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Majorization theorem for convexifiable functions
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Abstract. In this paper we extend the majorization theorem from convex to covexifiable
functions, in particular to smooth functions with Lipschitz derivative, twice continuously
differentiable functions and analytic functions.
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1. Introduction

There is a certain intuitive appeal to the vague notion that the components of
n-tuple x are less spread out, or more nearly equal, than are the components of
n-tuple y. The notion arises in a variety of contexts, and it can be made precise
in a number of ways. But in remarkably many cases, the appropriate statement is
that x majorizes y means that the sum of m largest entries of y does not exceed
the sum of m largest entries of x for all m = 1, 2, .., n with equality for m = n.
A mathematical origin of majorization is illustrated by the work of Schur [12] on
Hadamard’s determinant inequality. Many mathematical characterization problems
are known to have solutions that involve majorization. A complete and superb
reference on the subject are the books [2], [9]. The comprehensive survey by Ando
[1] provides alternative derivations, generalizations, and a different viewpoint.

The following theorem is well-known in the literature as the majorization theorem
and a convenient references for its proof are ([4, p. 75], [11, p. 320]). This result is
due to Karamata [7] and can also be found in [6].

Theorem 1. Let φ : I → R be a continuous convex function on the interval I and
x = (x1, .., xn),y = (y1, .., yn) two n-tuples such that xi, yi ∈ I (i = 1, 2, .., n). If x
majorizes y, then the inequality

n∑
i=1

φ (yi) ≤
n∑
i=1

φ (xi) (1)

holds.
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Inequality (1) is known in the litrature as Karamata’s inequality. It is a theorem
in elementary algebra for convex real-valued functions defined on an interval of the
real line and it generalizes the finite form of Jensen’s inequality. This majorization
ordering is equivalently described in Kemperman’s review [8]. An extension of this
fact for arbitrary real weights and decreasing n-tuples x and y can be found in [5].
General results of this type are due to Dragomir [3] and Niezgoda [10].

We recall some results we will use in further work.

Definition 1 ([16]). Given a continuous φ : I → R defined on the compact interval
I ⊂ R, consider a function ϕ : I × R → R defined by ϕ(x, α) = φ(x) − 1

2αx
2.

If ϕ(x, α) is a convex function on I for some α = α∗, then ϕ(x, α) is called a
convexification of φ and α∗ is its convexifier on I. Function φ is convexifiable if it
has a convexification.

Remark 1. If α∗ is a convexifier of φ, then so is every α ≤ α∗.
In order to characterize a convexifiable function, the mid-point acceleration func-

tion

Ψ(x, y) =
4

|x− y|

(
φ(x) + φ(y)− 2φ

(
x+ y

2

))
, x, y ∈ I, x 6= y

was introduced in [16]. There it was shown that a continuous φ : I → R defined
on the compact interval I ⊂ R is convexifiable on I if and only if its mid-point
acceleration function Ψ is bounded from below on I × I.

For two important classes of functions a convexifier α can be given explicitly.

Lemma 1 ([16]). Given a twice continuously differentiable function φ : I → R on a
compact interval I in R. Then λ∗ = min

x∈I
φ′′(x) is a convexifier.

We say that a continuously differentiable function φ has Lipschitz derivative if
|φ′(x)− φ′(y)| ≤ L|x− y| for every x, y ∈ I and some constant L.

Lemma 2 ([16]). Given a continuously differentiable function φ : I → R with
Lipschitz derivative and a Lipschitz constant L on a compact interval I in R. Then
α = −L is a convexifier.

One can show that every convexifiable function φ : I → R is Lipschitz. This
means that a scalar non-Lipschitz function is not convexifiable. However, almost all
smooth functions of practical interest are convexifiable; e.g., [16]. In [16], Zlobec
gave discrete and integral Jensen’s inequality for convexifiable functions and many
other interesting results for these functions, e.g., see [13 - 17].

In this note, inequality (1) and its weighted version are extended from convex
to convexifiable functions. These include all twice continuously differentiable func-
tions, all once continuously differentiable functions with Lipschitz derivative and all
analytic functions.

2. Main results

In this section we extend Karamata’s inequality and its weighted version to convex-
ifiable functions.
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Theorem 2. Let φ : I → R be a continuous convexifiable function on the compact
interval I and α its convexifier. Let x = (x1, ..., xn) ,y = (y1, ..., yn) be two n-tuples
such that xi, yi ∈ I (i = 1, ..., n) and x majorizes y. Then

n∑
i=1

φ (yi) ≤
n∑
i=1

φ (xi)−
α

2

n∑
i=1

(
x2i − y2i

)
(2)

Proof. Since φ is convexifiable with convexifier α, so ϕ(x, α) = φ(x) − 1
2αx

2 is a
convex function and x majorizes y. Therefore by using ϕ(x, α) instead of φ(x) in
(1) we obtain (2).

Using the fact that for a convex function φ one can choose the convexifier α = 0,
one recovers (1). For a twice continuously differentiable function one can specify
α = λ∗ (by Lemma 1) and for a continuously differentiable function with Lipschitz
derivative and its Lipschitz constant L, one can specify α = −L (by Lemma 2).

Remark 2. If in (2) for α = λ∗ the function φ is convex, then λ∗ ≥ 0 and by
utilizing φ(x) = x2 in (1) we obtain

∑n
i=1

(
x2i − y2i

)
≥ 0. So (2) may provide a

better bound than (1). Since every analytic function φ : I → R is twice continuously
differentiable, (2) holds, in particular, for analytic functions with λ∗ = min

x∈I
φ′′(x).

In the following theorem we extend Fuch’s [5] result for convexifiable function.

Theorem 3. Let φ : I → R be a continuous convexifiable function on the compact
interval I and α be its convexifier. Let x = (x1, ..., xn) ,y = (y1, ..., yn) be two
decreasing n-tuples such that xi, yi ∈ I (i = 1, ..., n), p = (p1, p2, ..., pn) be a real
n-tuple such that

k∑
i=1

pi yi ≤
k∑
i=1

pi xi for k = 1, ..., n− 1, (3)

and
n∑
i=1

pi yi =

n∑
i=1

pi xi. (4)

Then
n∑
i=1

piφ (yi) ≤
n∑
i=1

piφ (xi)−
α

2

n∑
i=1

pi
(
x2i − y2i

)
. (5)

Remark 3. By putting different conditions on the n-tuples x,y and p, weighted
versions of inequality (1) and their integral versions have been proved e.g [3, 5, 10]
and some of the reference therein. Therefore similarly to Theorem 3 we can extend
all such results for convexifiable functions.

Remark 4. By setting yi = 1
n

∑n
i=1 xi (i = 1, 2, ..., n) in (1) we can obtain Jensen’s

inequality for convex function. So from (2) and its integral version we can obtain
the inequalities obtained in [14, 15].

In the following example we illustrate the basic difference between Karamata’s
inequality for a convex and a convexifiable function.
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Example 1. Consider φ(t) = sin t, t ∈ [−π, π] and x = (π, π2 ,−
π
2 ), y = ( 3π

4 ,
π
4 , 0).

Then x majorizes y. By using these 3-tuples x,y and the function φ in (1) we
have

√
2 ≤ 0, i.e inequality (1) is not satisfied as the function φ is not convex on

[−π, π]. On the other hand, the function φ is convexifiable and its convexification is

ϕ(t, α) = sin t− 1
2αt

2. Now using these in (2) we obtain the inequality
√

2 ≤ − 7απ2

16
which is valid for any convexifier α ≤ −0.33.

A situation where the new bound is sharper than the one provided by Karamata’s
inequality for a convex function is illustrated in the following example.

Example 2. Consider φ(t) = t4, t ∈ [0, 3] and x = (2+λ, 2−λ, λ), y = (2, 1+λ, 1),
λ ∈ [0, 1]. Then x majorizes y. Using these x,y and the function φ(t) = t4 in
(1) and in its extension (2) yield (1 + λ)4 + 17 ≤ (2 + λ)4 + (2 − λ)4 + λ4 and
(1 +λ)4 + 17 ≤ (2 +λ)4 + (2−λ)4 +λ4−6((2 +λ)2 + (2−λ)2−2λ−6), respectively.
The upper bounds are compared to the original function and the new bound is better
than the old bound for a convex function.
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[11] J. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, New York, 1992.
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