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A characterization of linear operators that preserve isolation

numbers
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Abstract. We obtain characterizations of Boolean linear operators that preserve some of
the isolation numbers of Boolean matrices. In particular, we show that the following are
equivalent: (1) T preserves the isolation number of all matrices; (2) T preserves the set of
matrices with isolation number one and the set of those with isolation number k for some
2 ≤ k ≤ min{m,n}; (3) for 1 ≤ k ≤ min{m,n} − 1, T preserves matrices with isolation
number k, and those with isolation number k+1, (4) T maps J to J and preserves the set
of matrices of isolation number 2; (5) T is a (P,Q)-operator, that is, for fixed permutation
matrices P and Q, m× n matrix X, T (X) = PXQ or, m = n and T (X) = PXtQ where
Xt is the transpose of X.
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1. Introduction

The characterization of linear operators on vector spaces of matrices which leave
functions, sets or relations invariant began over a century ago when Fröbenius [10],
in 1897, characterized the linear operators that leave the determinant function in-
variant. Since then, several researchers have investigated the preservers of nearly
every function, set and relation on matrices over fields. See [15, 17] for an excellent
survey of preserver problems through 2001. For applications of linear preservers, see
[14].

In the 1980’s, research began on linear preserver problems over semirings, in
particular linear operators on spaces of (0, 1)-matrices. (See for example [3].) Many
functions, sets and relations concerning matrices do not depend upon the magni-
tude or nature of the individual entries of a matrix, but rather only on whether the
entry is zero or nonzero. These combinatorially significant matrices have become
increasingly important in recent years. The Boolean rank is of primary interest.
Finding the Boolean rank of a (0, 1)-matrix is an NP-Complete problem, (See [16]
noting that the Boolean rank is also called the Schein rank), and consequently find-
ing bounds on the Boolean rank of a matrix is of interest to those researchers that
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would use the Boolean rank in their work. The isolation number of a (0, 1)-matrix
is the largest number of entries equal to 1, no two of which are in the same row,
no two of which are in the same column, and no two of which are in a subma-
trix of all ones. If the (0, 1)-matrix is the reduced adjacency matrix of a bipartite
graph, the isolation number of the matrix is the maximum size of a non-competitive
matching in the bipartite graph. This is related to the study of such combinatorial
problems as the patient hospital problem, the stable marriage problem, etc. See
http://en.wikipedia.org/wiki/Stable_marriage_problem. An additional rea-
son for studying the isolation number is that it is a lower bound on the Boolean
rank of a (0, 1)-matrix, (see [12]). While finding the isolation number as well as
finding the Boolean rank of a (0, 1)-matrix is an NP-Complete problem ([1]), for
some matrices finding the isolation number can be easier than finding the Boolean
rank especially if the matrix is sparse:

Example 1. Let

X =
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1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
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The Boolean rank of X is easily seen to be at most 6; however, to find that it is not
5 requires much calculation if the isolation number is not considered. However, the
isolation number is easily seen to be 6, both computationally and visually, the bold
ones in the matrix represent a set of isolated ones. Thus the Boolean rank is 6.

Note that if any of the non-bold ones are replaced by zeros, the resulting matrix
still has Boolean rank 6 as well as isolation number 6.

Terms not specifically defined here can be found in Brualdi and Ryser [8] for
matrix terms, or Bondy and Murty [6] for graph theoretic terms.

2. Definitions and preliminary results

A semiring S is a set with two binary operations, addition (+) and multiplication
(·). There is a zero element and an identity element (for multiplication) in S. That
is, (S,+) is closed, commutative and associative, but may not have additive inverses,
except for the zero. (S, ·) is closed, associative and commutative, but may not have
multiplicative inverses, except for the identity. Further, the distributive laws hold,
and we will only consider semirings which have no zero divisors, that is, nonzero
elements, s, for which there is some nonzero element t in S such that st = 0. Of
particular interest in this article is the binary Boolean algebra, B = {0, 1} with the
usual addition and multiplication, except that 1 + 1 = 1. A semiring is antinegative
if the only element with an additive inverse is the zero element.
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In this article, we only consider matrices over the antinegative semiring B.
Let Mm,n(B) be the set of all m×n matrices with entries in the binary Boolean

algebra B, and let Mm(B) = Mm,m(B). The usual definitions for adding and
multiplying matrices apply to Boolean matrices as well.

The matrix A(m,n) denotes a matrix in Mm,n(B), In is an n×n identity matrix,
Om,n is an m×n zero matrix, and Jm,n is an m×n matrix all of whose entries are 1.

Let E
(m,n)
i,j be an m×n matrix whose (i, j)th entry is 1 and whose other entries are

all 0, and we call E
(m,n)
i,j a cell. We will suppress the superscripts and/or subscripts

on these matrices when the orders are evident from the context and we write A, I,
O, J , and Eij , respectively. Further, we let the set of all cells be denoted E . That
is,

E = {Ei,j ∈ Mm,n(B) | i = 1, . . . ,m and j = 1, . . . , n}.

The Boolean rank, β(A), of a nonzero Boolean matrix A in Mm,n(B) is the
minimal number k such that there exist m × k and k × n Boolean matrices B ∈
Mm,k(B) and C ∈ Mk,n(B) such that A = BC. The Boolean rank of the zero
matrix is 0. It is well known that β(A) is the least k such that A is the sum of k
matrices of Boolean rank 1 ([3]). By observing that any matrix is a sum of its rows
(or columns), which are rank one matrices, it follows that 1 ≤ β(A) ≤ m for all
nonzero A ∈ Mm,n(B).

From now on we will assume that 2 ≤ m ≤ n.
The Boolean rank of a zero-one matrix is equal to the biclique covering number

of a bipartite graph, and hence has applications in graph theory. The Boolean rank
has also been used in other applications as well, for example in investigating the
exponent of primitive matrices, see [13].

By considering a minimal sum of rank one matrices for A and B such as A =
A1+· · ·+Ak, and B = B1+· · ·+Bl, we have that A+B = A1+· · ·+Ak+B1+· · ·+Bl,
so that A+B has a rank at most k + l. This establishes the following lemma.

Lemma 1. For matrices A and B in Mm,n(B), we have β(A+B) ≤ β(A) + β(B).

If A and B are matrices in Mm,n(B), we say that B dominates A (written A ≤ B

or B ≥ A) if bi,j = 0 implies ai,j = 0 for all i and j. Equivalently, A ≤ B if and
only if A + B = B. This provides a reflexive and transitive relation on Mm,n(B).
Let A be a matrix. We let |A| denote the number of nonzero entries in that matrix.
So, |In| = n. We call |A| the weight of A.

A set of indices, I, of A is called a set of isolated ones of A if (1) (i, j) ∈ I implies
ai,j = 1; (2) whenever (i, j), (k, l) ∈ I we have that i 6= k, j 6= l, and the submatrix

on rows i and k and on columns j and l is not

[

1 1
1 1

]

. The isolation number was

first defined and used by Gregory and Pullman in 1983 ([11]). They were studying
Boolean and nonnegative factorizations of matrices, especially prime matrices.

The isolation number of A, ι(A), is the cardinality of a largest set of isolated
ones of A. In [2], it was shown that ι(A) = 1 if and only if β(A) = 1, and ι(A) = 2
if and only if β(A) = 2.

Since any two entries of A corresponding to distinct isolated ones can lie in no
single Boolean rank one submatrix, we have:
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Lemma 2. Let A ∈ Mm,n(B). Then ι(A) ≤ β(A).

However, as the following example illustrates, unless i(A) = 1, 2, or m, the iso-
lation number may be significantly less than the Boolean rank of a matrix.

Example 2. Let n ≥ 3 and let Dn ∈ Mn(B) be the matrix J \ I, that is, Dn is the
matrix all of whose entries are ones except that all diagonal entries are zero. Then,

ι(Dn) = 3, for any n ≥ 3. However, β(A) = k where k = min

{

k | n ≤

(

k

⌈k
2⌉

)}

(see [9]). So ι(D20) = 3 while β(D20) = 6.

Let A,B ∈ Mm,n(B). Since those indices in any set of isolated ones for A + B

whose corresponding entries in A (or B) are ones is a set of isolated ones for A (or
B, resp.), it follows that:

Lemma 3. For matrices A and B in Mm,n(B), we have ι(A+B) ≤ ι(A) + ι(B).

In [2] the structure of a matrix A ∈ Mm,n(B) whose isolation number is m was
provided. Thus, the set of matrices with isolation number m can be systematically
described, while the authors are not aware of any systematic description of the set
of matrices of Boolean rank m.

A mapping T : Mm,n(B) → Mm,n(B) is called a Boolean linear operator if for
any X,Y ∈ Mm,n(B), T (X + Y ) = T (X) + T (Y ), and T (O) = O.

Let f : Mm,n(B) → S be a mapping where S is any set. Let S be a subset of
Mm,n(B).

For a Boolean linear operator T : Mm,n(B) → Mm,n(B) we say that T

(1) preserves f if for any k ∈ S, f(T (X)) = k whenever f(X) = k for all X ∈
Mm,n(B);

(2) strongly preserves f if for any k ∈ S, f(T (X)) = k if and only if f(X) = k for
all X ∈ Mm,n(B);

and for S = Mm,n(B),

(3) preserves S if T (X) ∈ S whenever X ∈ S for all X ∈ Mm,n(B);

(4) strongly preserves S if T (X) ∈ S if and only if X ∈ S for all X ∈ Mm,n(B).

By an abuse of language we use the expression ”T preserves Boolean rank k

(isolation number k)” to mean ”T preserves the set of matrices of Boolean rank k

(isolation number k)”.
A Boolean linear operator T : Mm,n(B) → Mm,n(B) is called a (P,Q)-operator

if there are permutation matrices P ∈ Mm(B) and Q ∈ Mn(B) such that T (X) =
PXQ for all X ∈ Mm,n(B), or when m = n, T (X) = PXtQ for all X ∈ Mm(B),
where Xt is the transpose of X .

In [3, Theorem 5.3], it was shown that if T : Mm,n(B) → Mm,n(B) preserves
Boolean ranks one and two, then T is a (P,Q)-operator. Since ι(A) = 1 if and only
if β(A) = 1, and ι(A) = 2 if and only if β(A) = 2, we have:

Theorem 1. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. Then the
following are equivalent:
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1. T preserves the isolation number of matrices,

2. T preserves isolation numbers one and two,

3. T is a (P,Q)-operator.

3. Preservers of isolation number two with T (J) = J

Lemma 4. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator with m,n ≥
3. If T preserves isolation number 2 and T (J) = J , then T is bijective on the set of
cells (hence, bijective on Mm,n(B)).

Proof. Suppose that E is a cell and T (E) = O. Then ι(J−E) = 2. But, T (J−E) =
T (J) = J , contradicting that T preserves isolation number 2.

Suppose that for some cell E, |T (E)| > 1. Then there is some cell F such that
T (J) = T (J − F ); however, as above, ι(J − F ) = 2. But, T (J − F ) = T (J) = J ,
again a contradiction. Thus, the image of a cell is a cell.

Suppose that for some cells E and F , T (E) = T (F ). Let N = J−(E+F ). Then
J = T (J) = T (N + E + F ) = T (N) + T (E) + T (F ) = T (N) + T (E) = T (N + E)
since T (E) = T (F ). But, since N+E = J−F , that says that T (J−F ) = T (J) = J

and as above we get a contradiction since ι(J − F ) = 2 and ι(J) = 1.
Thus, T is bijective on the set of cells.

A matrix L ∈ Mm,n(B) is called a line matrix if L =
n
∑

l=1

Ei,l or L =
m
∑

s=1
Es,j for

some i ∈ {1, . . . , n} or for some j ∈ {1, . . . , n}; Ri =
n
∑

l=1

Ei,l is the ith row matrix

and Cj =
m
∑

s=1
Es,j is the jth column matrix. A matrix in Mm,n(B) is a double star

if it is a sum of a row matrix and a column matrix which share a diagonal entry.
That is, Dk = Rk + Ck is a double star for all k = 1, · · · , n. Two cells are called
collinear if they are dominated by a line matrix.

Lemma 5. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator with m,n ≥
3. If T preserves isolation number 2 and T is bijective on the set of cells, then T

maps lines to lines.

Proof. Suppose that the image of a line is not a line. Then, there are two collinear
cells whose images are not collinear. Without loss of generality, we may assume that
T (E1,1 + E1,2) = E1,1 + E2,2.

Let S2 be the set of all matrices of weight 2 in Mm,n(B). That is, A ∈ S2 if and
only if there are distinct cells E and F such that E + F = A. Thus, T (S2) = S2

since T is bijective. If G is the subset of S2 consisting of all those members with
isolation number 2, then T (G) = G. Since T is bijective, T (S2 \ G) = S2 \ G. Since
T (E1,1 + E1,2) = E1,1 + E2,2, E1,1 + E1,2 6∈ G and E1,1 + E2,2 ∈ G, we have a
contradiction. Thus, T maps lines to lines.

Lemma 6. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. Then, T is
bijective and maps lines to lines if and only if T is a (P,Q)-operator.
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Proof. The sufficiency is obvious. For the necessity, let L = {Ri|1 ≤ i ≤ m} ∪
{Cj |1 ≤ j ≤ n}. Then, since T is bijective, T is bijective on L.

If m 6= n, since T is bijective, the image of each Ri must be some Rk, and the
image of each Cj must be some Cl. This is easily seen by a counting argument.

If m = n and the image of one row is a row and the image of another row is a
column, say without loss of generality that T (R1) = R1 and T (R2) = C1. Then,
|R1 +R2| = 2n while |R1 + C1| = 2n− 1, an impossibility since T is bijective.

Thus for m = n, either the image of every row is a row and hence the image of
every column is a column since T is bijective on L. If the image of every row is a
column and the image of every column is a row, composing T with the transpose
operator gives an operator that maps rows to rows and columns to columns.

In both cases, letting σ be a permutation such that T (Ri) = Rσ(i) and τ be a
permutation such that T (Cj) = Cτ(j), we have that T is a (P,Q)-operator where
P is the permutation matrix corresponding to σ and Q is the permutation matrix
corresponding to τ .

Theorem 2. Let m,n ≥ 3 and T : Mm,n(B) → Mm,n(B) be a Boolean linear
operator. Then, T preserves isolation number 2 and T (J) = J if and only if T is a
(P,Q)-operator.

Proof. By Lemma 4 we have that T is bijective. By Lemma 5, T maps lines to
lines. By Lemma 6 we have that T is a (P,Q)-operator. Conversely, clearly every
(P,Q)-operator preserves isolation number 2 and T (J) = J .

4. Preservers of isolation numbers one and k

Throughout this section we will use without reference the fact that β(A) = 1 if and
only if ι(A) = 1. So if T preserves isolation number one, T preserves Boolean rank
one.

In this section, we provide characterizations of Boolean linear operators T :
Mm,n(B) → Mm,n(B) that preserve isolation numbers 1 and k, where 1 < k ≤ m ≤
n.

Lemma 7. Let E be a cell E ∈ Mm,n(B), and Z a matrix such that E ≤ Z and
let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If |T (Z)| ≤ |Z| and
|T (E)| ≥ 2, then there exists a cell F ∈ Mm,n(B) such that T (Z \ F ) = T (Z).

Proof. Suppose that E = E1 and Z is a matrix such that |T (Z)| ≤ |Z|. Further,
suppose that E1 ≤ Z and |T (E1)| > 1. If T (E1) 6= T (Z), there is some cell E2 ≤ Z

such that |T (E1 + E2)| > |T (E1)|. Continuing in this manner, if possible, we find
cells E1, E2, · · · , Ei such that E1 +E2 + · · ·+Ei ≤ Z and |T (E1 +E2 + · · ·+Ei)| >
|T (E1+E2+· · ·+Ei−1)|. Since |Z| and |T (Z)| are finite, there exists some j < |T (Z)|
such that T (E1+E2+ · · ·+Ej) = T (Z). It now follows that there is some cell F ≤ Z

such that T (Z \ F ) = T (Z).

Let Nk be the set of all Boolean rank one matrices in Mm,n(B) which are domi-
nated by a matrix whose isolation number is k. Suppose that w is the largest weight
of any matrix in Nk. Let N+

k be the set of all elements of Nk that are of weight
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w. Since X ∈ N+
k implies PXQ ∈ N+

k for any permutation matrices, P and Q of
appropriate orders, the following is easily seen.

Lemma 8. Let E be a cell in Mm,n(B). Then there is an element of N+
k dominating

E.

Lemma 9. If T preserves isolation number one, then ι(T (A)) ≤ β(A) for all A ∈
Mm,n(B).

Proof. Let A ∈ Mm,n(B) and suppose β(A) = l. Then A = A1+A2+· · ·+Al, where

β(Ai) = ι(Ai) = 1. Then, using Lemma 2, ι(T (A)) ≤ β(T (A)) = β(T (
∑l

i=1 Ai)) ≤
∑l

i=1 β(T (Ai)) =
∑l

i=1 1 = l. That is, ι(T (A)) ≤ β(A).

An operator T : Mm,n(B) → Mm,n(B) is singular if T (X) = O for some nonzero
X ∈ Mm,n(B); otherwise T is nonsingular. Notice that if T is a (P,Q)-operator,
then T is nonsingular. Further, due to the nature of Boolean operators, we note
that a nonsingular operator need not be invertible, unlike the field case.

Lemma 10. If T : Mm,n(B) → Mm,n(B) is a Boolean linear operator which pre-
serves isolation numbers 1 and k for some 1 < k ≤ m, then T maps cells to cells.

Proof. If k = m, then T preserves Boolean ranks 1 and m and by [4, Theorem 3.5]
T is a (P,Q)-operator and hence it maps cells to cells. Thus, assume that k < m.

Since T preserves isolation number 1, T is nonsingular. Suppose that the image
of some cell dominates two or more cells. Say, E = E1 is such a cell and |T (E1)| > 1.
By Lemma 8, there is Z ∈ N+

k that dominates E1. That is, E1 ≤ Z and |T (E1)| > 1.
Since Z is of isolation number one and T preserves both isolation number one and
isolation number k, T (Z) ∈ Nk. Thus, |T (Z)| ≤ |Z| since Z ∈ N+

k . By Lemma 7,
there is some cell F ≤ Z such that T (Z \F ) = T (Z). Without loss of generality, we

may assume that F = E1,1 and that Z =

[

Jp,q O

O O

]

.

If q = n, then we must have p = m − k + 1 (otherwise we could add a row of

ones to Z and still be in Nk). For A =

[

O O

O Ik−1

]

, A + Z is of isolation number

k and dominates Z. Let B = (A + Z) \ (E1,1 + Em,n). Then ι(B) = k, while
ι(B+E1,1) = k− 1. Also, since β(B+E1,1) = k− 1 and , since T preserves Boolean
rank one, β(T (B+E1,1)) ≤ k−1. Thus, by Lemma 9, ι(T (B+E1,1)) ≤ k−1. Further,
ι(T (B)) = k, since T preserves isolation number k. But T (B) = T (B + E1,1), a
contradiction. Thus, the image of a cell is a cell.

If p = m, a similar argument shows that T maps cells to cells.
Now, assume that p < m and q < n. Since Z ∈ N+

k , we must have that
(m− p) + (n− q) ≥ k − 1. Let s = m− p and t = n− q. Let

B =





Op−t+1,q+1−s Op−t+1,s Op−t+1,t−1

Ot−1,q+1−s Ot−1,s It−1

Os,q+1−s Is Os,t−1



 .

Then ι(Z +B) = k− 1 and ι((Z \E1,1) +B) = k, a contradiction since T (Z +B) =
T ((Z \ E1,1) +B) and cannot have isolation number both k and something strictly
less than k.
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Lemma 11. If T : Mm,n(B) → Mm,n(B) is a Boolean linear operator which pre-
serves isolation numbers 1 and k for some 1 < k ≤ m, then T is a bijection on E
and hence invertible on Mm,n(B).

Proof. We only need to show that T is injective on E . By Lemma 10, the image
of a cell is a cell. Suppose that T is not bijective on the set of cells. Then, without
loss of generality, we may assume that T (E1,1) = T (Ei,j) and i ≤ 2. But then, for

Z =

[

Jm−k+2,n

Ok−2,n

]

and A =

[

O O

O Ik−2

]

, let X = Z + A, and Y = (Z \ E1,1) + A.

Then ι(X) = β(X) = k − 1 while ι(Y ) = k and T (X) = T (Y ). Since T preserves
isolation number k, i(T (Y )) = k, and by Lemma 9, ι(T (X)) ≤ β(X) = k − 1. That
is, i(T (X)) ≤ k − 1 < k = i(T (Y )) = i(T (X)), a contradiction. Thus T is bijective
on the set of cells.

From Theorem 3.1 in [3] we have:

Theorem 3 (See [3]). Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator;
then T preserves Boolean rank 1 and is invertible if and only if T is a (P,Q)-operator.

Since a matrix has Boolean rank one if and only if it has isolation number one,
we have:

Corollary 1. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator; then T

preserves isolation number 1 and is invertible if and only if T is a (P,Q)-operator.

Theorem 4. For a Boolean linear operator T : Mm,n(B) → Mm,n(B), the following
are equivalent:

(1) T preserves the isolation number;

(2) T preserves isolation numbers 1 and k for some 1 < k ≤ m ;

(3) T is a (P,Q)-operator.

Proof. If T : Mm,n(B) → Mm,n(B) preserves isolation numbers 1 and k for some
1 < k ≤ m, then T is a bijection on E and hence invertible on Mm,n(B) by Lemma
11. Thus T is a (P,Q)-operator by Corollary 1.

The other implications are obvious.

5. Preservers of adjacent isolation numbers

A tournament matrix is a square matrix M ∈ Mn(B) such that M +M t = J − I,
that is, a (0, 1)-matrix M , such that mi,i = 0 and for i 6= j, mi,j = 1 if and
only if mj,i = 0. It may be noted that if M is an r × r tournament matrix and

A =

[

Ir +M Jr,n−r

Jm−r,r Jm−r,n−r

]

, then ι(A) = r and, if B > A, then ι(B) < ι(A).

Lemma 12. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If T :
Mm,n(B) → Mm,n(B) preserves isolation numbers k and k + 1 for some 1 ≤ k ≤
m− 1, then T is a bijection on E.
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Proof. By virtue of Theorem 1, we may assume that k ≥ 2.
Suppose that T (X) = O for some nonzero X ∈ Mm,n(B). Then, for some

Ei,j , T (Ei,j) = O. Without loss of generality, we may assume that i 6= j and
1 ≤ i, j ≤ k + 1. Let M be a (k + 1) × (k + 1) tournament matrix such that

M 6≥ Ei,j . Let Ξ =

[

Ik+1 +M Jk+1,n−k−1

Jm−k−1,k+1 Jm−k−1,n−k−1

]

. Then, ι(Ξ) = k + 1 while

ι(Ξ + Ei,j) = k, so that ι(T (Ξ)) = k + 1 and ι(T (Ξ + Ei,j)) = k. But since
T (Ei,j) = O, T (Ξ + Ei,j) = T (Ξ), a contradiction. Thus T is nonsingular.

Let L = T q, where T q is idempotent. Then L is idempotent and preserves
isolation numbers k and k + 1. Since T is nonsingular, so is L. Suppose for some
(i, j), |L(Ei,j)| > 1. Then, L(Ei,j) = Z+F , where F is a cell and, as in the previous
paragraph, Ξ ≥ Ei,j and Ξ 6≥ F . Thus, ι(Ξ + Ei,j) = k + 1 while ι(Ξ + F ) = k so
that ι(L(Ξ + Ei,j)) = k + 1 while ι(L(Ξ + F )) = k.

Now, L(Ξ) = L(Ξ+Ei,j) = L(Ξ)+L(Ei,j) = L(Ξ)+Z+F . Since L is idempotent,
L(Ξ) = L2(Ξ) = L(L(Ξ)+Z+F ) = L(L(Ξ)+Z)+L(F ) = L((L(Ξ)+Z+F )+Z)+
L(F ) = L(L(Ξ)+Z+F +Z)+L(F ) = L(L(Ξ)+Z+F )+L(F ) = L2(Ξ)+L(F ) =
L(Ξ)+L(F ) = L(Ξ+F ). But, ι(L(Ξ)) = k+1 while ι(L(Ξ+F )) = k, a contradiction.
Thus, L, and hence T maps cells to cells.

Now, suppose that E and F are cells and T (E) = T (F ). If F 6= E, we may
assume that Ξ ≥ E and Ξ 6≥ F . But then, ι(Ξ + E) = k + 1 while ι(Ξ + F ) = k

so that ι(T (Ξ + E)) = k + 1 and ι(T (Ξ + F )) = k. But, T (Ξ + E) = T (Ξ + F ), a
contradiction.

Lemma 13. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If T :
Mm,n(B) → Mm,n(B) preserves isolation numbers k and k + 1 for some 1 ≤ k ≤
m− 1, then T maps lines to lines.

Proof. By Lemma 12, T is bijective on the set of cells. Suppose T does not map
lines to lines, then it must map some pair of noncollinear cells to a pair of collinear
cells since T is bijective on the set of cells. Without loss of generality, we may
assume that T (E1,1 + E2,2) = E1,1 + E1,2. Let E3, E4, · · · , Ek+1 be cells such that
T (Ej,j) = Ej for 3 ≤ j ≤ k+1. Then, ι(E1,1+E1,2+E3+E4+· · ·+Ek+1) ≤ k. Since
ι(E1,1+E2,2+E3,3+· · ·+Ek+1,k+1) = k+1, ι(T (E1,1+E2,2+E3,3+· · ·+Ek+1,k+1)) =
k+1. But T (E1,1+E2,2+E3,3+ · · ·+Ek+1,k+1) = E1,1+E1,2+E3+E4+ · · ·+Ek+1

which has the isolation number less than k+1, a contradiction. Thus, T maps lines
to lines.

Theorem 5. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator. If T :
Mm,n(B) → Mm,n(B) preserves isolation numbers k and k + 1 for some 1 ≤ k ≤
m− 1, then T is a (P,Q)-operator.

Proof. By Lemma 12, T is bijective. By Lemma 13, T maps lines to lines. The
theorem now follows by applying Theorem 6.

6. Summary

In [5], the authors prove the following.
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Theorem 6 (See [5, Theorem 3.8]). Let T : Mm,n(B) → Mm,n(B) be a Boolean
linear operator. Then T strongly preserves isolation number k for any 1 ≤ k ≤
min{m,n} if and only if T is a (P,Q)-operator.

A compilation of the above theorem and Theorems 2, 4, and 5 summarizes the
results in this article.

Theorem 7. For a Boolean linear operator T : Mm,n(B) → Mm,n(B), the following
are equivalent:

1. T preserves the isolation number;

2. T preserves isolation numbers 1 and k for some 1 < k ≤ m;

3. T : Mm,n(B) → Mm,n(B) preserves isolation numbers k and k + 1 for some
1 ≤ k ≤ m− 1;

4. T preserves isolation number 2 and T (J) = J ;

5. T strongly preserves isolation number k for any 1 ≤ k ≤ min{m,n};

6. T is a (P,Q)-operator.
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