0 is called a morphism between ∂ : D1 −→ D0 and
∂′ : D′

1 −→ D′

0 .

Definition 4. Let (C1, C0, µ) be a (pre)crossed module in C. A (pre)crossed module
(C′

1, C
′

0, µ
′) is a (pre)crossed submodule of (C1, C0, µ) if C′

1 and C′

0 are subobjects
of C1, C0, respectively, µ′ = µ|C′

1
and the action of C′

0 on C′
1 is induced by the

action of C0 on C1. Additionally, if C′

0 and C′

1 are ideals of C0 and C1, respectively,
c0 ∗ c

′

1 ∈ C′

1, c
′

0 ∗ c1 ∈ C′

1, c0 · c
′

1 ∈ C′

1, c
′

0 · c1 − c1 ∈ C′

1, for all c1 ∈ C1, c0 ∈ C0,
c′1 ∈ C′

1, c
′

0 ∈ C′

0, then (C′

1, C
′

0, µ
′) is called a crossed ideal of (C1, C0, µ).

Equivalently, (C′

1, C
′

0, µ
′) is a crossed ideal of (C1, C0, µ) if and only if (C′

1, C
′

0, µ
′) is

the kernel of some morphism.

3. Some algebraic structures in MCI

In this section, first we introduce the notion of (pre)cat1-objects in a modified
category of interest C and construct the corresponding category (Pre)Cat1(C) of
(pre)cat1-objects with natural equivalence with the category (P)Xmod(C) of (pre)
crossed modules in C. Then we introduce the notions of singularity, commutator
and central extensions in C. We also show that the notion of central extension
introduced in Definition 9 coincides with the definition of centrality, in terms of [27].
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3.1. (Pre)Cat1- objects in MCI

Definition 5. A precat1-object in C is a triple (C, ω0, ω1), where C ∈ C and ω0, ω1 :
C −→ C, are morphisms in C which satisfy

1) ω0ω1 = ω1, ω1ω0 = ω0.

In addition, if

2) x ∗ y = 0, x+ y − x− y = 0,

for all ∗ ∈ Ω2
′ and x ∈ kerω0, y ∈ kerω1, then the triple (C, ω0, ω1) is called a

cat1-object in C.

Consider the category, whose objects are cat1-objects and morphisms are C-
morphisms compatible with the maps ω0 and ω1. We will denote this category by
Cat1(C).
We also have the category PreCat1(C) of precat1-objects, in the same manner.

Example 5. Let C be the category of Leibniz algebras. Then a cat1-Leibniz al-
gebra is a triple (L, ω0, ω1), consisting of a Leibniz algebra L and Leibniz algebra
homomorphisms ω0, ω1 : L −→ L such that

1) ω0ω1 = ω1, ω1ω0 = ω0,

2) [x, y] = 0 = [y, x],

for all x ∈ kerω0, y ∈ kerω1.

Example 6. A cat1-dialgebra is a triple (D,ω0, ω1) consisting of a dialgebra D and
homomorphisms ω0, ω1 : D −→ D such that

1) ω0ω1 = ω1, ω1ω0 = ω0,

2) x ⊣ y = 0 = y ⊣ x, x ⊢ y = 0 = y ⊢ x,

for all x ∈ kerω0, y ∈ kerω1.

Proposition 2. The categories XMod(C) and Cat1(C) are canonically equivalent.

Proof. Let (C1, C0, ∂) be a crossed module in C. Consider the corresponding semi-
direct product C1⋊C0 induced from the action of C0 on C1. By Theorem 2, C1⋊C0 ∈
C. It is obvious that maps ω0 : C1 ⋊ C0 −→ C1 ⋊ C0, ω1 : C1 ⋊ C0 −→ C1 ⋊ C0

defined by ω0(c1, c0) = (0, c0), ω1(c1, c0) = (0, ∂(c1) + c0), for all (c1, c0) ∈ C1 × C0

are C-morphisms. On the other hand, since

ω0ω1(c1, c0) = ω0(0, ∂(c1) + c0) = (0, ∂(c1) + c0) = ω1(c1, c0)

and

ω1ω0(c1, c0) = ω1(0, c0) = (0, c0) = ω0(c1, c0),
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for all (c1, c0) ∈ C1 × C0, we have ω0ω1 = ω1, ω1ω0 = ω0. Let (c1, c0) ∈ kerω0 and
(c1, c0) ∈ kerω1. Then we have c0 = 0 and ∂(c1) + c0 = 0. Consequently,

(c1, c0) + (c1, c0) = (c1 + c0.c1, c0 + c0)

= (c1 + c1, c0)

= (c1 − c1 + c1 + c1, c0)

= (c1 + (−∂(c1)) · c1, c0)

= (c1 + c0 · c1, c0 + c0)

= (c1, c0) + (c1, c0)

and

(c1, c0) ∗ (c1, c0) = (c1 ∗ c1 + c1 ∗ c0 + c0 ∗ c1, c0 ∗ c0)

= (c1 ∗ c1 + c1 ∗ c0 + 0 ∗ c1, 0 ∗ c0)

= (c1 ∗ (∂(c1)) + c1 ∗ c0, 0)

= (c1 ∗ (∂(c1) + c0), 0)

= (c1 ∗ 0, 0)

= (0, 0),

as required. So we have the functor C : XMod(C) −→ Cat1(C).

Conversely, given a cat1-object (C, ω0, ω1) in C. Consider the morphism ∂ :
C1 −→ C0, where C1 = kerω0, C0 = Imω0 and ∂ = ω1 |kerω0

. Define the dot
action of C0 on C1 by c0 · c1 = c0 + c1 − c0 and star actions by c0 ∗ c1, for c0 ∈ C0,
c1 ∈ C1, ∗ ∈ Ω′

2. We claim that (C1, C0, ∂) is a crossed module in C with these
actions.

By a direct calculation we have ω0(c1) = 0 and there exist c ∈ C such that
ω0(c) = c0, for all c0 ∈ C0, c1 ∈ C1.
i) For all c0 ∈ C0, c1 ∈ C1, we have

∂(c0.c1) = ω1(c0 + c1 − c0)

= ω1(ω0(c) + c1 − ω0(c))

= ω1ω0(c) + ω1(c1)− ω1ω0(c)

= ω0(c) + ω1(c1)− ω0(c)

= c0 + ∂(c1)− c0.

ii) For all c0 ∈ C0, c1 ∈ C1, we have

∂(c0 ∗ c1) = ω1(ω0(c) ∗ c1)

= ω1ω0(c) ∗ ω1(c1)

= ω0(c) ∗ ω1(c1)

= c0 ∗ ∂(c1).
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iii) Since ω1ω1 = ω1ω0ω1 = ω0ω1 = ω1, we have ω1(c1 − ∂(c1)) = 0, which means
(c1 − ∂(c1)) ∈ kerω1 and (c1 − ∂(c1)) + c′1 − (c1 − ∂(c1)) − c′1 = 0, for all c′1 ∈ C1.
Then

∂(c1).c
′

1 = ∂(c1) + c′1 − ∂(c1)

= c1 − c1 + ∂(c1) + c′1 − ∂(c1)

= c1 + c′1 − c1,

for all c1, c
′

1 ∈ C1, as required.

iv) By a calculation similar to (iii) we have ∂(c1 ∗ c
′

1) = ∂(c1) ∗ c
′

1 = c1 ∗ c
′

1, for all
c1, c

′

1 ∈ C1, ∗ ∈ Ω′

2.
Consequently, we have the functor X : Cat1(C) −→ XMod(C). The functors C

and X give rise to a natural equivalence between XMod(C) and Cat1(C).
The correspondence and functoriality for the morphisms are straightforward.

Similarly, we have the natural equivalence betweenPrecat1(C) andPXMod(C).

3.2. Internal category in MCI

As a more general setting, in this subsection we recall the definition of an internal
category in a modified category of interest. Then we give the relation between the
category of internal categories and that of cat1-objects and crossed modules in C

Let C be a category with finite limits. We recall the definition of an internal
category [30]
An internal category C in C consists of:

(a) a pair of objects C0, C1;

(b) four morphisms C1
d0−→ C0, C1

d1−→ C0, C0
i

−→ C1, and C1 ×C0
C1

m
−→ C1,

such that d0i = d1i = 1C0
, d0m = d0π2, d1m = d1π1, m(1 ×m) = m(m× 1) :

C1 ×C0
C1 ×C0

C1 → C1, and m(1 × i) = m(i × 1) = 1C1
. Here and below,

C1 ×C0
C1 denotes the pullback

C1 ×C0
C1

π1

��

π2
// C1

d1

��

C1
// C1

Let C = (C0, C1, d0, d1, i,m) and C′ = (C′
0, C

′
1, d

′
0, d

′
1, i

′,m′) be internal cate-
gories and F = (F0, F1) : C −→ C′ and the diagrams

d0, d1 : C1

F1

��

//

// C0

i
uu

F0

��

d0, d1 : C′
1

//

// C
′
0

i′

tt

C1 ×C0
C1

(F1,F1)

��

m // C1

F1

��

C′

1 ×C′

0
C′

1
m′

// C′

1

(1)
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are commutative.

Denote by CAT (C) the category of internal categories and functors in C.

Remark 1. Let C be a modified category of interest and (C0, C1, d0, d1, i,m) an
internal category in C. We have the split exact extension

kerd0 // C1

d0
// C0

i
oo ,

from which we get the actions of C0 on kerd0 defined by

r · c = i(r) + c− i(r),

r ∗ c = (i(r)) ∗ c,

c ∗ r = c ∗ (i(r)),

for all r ∈ C0, c ∈ kerd0. Consequently, we have the semi-direct product kerd0⋊C0,
which is also an object in C. Additionally, ∂ = d1|kerd0

: kerd0 → C0 satisfies

(i) ∂(r · c) = r + ∂(c)− r;

(ii) ∂(c) · c′ = c+ c′ − c;

(iii) ∂(c) ∗ r = c ∗ r;

(iv) ∂(c ∗ c′) = ∂(c) ∗ c′

for all r ∈ C0, c, c
′ ∈ kerd0 and ∗ ∈ Ω′

2. Consequently, (kerd0, C0, ∂) is a crossed
module in C.

Inverse formulas are left to the reader.

Corollary 1. Let CAT (C) be the category of internal categories in C. Then cate-
gories CAT (C), Xmod(C) and Cat1(C) are equivalent.

Proof. Follows from Remark 1 and Proposition 2.

3.3. Singularity, commutators and central extensions

In this section, we introduce the notions of singularity, commutators and central
extensions in MCI.

3.3.1. Singularity and commutators

Definition 6. An object C in C, which coincides with its center, is called singular.

Example 7. Let A be a dialgebra. Then the center Z(A) of A is the set

{z ∈ A | a ⊣ z = 0 = z ⊣ a, a ⊢ z = 0 = z ⊢ a, for all a ∈ A}.

Consequently, A is singular if a ⊣ a′ = 0 = a ⊢ a′, for all a, a′ ∈ A .
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Example 8. Consider a cat1-group (G,ω0, ω1). Then (G,ω0, ω1) is singular if g +
g′ = g′ + g, g + ωi(g

′) = ωi(g
′) + g, for all g, g′ ∈ G, i = 0, 1.

Definition 7. Let A ∈ C and S ⊆ A. The smallest ideal containing S is called the
ideal generated by S and denoted by < S >.

Definition 8. Let A ∈ C and B,C be ideals of A. Then the ideal generated by the
set:

{b+ c− b− c, b ∗ c, b+ ω(c)− b− ω(c), c+ ω(b)− c− ω(b), b ∗ ω(c), c ∗ ω(b) |

b ∈ B, c ∈ C}

will be called the commutator object of B and C.

Let A ∈ C. The ideal generated by the set:

{x+ y − x− y, x+ ω(y)− x− ω(y), x ∗ y, x ∗ ω(y) | x, y ∈ A, ∗ ∈ Ω′

2}

is called the commutator of A and denoted by [A,A]. Also, A/[A,A] will be called
the singularization of A.

Example 9. Let D be a dialgebra. The commutator of D is the ideal generated by
the set {a ⊣ b, b ⊢ a | a, b ∈ D}. Additionally, the singularization of D is

D/ 〈a ⊣ b, b ⊢ a; a, b ∈ D〉 .

Proposition 3. An object C ∈ C is singular if and only if [C,C] = 0.

Proof. Direct checking.

Remark 2. The definition of commutators in C coincides with Huq’s commutator
[26] and the relative commutator (see [24]) with the Birkhoff subcategory Ab(C) of
singular objects in C.

Theorem 3. For any object A ∈ C, the commutator ideal [A,A] is the unique
smallest ideal I for which A/I is singular.

Proof. Direct checking.

Denote the full subcategory consists of all singular objects in C by Ab(C). We
have the functorSing : C −→ Ab(C), which takes any object C to its singularization
C/[C,C]. Additionally, we have the functor inc. : Ab(C) −→ C, which is the
inclusion of the Birkhoff variety Ab(C) in C. Consequently we have the adjunction
“Sing ⊣ inc.” , which can be diagrammed by

C

Sing
//
Ab(C)

inc.
oo .
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3.3.2. Central extensions

Definition 9. Let C ∈ C and A ∈ Ab(C). A central extension of C by A is an
extension

E : A // // B // // C

such that A is a subobject of Z(B).

Janelidze and Kelly [27] introduced the central extension in an exact category
relative to an “admissible” subcategory. From [29], any modified category of interest
C is Barr exact Mal’tsev category and so any Birkhoff subcategory of C is admissible,
which gives rise to consideration the categorical theory of central extensions in C.

An extension f : A −→ B is called trivial in terms of [27] if the diagram

A

f

��

// Sing(A)

Sing(f)

��

B // Sing(B)

is a pullback, where the horizontal morphisms are given by the unit of the adjunction.
An extension is called central in terms of [27] if there exists an extension ρ : E −→ B
of B such that in the pullback

E ×B A

π1

��

π2 // A

f

��

E
ρ

// B

the morphism π1 is a trivial extension.

Proposition 4. Definition 9 coincides with the definition of centrality given in [27].
(Here, we consider the category C and the admissible subcategory Ab(C).

Proof. Let
A // // B // // C

be an extension in C with A ⊂ Z(B). Consider the pullback diagram

B ×C B

π1

��

π2 // B

��

B // C

By a direct calculation, the diagram

B ×C B

π1

��

// Sing(B ×C B)

Sing(π1)

��

C // Sing(C)
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is a pullback, that is, there exists an isomorphism between B×CB and the fiber
product

C×Sing(C)Sing(B×CB)

defined by (b, b′) 7−→ (b, (b, b′)). So the morphism π1 : B ×C B −→ C is a trivial
extension from which we get the centrality in terms of [27].

Conversely, given an extension

A // // B
ϑB

// // C

in C, which is central in terms of [27]. Then there exists an extension E
ϑE // // C

such that in the pullback

E ×C B

π1

��

π2 // B

��

E // C

the morphism π1 : E ×C B −→ C is a trivial extension; in other words, the diagram

E ×C B

π1

��

π2 // Sing(E ×C B)

Sing(π1)

��

E // Sing(E)

is a pullback. The kernel of π1 is the injection A // // E ×C B and the kernel

of Sing(π1) is the injection σ : A −→ Sing(E ×
C
B) defined by σ(a) = (0, a), where

(0, a) denotes the related coset. We want to show that A ⊂ Z(B). For this, we
need to show b + a = a + b, b + ω(a) = ω(a) + b, b ∗ a = 0, b ∗ ω(a) = 0 for
all a ∈ A, b ∈ B,ω ∈ Ω1, ∗ ∈ Ω′

2. For all b ∈ B there exists e ∈ E such that
ϕB(b) = ϕE(e). Since

σ(b + a− b− a) = (0, b+ a− b− a)

= (0, b) + (e, a)− (0, b)− (e, a)

= (0, b)− (0, b) + (e, a)− (e, a)

= (0, 0),

we have b + a − b − a = 0. By similar calculations we get that A ⊆ Z(B), as
required.

4. Applications to (pre)crossed modules in MCI

In this section, we introduce the notions of center, singularity and central exten-
sion of (pre)crossed modules in modified categories of interest. For this, we were
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inspired by the equivalence of the categories (Pre)Cat1(C) of (pre)cat1-objects and
(P)Xmod(C) of (pre)crossed modules. In the case of precrossed modules of groups
(Lie algebras), the notions give the definitions of centers, singularity and central
extensions [1, 18, 19, 37, 38].

4.1. Center and singularity of precrossed modules in MCI

Let (C1, C0, ∂) a precrossed module and (C1 ⋊ C0, ω0, ω1) be the corresponding
precat1-object. The center Z(C1 ⋊ C0, ω0, ω1) of (C1 ⋊ C0, ω0, ω1) is the ideal

Z(C1 ⋊ C0, ω0, ω1)

= {(z1, z0) ∈ C1 ⋊ C0 | z1 + z0 · c1 = c1 + c0 · z1, z1 + c1 = c1 + z1,

c1 = z0 · c1, c1 = ∂(z1) · c1, c0 + ∂(z1) = ∂(z1) + c0,

(c1 ∗ z0) + (c0 ∗ z1) + (c1 ∗ z0) = 0, (c1 ∗ z1) = 0, (c1 ∗ z0) = 0,

(c1 ∗ ∂(z1) = 0, ∂(c0 ∗ z1) = 0, for all (c1, c0) ∈ C1 ⋊ C0, ∗ ∈ Ω2
′}.

The image X (Z(C1⋊C0, ω0, ω1)) is the precrossed ideal (Z1, Z0, ∂ | ) of (C1, C0, ∂),
where

Z1 = {z1 ∈ C1 | z1 + c1 = c1 + z1, c1 · (∂(z1)) = c1,

c0 + ∂(z1) = ∂(z1) + c0, z1 = c0 · z1, c1 ∗ z1 = 0,

c1 ∗ (∂(z1)) = 0, c0 ∗ z1 = 0, for all c1 ∈ C1, c0 ∈ C0, ∗ ∈ Ω2
′},

and

Z0 = {z0 ∈ C0 | z0 · c1 = c1, z0 + c0 = c0 + z0,

c1 ∗ z0 = 0, c0 ∗ z0 = 0, for all c0 ∈ C0, c1 ∈ C1, ∗ ∈ Ω2
′}.

If (C1, C0, ∂) is a crossed module, then

Z1 = {z1 ∈ C1 | z1 + c1 = c1 + z1, c0 + ∂(z1) = ∂(z1) + c0, c0 · z1 = z1,

c1 ∗ z1 = 0, c0 ∗ z1 = 0, for all c0 ∈ C0, c1 ∈ C1, ∗ ∈ Ω2
′},

Z0 = {z0 ∈ C0|z0 · c1 = c1, z0 + c0 = c0 + z0, c1 ∗ z0 = 0,

c0 ∗ z0 = 0, for all c0 ∈ C0, c1 ∈ C1, ∗ ∈ Ω2
′}.

Definition 10. (Z1, Z0, ∂) will be called the center of (C1, C0, ∂).

We will denote the center of (C1, C0, ∂) by Z(C1, C0, ∂).
The notions of commuting morphisms and central objects were defined by Huq

[26] in the categories with zero objects, products and coproducts, whose morphisms
have images. From these properties following the existence of injections Γi : Bi −→
B1 ×B2, i = 1, 2 in the direct product in such a category, we have the following.

Definition 11 (see [26]). Two coterminal morphisms β1 : B1 −→ A and β2 : B2 −→
A are said to commute if there exists a morphism

β1 ◦ β2 : B1 ×B2 −→ A
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making the diagram

B1

β1

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋

Γ1
// B1 ×B2

β1◦β2

��

B2
Γ2

oo

β2

{{①①
①①
①①
①①
①①
①①
①①
①①

A

commutative, where Γi, i = 1, 2 denotes the injection of the direct product. In
particular, a morphism β : B −→ A is said to be central if the identity morphism on
A commutes with β, i.e., if it makes the diagram

A

1A

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉

// A×B

��

Boo

β

}}③③
③③
③③
③③
③③
③③
③③
③

A

commutative. Additionally, if we have a monomorphism β : B −→ A, then it is said
that B is a central subobject of A.

Definition 12 (see [26]). The center of an object is the maximal central subobject
relative to the order relation that exists on the set of monomorphisms.

Proposition 5. Let (C1, C0, ∂) be a crossed module. Then Z(C1, C0, ∂|) is the
maximal central subobject of (C1, C0, ∂).

Proof. Consider the diagram

(C1, C0, ∂)

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

// (C1 × Z1, C0 × Z0, ∂ × ∂ | )

(α1,α0)

��

Z(C1, C0, ∂|)oo

(β1,β0)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

(C1, C0, ∂)

Define α1 : C1×Z1 −→ C1, α0 : C0×Z0 −→ C0 by α1(c1, z1) = c1+z1, α0(c0, z0) =
c0+z0, respectively, (β1, β0) as an inclusion and the others in a usual way. Then the
diagram is commutative from which we get that Z(C1, C0, ∂|) is a central subobject.

For any central object (H1, H0, ∂|) of (C1, C0, ∂). Then there exist a monomor-
phism (µ1, µ0) : (H1, H0, ∂|) −→ (C1, C0, ∂) and a homomorphism (σ1, σ0) : (C1 ×
H1, C0 ×H0, ∂ × ∂ | ) −→ (C1, C0, ∂), which makes a diagram
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(C1, C0, ∂)

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

// (C1 ×H1, C0 ×H0, ∂ × ∂ | )

(σ1,σ0)

��

(H1, H0, ∂|)oo

(µ1,µ0)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

(C1, C0, ∂)

commutative. By direct checking we have (µ1, µ0)(H1, H0, ∂|) ⊆ Z(C1, C0, ∂|), which
means that Z(C1, C0, ∂|) is the maximal central subobject of (C1, C0, ∂), as required.

Corollary 2. Definition 10 is equivalent to the definition in terms of [26].

Proof. Follows from Definitions 12 and Proposition 5.

Definition 13. A singular (pre)crossed module in C is the crossed module coinciding
with its center.

4.2. The commutator of a (pre)crossed module in MCI

In this subsection, we introduce the notion of commutator of a precrossed module
in C modules which recovers Huq’s commutator [26] and relative commutator [24]
as well.
Let (C1, C0, ∂) be a precrossed module. The commutator of the corresponding
precat1-object (C1 ⋊ C0, ω0, ω1) is the ideal [(C1 ⋊ C0, ω0, ω1), (C1 ⋊ C0, ω0, ω1)]
generated by the set

{(x1, x0) + (y1, y0)− (x1, x0)− (y1, y0), (x1, x0) + (0, y0)− (x1, x0)− (0, y0),

(x1, x0) + (0, ∂(y1) + y0)− (x1, x0)− (0, ∂(y1) + y0), (x1, x0) ∗ (y1, y0),

(x1, x0) ∗ (0, y0), (x1, x0) ∗ (0, ∂(y1) + y0) | (x1, x0), (y1, y0) ∈ C1 ⋊ C0 and ∗ ∈ Ω2
′}.

The image X([(C1 ⋊ C0, ω0, ω1), (C1 ⋊ C0, ω0, ω1)]) is the object (K1,K0, ∂|),
where K1 and K0 are the ideals generated by the sets

{x0 · x1 − x1, x1 + y1 − x1 − y1, x1 ∗ y1, x0 ∗ x1 | x0 ∈ C0, x1, y1 ∈ C1}

and
{x0 + y0 − x0 − y0, x0 ∗ y0 | x0, y0 ∈ C0},

respectively.

Definition 14. Let (C1, C0, ∂) be a precrossed module. Then (K1,K0, ∂|) is called
the commutator subcrossed module of (C1, C0, ∂).

If (C1, C0, ∂) is a crossed module, then K1 is the set generated by the set

{x0 · x1 − x1, x0 ∗ x1 | x0 ∈ C0, x1 ∈ C1}.
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4.3. Central extensions of (pre)crossed modules in MCI

Now, we introduce the central extensions of (pre)crossed modules in C. Similarly to
Proposition 4, the definition coincides with the notion of centrality in the terms of
[27].

Definition 15. Let (C1, C0, ∂C) be a (pre)crossed module and (A1, A0, ∂A) a sin-
gular object in (P)Xmod(C). A central extension of (C1, C0, ∂C) by (A1, A0, ∂A) is
an extension

(A1, A0, ∂A) // // (B1, B0, ∂B) // // (C1, C0, ∂C)

such that (A1, A0, ∂A) is a crossed ideal of Z(B1, B0, ∂B).

As a consequence, one can construct the classification of central extensions of
(pre)crossed modules. See [1, 6, 8, 9, 20, 37, 38] for various cases.

5. Conclusion

Internal category objects are nowadays (for example, in the context of application
of homotopical methods) much more widely known objects and intuitively easier
received by practical mathematicians. By using the correspondence between cat1-
objects and internal category objects, given in subsection 3.2, one can obtain the
notions of center, singularity commutator and central extensions of internal category
objects. On the other hand, the crossed modules are just the lowest case of crossed
complexes; it has been considered to extend the main constructions in this paper
to crossed complexes, as a generalization. For this, one needs an equivalence of the
category of crossed complexes with a (modified) category of interest.
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