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Abstract. In this paper, we use Schauder and Banach fixed point theorems to study the
existence, uniqueness and stability of periodic solutions of a class of iterative differential
equations

() =Y Y Ca®)™ () +G(1),

where 2™ (t) denotes the mth iterate of z(t) for m =1,2,... k..
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1. Introduction

A delay differential equation of the form
a'(t) = f(t,x(t), 2t — 1a(1)), ..., w(t — (1))

has been discussed in [1] and [7]. In particular, the delay functions 7;(2),j =
0,1,...,k that not only depend on an unknown function, but also state, 7;(z, z(z)),
j = 0,1,...,k, have been much studied in the literatures. In [4], Cooke points
out that it is highly desirable to establish the existence and stability properties of
periodic solutions for equations of the form

2/ (t) + ax(t — h(t,z(t)) = F(t),

in which lag h(¢, z(t)) implicitly involves x(t). Eder [5] considers the iterative func-

tional differential equation
2 (t) = 212 (1)
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and obtains that every solution either vanishes identically or is strictly monotonic.
Feckan [6] studies the equation

2'(t) = f (1))

by obtaining an existence theorem for solutions satisfying x(0) = 0. Stanék [11]
studies the global properties of solutions of the functional differential equation
2'(t) = x(t) + z(z(t)), and shows that every solution either vanishes identically
or is strictly monotonic. Later, in [9], Si, Li and Cheng consider the equation

o' (t) = zI™l(t)

and establish sufficient conditions for the existence of analytic solutions. Si and
Wang [10] discuss the smooth solutions of the equation

2 () = Ma(t) + Az () + ..+ Nzl () + f(1).

Recently, by Schroder transformation, Liu and Si [8] consider the analytic solutions
of the form

koo
2 () =Y > Crm®)E@™ () +G(),

=01=1

where () denotes the ith iterate of x(t),i = 1,2,...,n. For some various prop-
erties of solutions for several delay functional differential equations, we refer the
interested reader to [2, 3].

In this paper, we consider the existence of periodic solutions of

k

i Crm () (@™ ()" + G(1). (1)

a'(t) =
m =1

—

We denote by C(R,R) the set of all real valued continuous functions from R into R.
For T > 0, define

Pr= {x € OR,R): z(t + T) = z(t), Vt € R}.
Then Pr is a Banach space with the norm

= t)] = ).
lzll = max |2(8)] = max|z(®)]

For P > 0, L > 0, define the sets
Pr(P,L) = {x € Pr:||zl| < P, |a(ts) — 2(t1)| < Lita — t], Vi1, ts € R},
Pr(P) = {wePr: o] < P},

which are closed convex and bounded subset of Pr, and we wish to find T-periodic
functions x € Pr (P, L) satisfying (1).
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2. Existence of periodic solutions

In this section, the existence of periodic solutions of Eq. (1) will be proved. Let
us state the Schauder fixed point theorem, which will be used to prove our main
theorem.

Theorem 1 (Schauder). Let Q be a closed convex compact subset of a Banach space.
Suppose that A : Q — Q is continuous. Then there exists z € Q with z = Az.

Throughout this paper, we assume that all functions are continuous with respect
to their arguments and the following condition holds.

(H) Cim € Pr(Pm) and G € Pr(Pg) are given, where P, ., and Pg are subject to
appropriate constraints which will be specified later, if necessary. In addition,

0171(15) <0 (2)
for all t € R.

We begin with the following lemma.

Lemma 1. For any p,v € Pr(P,L),

n—1
It =gl <3 Ll =9l n=1,2,.... (3)
§=0
Proof. The result follows from the definition of Pr(P, L). O

Now we rewrite (1) as a fixed point equation.

Lemma 2. z € Pr is a solution of (1) if and only if

00 4T
x(t) = Z/ Cr1(u)(x(u) A, u)du
=27t
t+T

koo t+T
+> ) /t Clom () (2™ (w) A (E, w)du + / G(u)A(t, u)du,

t

where
equ Ci,1(s)ds

e~ jOT Ci,1(s)ds __ 1 ’

At,u) = (4)

Proof. The proof is well-known but we present it here for the reader’s convenience.
It is easy to see that Eq. (1) can be written in the form of

:1:/(15)67 fat C1,1(s)ds _ x(t)OLl(t)e’ jat C1,1(s)ds

k
= D Ca®E®) + > Y Cn®@™ @) + G| e Je G
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for a fixed a € R. If € Pr is a solution of (1), then integrating the above equality
from t to t + T, we obtain

x(t i T)67 fat+T C1,1(s)ds _ x(t)ef fat C1,1(s)ds

> 4T )
= Z/ Cl,l(u)(l‘(u))le_ fa Cl,l(S)dsdu
t

=2

+ Z Z/t Clom () (2™ (u)) e~ [ Cualo)ds gy,

t+T .
+/ G(u)e™ Ja Cral&)ds gy,
t

Using the fact z(t + T') = z(t), the above expression can be putted in the form

0o t+T . eL: C1,1(s)ds
z(t) = ; ) Ci1(u)(z(u)) e—Jo Crals)ds _ 1du

0 eft Cl 1(S)dS

d o [l ()} — S
mz Z/ C m(u)(:Zj (u)) e~ fOT Ci1(s)ds _ du

1

du.

t+T ef Cl 1(S)d5
/ Cl 1(s)ds __ 1

This completes the proof. O

Clearly, A(t,u) = A(t +T,u+ T) for all (t,u) € R?, and for (t,u) € R? with
u € [t,t + T, we derive
e~ ftt+T Cy,1(s)ds 1

0< At,u) < - = = M. 5
( u) - 67 J(;T Cl’l(s)ds _ 1 1 _ ef(;r Cl’l(s)ds ( )

Now we will need to construct a mapping satisfying the hypotheses of Theorem 1.
To this aim, we consider a map A : Pp(P, L) — Pr defined as follows:

> t+T
=3[ e A
* Z Z/ Clam () (@™ () A(t, u)du

m=2[=1
t+T
—i—/t G(u)A(t, u)du, (6)

where A(t,u) is defined as in (4).
Lemma 3. Suppose (H) holds and

—

m—

) k oo
MT( 3PP+ 33 S IR P < o, (7)

1=2 m=2 =1 j=0
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then operator A is Lipschitz continuous.

Proof. Take z,y € Pr(P,L),t € R; then by (3) and (5), we have
|(Az)(t) — (Ay)(®)]

<3| [ Cawaen (@) - @)
1=2 |/t
koo t+T
SO (W) - G w) )
m;?l:l o
<MY P [ @) - @) i
1=2 t
koo t+T
WS P [ @) - o )
m=2 |=1 t

< MT Y 1P |¢(u) |z =yl
=2

,_.

m—

k %)
AMT Y NN LR | ()] |z —
m=21=1 j=0

oo koo
< MT(ZZPMPH +>> lePl,mPlfl) lz = yll,
=2

m=2 (=1 j

3

I
=]

where £(u) is between x(u) and y(u), 1, (u) are between ™l (u) and 3™ (u). Thus

—

[e'S) koo
|4z — Ayl < MT(3 PP+ 3 S SR P -yl (9)

1=2 m=21=1 j

3

I\
=]

From (7), we proved that A is Lipschitz continuous. This completes the proof. O

Now, it is easy to see by the Arzela-Ascoli theorem that Pr(P, L) is compact.
As a matter of fact, we have the following result.

Lemma 4. It holds

Pr(P,L) = {w € Pr: all < P, [altz) = a(t)| < Lltz — i, Va2 € [0,T]}. (9)
Proof. Clearly,

Pr(P,L) C {x € Pr:|lz]| < P, |a(s2) — 2(s1)| < L|sz — s1], Vs1,52 € [0, T]}

On the other hand, let x € Pp with |z(s2) — z(s1)| < L|s2 — s1], Vs1, 52 € [0,T]. For
any to > t1 and t1,t2 € R, there are uniquely determined integer numbers p; and p;
such that

mT <t; < (pl + 1)T, T <ty < (pg + 1)T
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Then either p; = p2 = p and hence
l2(t2) — 2(t1)| = [x(t2 — pT) — x(ts — pT)| < L(t2 — t1),

or p2 > p1 + 1 and hence

|2(t2) — z(t1)|
< z(t2) — x(p2T)| + [2(p2T) — z((p1r + DT)| + |z((p1 + 1)T) — 2(t1)]
< |z(t2 — poT) — z(0)[ + [2(T) — 2(ts — ;1)
< Ltz — poT) + L(T — t1 + p1 1)
=Lt —t1 +T(1+p1 —p2))
< L(te — t1),

which gives

{e€Prifall < P, Jata) - a(t)] < Ltz — ta], Via,t2 € 0,71} € Pr(P,L).

This proves (9).
Now, we are ready to prove the following existence result.

Theorem 2. Suppose (H), (7) and the following inequalities hold

k

(ZPHPw ZZBmP +Ps) < (1= MTY_ Pim)P

m=2 =2 m=2

TPlleTP“ . koo
(1+e—foTCu(S)ds_ )(ZH1P+PG+ZZHW )‘

1=2 m=2 I=1
then Eq. (1) has a periodic solution in Pp(P,L).

Proof. First, for any x,y € Pr(P, L), by (10), we have

t+T
a0l =3 [ (el Wi
t+T
+ZZ/ |G () |21 () ' A(, )| e
m=2 =1

t+T
+ / G| AL u)ldu,

oo koo
< MT(ZPMPZ +> > PP+ Pa)

=2 m=2 [=1
<P

(10)

(11)
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Next, assuming T > to > t1 > 0, by (11), we obtain

o0

to+T t1+T
Z /t Clyl(u)(x(u))lA(tg,u)du—/ Cra(uw)(z(u) Aty u)du

=2 ty

1 oo t1 .
= ) ’ C l fu Cl,l(s)dsd
T e i Cia(s)ds _ g ; ( /t2 11(uw)(z(u))e w

to+T .,
[ Cuae)ei Oty
t
du)

1+T
< —7rg ( Z(/ i () o)l a1 (¢ S Cra()is 1)y
e Jo 1,1(8)ds

1(s)ds _ ef;fl Ci,1(s)ds

t1+T
+ / 1Crt ()] ()]
1 =2

t1
t1+T . to
[ Il G (o )y

t1

< f o 1(5 - E Pl 1 Pl (( C1 1(s)ds _ ) TP1716TP1‘1>(t2—t1) (12)
e
and

to+T t1+T
/ G(u)A(ts, )du—/ G(u)A(ty, u)du

ta

to+T

< ‘ / t2 ey, 1(s)dsdu + / G(u)eﬁz Cl,l(s)dsdu‘
e~ Jo Cll(s s — 4T
du)
1 . 2 ¢ d xe; d
<— / |G(u)]el® () S(e‘ Jo Cra(s)ds _ 1)du
e~ fo Cri,1(s)ds _ 1 t

t1+T .
+/ 1 |G(u)|€f;2 Ci1,1(s)ds (6_ ft12 C1,1(s)ds 1)du>

t1

t1+T
—i—/ |G(u)|‘eﬁ2 Cia(s)ds _ o[yt Cra(s)ds

t1

1
<
- e—f(;r 0111(S)d5

PG((S, f[;r Cra(s)ds _ 1) + TP171€TP1’1) (t2 - tl)v (13)
1

k [e'S)
m=2 =1

1 = f
< [m] [z Cia(s)ds
>~ e_f(;r Cy1(s)ds Z (’/ Clm ( )) € du

-1 m=2[=1

to+T t1+T
/t O () (2™ (w)) A (tg, w)du — /t Cp o () (2™ (W) Ay, w)du

2 1
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to+T .,
+/ Cl,m(u)(x[m] (u))leju2 Cl,l(s)dsdu‘
t1+T

ti+T t t
—i—/ |l (w)[ ™ (u)|l|‘€fu2 Cra()ds _ of,! Crals)ds

t1

du)

ta ”
(jf |Ctm (w)[[217] (w)[ ') Cra()s
ty

oo

1 k
<
- e~ fDT Cri,1(s)ds _ Z

1 m=2[=1
X (e_ Jo Gra(ds _ 1) gy

t1+T ¢ to
+/ |Clm (w)][l™ ()| efu® O (o)1 (e‘ffl Cra(s)ds _ l)du

ty
< 1
- e~ f(;r Cri,1(s)ds _ 1

k oo
X Z Z,P[)mpl ((6_ fUT Cra(s)ds _ 1) + TP1716TP1‘1) (tg — tl). (14)

m=2 =1

By (12), (13) and (14), we have
|(A2) (t2) — (A2) (1)

00 to+T t+T
< Z /t C’l,l(u)(a:(u))lA(tQ,u)du—/t Cra(u)(z(u) Aty w)du
1=2 |/t 1
ta+T 14T
+ / ' G(u)A(tg,u)du—/ ' G(u)A(ty, u)du

to+T
/ O () (2™ () Aty w)du

DY

m=21=1 | /t2
t14T
- / O () (2™ (w)) Ay, w)du
t1
TP eTPin > P
< (1 + e—fOTCl‘il(s)ds — 1) (Zpl,lpl + P+ Z Zpl,mPl)|t2 _—
=2 m=2 [=1
< Llty — tq].

Therefore by Lemma 4, we obtain Az € Pp(P,L). So by Lemma 3, we see that
all conditions of Schauder’s theorem are satisfied on Pr(P,L). Thus there exists
a fixed point x in Pr(P, L) such that 2 = Az, from Lemma 2, z is a T-periodic
solution of Eq. (1). This completes the proof. O

3. Uniqueness and stability

In this section, uniqueness and stability of (1) will be proved. An example is also
provided to illustrate that the assumptions of Theorem 2 do not self-contradict.
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Theorem 3. In addition to the assumption of Theorem 2, suppose that

) k oo
= MT(ZlPl,lpH +3 %

1=2 m=2 =1 j=0

—

m

ZLﬂ'Pl,mPH) <1 (15)

then Eq. (1) has a unique solution in Pr(P,L).

Proof. We know from the proof of Theorem 2 that A : Pr(P,L) — Pr(P,L).
Moreover, by (8), we get

[Ap — Ap|| <Tlle =4, @4 € Pr(P,L).

(15) means T' < 1, so the fixed point must be unique by the Banach fixed point
theorem. O

Theorem 4. The unique solution obtained in Theorem 3 depends continuously on
the given functions Cyn(t) and G(t), forl=1,...,00,m=1,... k.

Proof. Let functions Cl,maél,m €Pr(Py),l=1,...,000m=1,...,kand G, Ge
Pr(Pg) be given. Then we consider the corresponding constants M, M and opera-
tors A, A defined by (5) and (6), respectively. Assuming corresponding conditions

(2), (10), (11) and (15), there are two unique corresponding functions z(t) and Z(t)
in Pr(P, L) such that

r=Ax, T= A7
Then we have
|z — 7| < || Az — AZ|| + ||AZ — AF| < [z - 7| + || AT — AZ]],

which implies
| A% — AZ|

e~ < 222 )
Next, for u € [t,t + T], we note
|A(t,u) — A(t,u))|
i Cra()ds _ o2 Cra()ds)
- e—Jo Cra(s)ds _
1 1

+6f1: 61,1(s)d5

e ST Cri(s)ds _ 1 o= JT Cra(s)ds _ q

B ot cl,l(s)dsu _ ef;(él,l(s)—cl,l(s))dﬂ . eJiCra(s)ds
o o= Jo Cia(s)ds _

e~ jOT Ci,1(s)ds __ 1

IN

(1+ MYMTe*T 1|y q — Cyql. (17)
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Then using (17), for u € [¢,t + T, we have

Cn () (@™ () ) At 1) = Cln ()@ () A, w)

< |Crm (w) = Crm (W) | (w) A w)] + |Crn ()| (w) ' At w) — At )
< (M + Py (1 + M)MTTPr) PY|C o — Crml (18)
and

]é(u)ﬁ(t, w) — Gu)A(t,u)

<

S

Gw) — G| A, )| + G () |AL, u) — A, u))

< M||G = G| + Po(1 4+ M)MT*T 1|0y 4 — Chal. (19)
From (18) and (19), we have

o0 t4T _
<> [ @) A ~ Cua ) Fw) Bt )| du
1=2 71t
koo t+T ~ ~
+ X5 [ @ @) At )~ Co ()@ (1) Bt 1)
m=21=1"*
T
+/ ‘G(U)A(t,u) — G(uw)A(t,u)|du
t
< Tmax{ sup 1Clm — Cimll, |G — G||}
(mo0)E{1,. .k} x{1,2,...}
for
T = T(M > (1+ Pr(1+ M)Te*TP1) Pl
(m)e{1,...k}x{1,2,... N {(1,1)}
+M + Pg(1+ M)MT%HPM) .
Consequently, by (16), we arrive at
~ T ~ ~
ool < rpma{ s G Gl 1E -G
- (m,)e{1,...k}x{1,2,... }
This completes the proof. O

4. Examples

Example 1. First, we show that the conditions in Theorem 2 do not self-contradict.
Consider the following equation:

oo

, sin 12¢ — 2 L oNmsind2t 1
=Y ——(a(t t — sin 12t 20
x'(t) ; Toor @) +l; (@) + g 5in 12, (20)
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where C’l,m(.t) =0 form ¢ {1,2}, C11(t) = %, Ci2(t) = Silnoéft, in particular,
Cra(t) = #2222 G(t) = [Lssinl12t. Take T = Z,P = 5,L = 1,P,, = 0 for

m>3, P = Pa= 10101,PG = ﬁ. A simple calculation yields

100"’

1
95.99<M:W<96, 50.26 < MT < 50.27,
1 —elo “1.1(8)a8

by D’Alembert’s criterion, we know

0o co 1 00
MT(ZZPMP“l + ZZZLJ‘H,QPl—l) < MT (5—10 + l; 2%1) < o0,

1=2 1=1 j=0

MT(ZPHPl +Y PaP + PG) <1.04<248 < (1 - MTP )P,  (21)
=2 =2

. foT (s ) 2 1,1 G - 1,2 . == L,

then (7), (10) and (11) are satisfied. By Theorem 2, Eq. (20) has a F-periodic
solution f such that |f(t)] <5, and |f(t2) — f(t1)] < [t2 — t1], Vi1,t2 € R.

Next, we apply Theorem 3.

Example 2. If we take L = % i Example 1, then using % < 1 and 0.18 < %,

computations of (21) give that (7), (10) and (11) are also satisfied for this case.
Furthermore, we derive

[e%e) [ee) 1 [e%s} [ee)
r— MT(ZZPMPH n ZZZLJ’PLQPH) - MT(% 3 % n 2_75 3 %)

1=2 =1 j=0 1=2 =1
7 22X 7 2373\
—MT | — +225 | <y | 2 +2 il
(500“L 5; ol) = <500 25 & <4o)>
179
-~ MT<0973<1
9250+ < <5b

since (%)l > 1 for any 1 > 0. Consequently, condition (15) also holds. So the condi-
tions for Theorem 4 are satisfied and thus Eq. (20) has a unique % -periodic solution
[ osuch that | f(£)] <5, |f(t2)—f(t1)] < B|ta—t1], Vi1, t2 € R. And this §-periodic so-
lution depends continuously on the given functions Cy (t) = S2U=2 () 5(t) = =12t

andG(t):%forl:l,...,oo.

We see that the solution of Example 2 satisfies the properties of a solution of
Example 1 and we do not know if a solution of Example 1 is different from the one
of Example 2. Thus, we discuss this in the next case.

Example 3. We consider

oo

P =3 %(x(ml £35S )4 Asin 121, (22)
=1 =1
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when A > 0 is a parameter. So P = \. Next, we consider P and L as variables to
be defined by A. Then (7) is finite if and only if P < 100 and (10), (11) and (15)

have the forms

P? MT
MT|——=+A) < (1 - — P 23
(25(100—13) + ) = ( 100) ’ (23)
TPl 16TP1’1 P(?)P + 100)
1 : AN) <L 24
(1+ e—foTcn(sws_1)(100(100—13) +A) <L (24)
3(200— P)P 100(1 + L)
I'=MT 1 25
(100(100 —P)2 " (100 — P)2) : (25)
respectively. First, (23) is equivalent to

1 4 3 . (0.0498956 P — 0.989564) P

< = [ S JR—— = .
0 <A< FP) = P35+ 5105 + Too) P—100 (26)

We see that necessarily we need

100(100 — MT)

0<P<P, —
<< =TT 100

= 19.8327.

Using Mathematica we get that the function F(P) over the interval [0, Py] has a
unique mazimum F(Ppqz) = 0.0546313 at Par = 10.4638 (see Figure 1).

F

0.05 -

0.04

L I L L p
5 10 15 20

Figure 1: The graph of F(P) on [0, P4]

So in order to apply Theorem 2 to (22), we need to assume
A < F(Ppaz) = 0.0546313. (27)

When (27) holds, then to find the smallest P € [0, Py] satisfying (26), we take P as
the smallest (second) root P(\) of A = F(P) given by (see Figure 2)

50 (M()\T—T) — /MT(((x = 14)A + 1)MT — 200(A + 1)) + 10000 + 100)
3MT + 100
10.0200) — 0.1993731/A(2526.291 — 45420.6) + 2473.84 + 9.91634.

PO\ =
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L L L L L
0.01 0.02 0.03 0.04 0.05

Figure 2: The graph of P(X) on [0, F(Pmaz)]

Furthermore, the left-hand side of (24) increases in P € [0, P1], so the smallest
L(\) satisfying (24) is as follows (see Figure 3)

TP, &P P\(3Py + 100)
LN = (1 ’ A
(A) ( + e~ Jo Cu(s)ds _ 1) ( 100(100 — Py) - )

= 0.192837\ — 0.00383661\/)\(2526.29)\ —45420.6) 4 2473.84 + 0.190824.

0.20

0.15

0.10

001 002 003 004 005
Figure 3: The graph of L(X\) on [0, F(Pmag)]

Now, we see from (25) that T' increases with respect to P and L, so the smallest
T'()) is determined by (see Figure 4)

B 3(200 — POV)P(A)  100(1 + L(A))
r) = M ( 100(100 = POV (100 — P()\))Q)

= ()\ (—7618.64)\ +151.5781/A(2526.291 — 45420.6) 1 2473.84 + 161360)

—1847.75+/A(2526.29\ — 45420.6) + 2473.84 + 218351)

-2
x (—50.2623)\ + V/A(2526.29) — 45420.6) + 2473.84 + 451.836) .
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L L L L L
0.01 0.02 0.03 0.04 0.05

Figure 4: The graph of I'(\) on [0, F(Pmax)]

By Figure 4, there is a unique solution A1 € [0, F(Ppaz)] of T(A) = 1 with \y =
0.0527851. Summarizing we get:

A: IfX € (0, A1), then Theorem 3 gives a unique solution of (22) in Pz (P(A), L(\)).

B: If A € [M1, F(Ppaz)], then Theorem 2 gives a solution of (22) in Pz (P(A), L(N)).

Applying this result to (20), we have the case A with P(0.01) =1.05611, L(0.01) =
0.0203232 and T'(0.01) = 0.556205 < 1 improving estimates of Examples 1 and 2.
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