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Abstract. In this paper, our aim is to find the radii of starlikeness and convexity of the
normalized Wright functions for three different kinds of normalization. The key tools in
the proof of our main results are the Mittag-Leffler expansion for Wright function and
properties of real zeros of the Wright function and its derivative. In addition, by using the
Euler-Rayleigh inequalities we obtain some tight lower and upper bounds for the radii of
starlikeness and convexity of order zero for the normalized Wright functions. The main
results of the paper are natural extensions of some known results on classical Bessel func-
tions of the first kind. Some open problems are also proposed, which may be of interest for
further research.
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1. Introduction

Special functions are indispensable in many branches of mathematics and applied
mathematics. Geometric properties of some special functions were recently exam-
ined by many authors (see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 20, 23, 24, 25, 26, 27]).
However, its origins can be traced to Brown [12] (see also [13, 14]), Kreyszig and
Todd [19] and Wilf [28]. Recently, there has been a vivid interest in geometric prop-
erties of special functions such as Bessel, Struve, Lommel functions of the first kind
and regular Coulomb wave functions. The first author and his collaborators exam-
ined in detail the determination of the radii of starlikeness and convexity of some
normalized forms of these special functions, see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11] and
the references therein. Moreover, one of the most important things which we have
learned in these studies is that the radii of univalence, starlikeness and convexity
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are obtained as solutions of some transcendental equations and the obtained radii
satisfy some interesting inequalities. In addition, in view of these studies, we know
that the radii of univalence of some normalized Bessel, Struve, Lommel and regular
Coulomb wave functions coincide with the radii of starlikeness of these functions.
The positive zeros of Bessel, Struve, Lommel functions of the first kind and regu-
lar Coulomb wave functions and the Laguerre-Pólya class of real entire functions
played an important role in these papers. Motivated by the above series of papers
on geometric properties of special functions, our aim in this paper is to present some
similar results for the normalized forms of the Wright function which has important
applications in different areas of mathematics. In this paper, we are mainly focused
on the determination of the radii of starlikeness and convexity of normalized Wright
functions. Furthermore, our aim is also to give some lower and upper bounds for
the radii of starlikeness and convexity of order zero by using some Euler-Rayleigh
inequalities for the smallest positive zero of some transcendental equations (for more
details on such kind of inequalities we refer to [18]). The paper is arranged as follows:
the rest of this section is devoted to some basic definitions needed for the proof of
our main results. Section 2 is divided into four subsections: the first subsection is
dedicated to the radii of starlikeness of normalized Wright functions. Also, at the
end of this subsection, lower and upper bounds for radii of starlikeness of order zero
are given. The second subsection contains the study of the radii of convexity of nor-
malized Wright functions, and lower and upper bounds for the radii of convexity of
order zero for some normalized Wright functions are given in its last part. The third
subsection contains some particular cases of the main results in terms of classical
Bessel functions of the first kind. In the fourth subsection, some open problems are
stated, which may be of interest for further research.

Before we start with the presentation of results, we would like to state some basic
definitions. For r > 0 by Dr = {z ∈ C : |z| < r} we denote the open disk of radius r
centered at the origin. Let f : Dr → C be the function defined by

f(z) = z +
∑

n≥2

anz
n, (1)

where r is less than or equal to the radius of convergence of the above power series.
Let A be the class of analytic functions of the form (1), that is, normalized by the
conditions f(0) = f ′(0)− 1 = 0. The function f, defined by (1), is called starlike in
Dr if f is univalent in Dr, and the image domain f(Dr) is a starlike domain in C

with respect to the origin (see [16] for more details). Analytically, the function f is
starlike in Dr if and only if

Re

(

zf ′(z)

f(z)

)

> 0 for all z ∈ Dr.

For α ∈ [0, 1), we say that the function f is starlike of order α in Dr if and only if

Re

(

zf ′(z)

f(z)

)

> α for all z ∈ Dr.

The real number

r⋆α(f) = sup

{

r > 0

∣

∣

∣

∣

Re

(

zf ′(z)

f(z)

)

> α for all z ∈ Dr

}
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is called the radius of starlikeness of order α of the function f . Note that r⋆(f) =
r⋆0(f) is in fact the largest radius such that the image region f(Dr⋆(f)) is a starlike
domain with respect to the origin.

The function f, defined by (1), is convex in the disk Dr if f is univalent in Dr,
and the image domain f(Dr) is a convex domain in C. Analytically, the function f
is convex in Dr if and only if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0 for all z ∈ Dr.

For α ∈ [0, 1), we say that the function f is convex of order α in Dr if and only if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> α for all z ∈ Dr.

The radius of convexity of order α of the function f is defined by the real number

rcα(f) = sup

{

r > 0

∣

∣

∣

∣

Re

(

1 +
zf ′′(z)

f ′(z)

)

> α for all z ∈ Dr

}

.

Note that rc(f) = rc0(f) is the largest radius such that the image region f(Drc(f))
is a convex domain.

Finally, we recall that a real entire function q belongs to the Laguerre-Pólya class
LP if it can be represented in the form

q(x) = cxme−ax2+bx
∏

n≥1

(

1 +
x

xn

)

e−
x

xn ,

with c, b, xn ∈ R, a ≥ 0,m ∈ N ∪ {0} and
∑

n≥1 xn
−2 < ∞. We note that the class

LP consists of entire functions which are uniform limits on the compact sets of the
complex plane of polynomials with only real zeros. For more details on the class LP
we refer to [15, p. 703] and the references therein.

2. The radii of starlikeness and convexity of normalized Wright

functions

In this section, we will investigate the generalized Bessel function

φ(ρ, β, z) =
∑

n≥0

zn

n!Γ(nρ+ β)
,

where ρ > −1 and z, β ∈ C, which is named after E.M. Wright. This function
was introduced by Wright for ρ > 0 in connection with his investigations on the
asymptotic theory of partitions [29]; for further details see also [17]. Furthermore,
it is important to mention that the Wright function is an entire function of z for
ρ > −1; consequently, as we will see in some parts of our paper, some properties of
the general theory of entire functions can be applied.

The following lemma, which we believe is of independent interest, plays an im-
portant role in the proof of our main results.
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Lemma 1. If ρ > 0 and β > 0, then the function z 7→ λρ,β(z) = φ(ρ, β,−z2) has
infinitely many zeros which are all real. Denoting by λρ,β,n the nth positive zero of
φ(ρ, β,−z2), under the same conditions the Weierstrassian decomposition

Γ(β)φ(ρ, β,−z2) =
∏

n≥1

(

1− z2

λ2ρ,β,n

)

is valid, and this product is uniformly convergent on compact subsets of the complex
plane. Moreover, if we denote by ζ′ρ,β,n the nth positive zero of Ψ′

ρ,β, where Ψρ,β(z) =

zβλρ,β(z), then the positive zeros of λρ,β (or the positive real zeros of the function
Ψρ,β) are interlaced with those of Ψ′

ρ,β. In other words, the zeros satisfy the chain
of inequalities

ζ′ρ,β,1 < λρ,β,1 < ζ′ρ,β,2 < λρ,β,2 < . . ..

Proof. The proof of the reality of the zeros is given in [6] by using two somehow
similar approaches. Now, since the growth order of the entire function φ(ρ, β, ·) is
(ρ+ 1)−1 (see [17]), which is a non-integer number and lies in (0, 1), it follows that
indeed the Wright function has infinitely many zeros. Since the Wright function is
entire, its infinite product clearly exists, and in view of the Hadamard theorem on
growth order of the entire function, it follows that its canonical representation is
exactly what we have in Lemma 1. Using the infinite product representation we get
that

Ψ′
ρ,β(z)

Ψρ,β(z)
=
β

z
+
λ′ρ,β(z)

λρ,β(z)
=
β

z
+
∑

n≥1

2z

z2 − λ2ρ,β,n
. (2)

Differentiating both sides of (2) we have

d

dz

(

Ψ′
ρ,β(z)

Ψρ,β(z)

)

= − β

z2
− 2

∑

n≥1

z2 + λ2ρ,β,n
(z2 − λ2ρ,β,n)

2
, z 6= λρ,β,n.

Since the expression on the right-hand side is real and negative for z real and ρ, β >
0, the quotient Ψ′

ρ,β/Ψρ,β is a strictly decreasing function from +∞ to −∞ as z
increases through real values over the open interval (λρ,β,n, λρ,β,n+1) , n ∈ N. Hence,
the function Ψ′

ρ,β vanishes just once between two consecutive zeros of the function
λρ,β .

Observe that the function z 7→ φ(ρ, β,−z2) does not belong to A, and thus first
we perform some natural normalization. We define three functions originating from
φ(ρ, β, ·):

fρ,β(z) =
(

zβΓ(β)φ(ρ, β,−z2)
)

1
β ,

gρ,β(z) = zΓ(β)φ(ρ, β,−z2),
hρ,β(z) = zΓ(β)φ(ρ, β,−z).

Obviously these functions belong to the class A. Of course, there exist infinitely
many other normalizations; the main motivation to consider the above ones is the
fact that their particular cases in terms of Bessel functions appear in the literature
or are similar to the studied normalization in the literature.
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2.1. The radii of starlikeness of order α of functions fρ,β, gρ,β
and hρ,β

In this subsection, our aim is to present some results for the radii of starlikeness
of normalized Wright functions fρ,β , gρ,β and hρ,β . We will see that the radii of
starlikeness of order α of normalized Wright functions are actually solutions of some
transcendental equations. Moreover, we will also find lower and upper bounds for
the radii of starlikeness of order zero.

Our first main result is the following theorem.

Theorem 1. Let ρ > 0, β > 0 and α ∈ [0, 1).

a. The radius of starlikeness of order α of fρ,β is r⋆α (fρ,β) = xρ,β,1, where xρ,β,1
is the smallest positive zero of the transcendental equation

rλ′ρ,β(r)− (α − 1)βλρ,β(r) = 0.

b. The radius of starlikeness of order α of gρ,β is r⋆α (gρ,β) = yρ,β,1, where yρ,β,1
is the smallest positive zero of the transcendental equation

rλ′ρ,β(r) − (α− 1)λρ,β(r) = 0.

c. The radius of starlikeness of order α of hρ,β is r⋆α (hρ,β) = zρ,β,1, where zρ,β,1
is the smallest positive zero of the transcendental equation

√
rλ′ρ,β(

√
r)− 2(α− 1)λρ,β(

√
r) = 0.

Proof. We need to show that the inequalities

Re

(

zf ′(z)

f(z)

)

≥ α, Re

(

zg′(z)

g(z)

)

≥ α and Re

(

zh′(z)

h(z)

)

≥ α (3)

hold for z ∈ Dxρ,β,1
(fρ,β), z ∈ Dyρ,β,1

(gρ,β) and z ∈ Dzρ,β,1
(hρ,β), respectively, and

each of the above inequalities does not hold in any larger disk. By definition we get

fρ,β(z) =
(

zβΓ(β)λρ,β(z)
)

1
β ,

gρ,β(z) = zΓ(β)λρ,β(z),

hρ,β(z) = zΓ(β)λρ,β(
√
z).

The logarithmic derivation yields

zf ′
ρ,β(z)

fρ,β(z)
= 1 +

1

β

(

zλ′ρ,β(z)

λρ,β(z)

)

= 1− 1

β

∑

n≥1

2z2

λ2ρ,β,n − z2
,

zg′ρ,β(z)

gρ,β(z)
= 1 +

(

zλ′ρ,β(z)

λρ,β(z)

)

= 1−
∑

n≥1

2z2

λ2ρ,β,n − z2
,
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zh′ρ,β(z)

hρ,β(z)
= 1 +

1

2

(

√
z
λ′ρ,β(

√
z)

λρ,β(
√
z)

)

= 1−
∑

n≥1

z

λ2ρ,β,n − z
.

It is known [4] that if z ∈ C and θ ∈ R are such that θ > |z|, then

|z|
θ − |z| ≥ Re

(

z

θ − z

)

. (4)

Then the inequality

|z|2

λ2ρ,β,n − |z|2
≥ Re

(

z2

λ2ρ,β,n − z2

)

is valid for every ρ > 0, β > 0, n ∈ N and |z| < λρ,β,n. Therefore,

Re

(

zf ′
ρ,β(z)

fρ,β(z)

)

= 1− 1

β
Re





∑

n≥1

2z2

λ2ρ,β,n − z2





≥ 1− 1

β

∑

n≥1

2 |z|2

λ2ρ,β,n − |z|2
=

|z| f ′
ρ,β(|z|)

fρ,β(|z|)
,

Re

(

zg′ρ,β(z)

gρ,β(z)

)

= 1− Re





∑

n≥1

2z2

λ2ρ,β,n − z2





≥ 1−
∑

n≥1

2 |z|2

λ2ρ,β,n − |z|2
=

|z| g′ρ,β(|z|)
gρ,β(|z|)

,

and

Re

(

zh′ρ,β(z)

hρ,β(z)

)

= 1− Re





∑

n≥1

z

λ2ρ,β,n − z





≥ 1−
∑

n≥1

|z|
λ2ρ,β,n − |z| =

|z|h′ρ,β(|z|)
hρ,β(|z|)

,

where equalities are attained only when z = |z| = r. The latter inequalities and the
minimum principle for harmonic functions imply that the corresponding inequalities
in (3) hold if and only if |z| < xρ,β,1, |z| < yρ,β,1 and |z| < zρ,β,1, respectively, where
xρ,β,1, yρ,β,1 and zρ,β,1 are the smallest positive roots of the equations

rf ′
ρ,β(r)

fρ,β(r)
= α,

rg′ρ,β(r)

gρ,β(r)
= α and

rh′ρ,β(r)

hρ,β(r)
= α,

which are equivalent to

rλ′ρ,β(r) − (α− 1)βλρ,β(r) = 0, rλ′ρ,β(r)− (α − 1)λρ,β(r) = 0

and √
rλ′ρ,β(

√
r)− (α− 1)λρ,β(

√
r) = 0.
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In other words, we proved that

inf
z∈Dr

Re

(

zf ′
ρ,β(z)

fρ,β(z)

)

=
rf ′

ρ,β(r)

fρ,β(r)
= Fρ,β(r),

inf
z∈Dr

Re

(

zg′ρ,β(z)

gρ,β(z)

)

=
rg′ρ,β(r)

gρ,β(r)
= Gρ,β(r)

and

inf
z∈Dr

Re

(

zh′ρ,β(z)

hρ,β(z)

)

=
rh′ρ,β(r)

hρ,β(r)
= Hρ,β(r).

Since the real functions Fρ,β , Gρ,β , Hρ,β : (0, λρ,β,1) −→ R are decreasing, and take
the limits

lim
rց0

Fρ,β(r) = lim
rց0

Gρ,β(r) = lim
rց0

Hρ,β(r) = 1

and

lim
rրλρ,β,1

Fρ,β(r) = lim
rրλρ,β,1

Gρ,β(r) = lim
rրλρ,β,1

Hρ,β(r) = −∞,

it follows that the inequalities in (3) indeed hold for z ∈ Dxρ,β,1
, z ∈ Dyρ,β,1

and
z ∈ Dzρ,β,1

, respectively.

The following theorems provide some tight lower and upper bounds for the radii
of starlikeness of the functions considered in the above theorems. In these theorems,
for simplicity, we use the notation

∆a,b(ρ, β) = aΓ(β)Γ(2ρ+ β)− bΓ2(ρ+ β),

and mention that the positivity of this expression for a > b > 0 and ρ, β > 0 is
guaranteed by the log-convexity of the Euler gamma function.

Theorem 2. For ρ, β > 0, the radius of starlikeness r⋆(fρ,β) satisfies

√

Γ(ρ+ β)

(β + 2)Γ(β)
< r⋆(fρ,β) <

√

β(β + 2)Γ(ρ+ β)Γ(2ρ+ β)

∆(β+2)2,β+4(ρ, β)
,

4

√

βΓ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆(β+2)2,β+4(ρ, β)
< r⋆(fρ,β) <

√

2βΓ(ρ+ β)Γ(3ρ+ β)∆(β+2)2,β+4(ρ, β)

β(β + 6)Γ3(ρ+ β)Γ(2ρ+ β) + Ξρ,β

,

where

Ξρ,β = (β + 2)2Γ(β)Γ(3ρ+ β)∆2(β+2),β+4(ρ, β).

Proof. The radius of starlikeness of the normalized Wright functionfρ,β corresponds
to the radius of starlikeness of the function Ψρ,β(z) = zβλρ,β(z). The infinite series
representations of the function Ψ′

ρ,β and its derivative read as follows:

Υρ,β(z) = Ψ′
ρ,β(z) =

∑

n≥0

(−1)n(2n+ β)

n!Γ(nρ+ β)
z2n+β−1, (5)
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Υ′
ρ,β(z) =

∑

n≥0

(−1)n(2n+ β)(2n+ β − 1)

n!Γ(nρ+ β)
z2n+β−2. (6)

In view of Lemma 1, the function z 7→ z1−βΥρ,β(z) belongs to the Laguerre-Pólya
class LP . Hence, the zeros of the function Υρ,β are all real. Suppose that ιρ,β,n’s
are the positive zeros of the function Υρ,β. The expression Υρ,β(z) can be written
as

Γ(β)Υρ,β(z) = βzβ−1
∏

n≥1

(

1− z2

ι2ρ,β,n

)

. (7)

By the logarithmic derivation of both sides of (7), for |z| < ιρ,β,1we obtain

zΥ′
ρ,β(z)

Υρ,β(z)
− (β − 1)=−2

∑

n≥1

z2

ι2ρ,β,n − z2
= −2

∑

n≥1

∑

k≥0

z2k+2

ι2k+2
ρ,β,n

= −2
∑

k≥0

χk+1z
2k+2, (8)

where χk =
∑

n≥1 ι
−2k
ρ,β,n. Thus, by using relations (5), (6) and (8) we get

zΥ′
ρ,β(z)

Υρ,β(z)
=
∑

n≥0

ξnz
2n

/

∑

n≥0

νnz
2n, (9)

where

ξn = (−1)n
(2n+ β)(2n+ β − 1)

n!Γ(nρ+ β)
and νn = (−1)n

(2n+ β)

n!Γ(nρ+ β)
.

By comparing the coefficients of (8) and (9) we have














(β − 1)ν0 = ξ0
(β − 1)ν1 − 2χ1ν0 = ξ1
(β − 1)ν2 − 2χ1ν1 − 2χ2ν0 = ξ2
(β − 1)ν3 − 2χ1ν2 − 2χ2ν1 − 2χ3ν0 = ξ3

,

which implies that

χ1 =
(β + 2)Γ(β)

Γ(ρ+ β)
, χ2 =

(β + 2)2

β

Γ2(β)

Γ2(ρ+ β)
− β + 4

β

Γ(β)

Γ(2ρ+ β)

and

χ3 =
(β + 2)3

β2

Γ3(β)

Γ3(ρ+ β)
− (β + 2)2(β + 4)Γ2(β)

2β2Γ(ρ+ β)Γ(2ρ+ β)
+
β + 6

2β

Γ(β)

Γ(3ρ+ β)
.

By using the Euler-Rayleigh inequalities χ
−1/k
k < ι2ρ,β,1 <

χk

χk+1
, k ∈ {1, 2}, we get

the inequalities of the theorem.

Theorem 3. For ρ, β > 0, the radius of starlikeness r⋆(gρ,β) satisfies

√

Γ(ρ+ β)

3Γ(β)
< r⋆(gρ,β) <

√

3Γ(ρ+ β)Γ(2ρ+ β)

∆9,5(ρ, β)
,
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4

√

Γ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆9,5(ρ, β)
< r⋆(gρ,β)

<

√

2Γ(ρ+ β)Γ(3ρ+ β)∆9,5(ρ, β)

9Γ(β)Γ(3ρ+ β)∆6,5(ρ, β) + 7Γ3(ρ+ β)Γ(2ρ+ β)
.

Proof. For α = 0, in view of the second part of Theorem 1, we have that the radius of
starlikeness of order zero is the smallest positive root of the equation (zλρ,β(z))

′ = 0.
Therefore, we shall study the first positive zero of

ψρ,β(z) = (zλρ,β(z))
′ =

∑

n≥0

(−1)n(2n+ 1)

n!Γ(nρ+ β)
z2n. (10)

We know that the function λρ,β belongs to the Laguerre-Pólya class of entire func-
tions LP , which is closed under differentiation. Therefore, we get that the function
ψρ,β also belongs to the Laguerre-Pólya class. Hence, the zeros of the function ψρ,β

are all real. Suppose that γρ,β,n’s are the positive zeros of the function ψρ,β . Then,
the function ψρ,β has the infinite product representation as follows:

Γ(β)ψρ,β(z) =
∏

n≥1

(

1− z2

γ2ρ,β,n

)

, (11)

since its growth order corresponds to the growth order of the Wright function itself.
If we take the logarithmic derivative of both sides of (11), then for |z| < γρ,β,1 we
get

ψ′
ρ,β(z)

ψρ,β(z)
=
∑

n≥1

2z

z2 − γ2ρ,β,n
= −2

∑

n≥1

∑

k≥0

z2k+1

γ2k+2
ρ,β,n

= −2
∑

k≥0

∑

n≥1

z2k+1

γ2k+2
ρ,β,n

= −2
∑

k≥0

δk+1z
2k+1,

(12)

where δk =
∑

n≥1 γ
−2k
ρ,β,n. Moreover, in view of (10), we have

ψ′
ρ,β(z)

ψρ,β(z)
= −2

∑

n≥0

anz
2n+1

/

∑

n≥0

bnz
2n, (13)

where

an =
(−1)n(2n+ 3)

n!Γ((n+ 1)ρ+ β)
and bn =

(−1)n(2n+ 1)

n!Γ(nρ+ β)
.

Comparing the coefficients of (12) and (13) we obtain

δ1b0 = a0, δ2b0 + δ1b1 = a1, δ3b0 + δ2b1 + δ1b2 = a2,

which yields the following Rayleigh sums

δ1 =
3Γ(β)

Γ(ρ+ β)
, δ2 =

9Γ2(β)

Γ2(ρ+ β)
− 5Γ(β)

Γ(2ρ+ β)
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and

δ3 =
27Γ3(β)

Γ3(ρ+ β)
− 45

2

Γ2(β)

Γ(ρ+ β)Γ(2ρ+ β)
+

7

2

Γ(β)

Γ(3ρ+ β)
.

By using Euler-Rayleigh inequalities δ
− 1

k

k < γ2ρ,β,1 <
δk

δk+1
, k ∈ {1, 2}, we obtain

√

Γ(ρ+ β)

3Γ(β)
< r⋆(gρ,β) <

√

3Γ(ρ+ β)Γ(2ρ+ β)

∆9,5(ρ, β)
,

4

√

Γ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆9,5(ρ, β)
< r⋆(gρ,β)

<

√

2Γ(ρ+ β)Γ(3ρ+ β)∆9,5(ρ, β)

9Γ(β)Γ(3ρ+ β)∆6,5(ρ, β) + 7Γ3(ρ+ β)Γ(2ρ+ β)
.

Theorem 4. For ρ, β > 0, the radius of starlikeness r⋆(hρ,β) satisfies

Γ(ρ+ β)

2Γ(β)
< r⋆(hρ,β) <

2Γ(ρ+ β)Γ(2ρ+ β)

∆4,3(ρ, β)
,

√

Γ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆4,3(ρ, β)
< r⋆(hρ,β)

<
Γ(ρ+ β)Γ(3ρ+ β)∆4,3(ρ, β)

Γ(β)Γ(3ρ+ β)∆8,9(ρ, β) + 2Γ3(ρ+ β)Γ(2ρ+ β)
.

Proof. If we take α = 0 in the third part of Theorem 1, then we conclude that the
radius of starlikeness of the function hρ,β is actually the smallest positive root of the
transcendental equation (zλρ,β(

√
z))′ = 0. Therefore, it is of interest to study the

first positive zero of

Ωρ,β(z) = (zλρ,β(
√
z))′ =

∑

n≥0

(−1)n(n+ 1)

n!Γ(nρ+ β)
zn. (14)

In view of Lemma 1 and because of the fact that LP is closed under differentiation,
the function Ωρ,β also belongs to the Laguerre-Pólya class. Assume that σρ,β,n are
the positive zeros of the function Ωρ,β . Thus, due to the Hadamard factorization
theorem, the expression Ωρ,β(z) can be written as

Γ(β)Ωρ,β(z) =
∏

n≥1

(

1− z

αρ,β,n

)

. (15)

By taking the logarithmic derivative of both sides of (15) we have

Ω′
ρ,β(z)

Ωρ,β(z)
= −

∑

k≥0

ηk+1z
k, |z| < σρ,β,1, (16)
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where ηk =
∑

n≥1 σ
−k
ρ,β,n. Also, by taking the derivative of (14) we get

Ω′
ρ,β(z)

Ωρ,β(z)
= −

∑

n≥0

cnz
n

/

∑

n≥0

dnz
n, (17)

where

cn =
(−1)n(n+ 2)

n!Γ((n+ 1)ρ+ β)
dn =

(−1)n(n+ 1)

n!Γ(nρ+ β)
.

Comparing the coefficients of (16) and (17) we get the following Rayleigh sums

η1 =
2Γ(β)

Γ(ρ+ β)
, η2 =

4Γ2(β)

Γ2(ρ+ β)
− 3Γ(β)

Γ(2ρ+ β)

and

η3 =
8Γ3(β)

Γ3(ρ+ β)
+

2Γ(β)

Γ(3ρ+ β)
− 9Γ2(β)

Γ(ρ+ β)Γ(2ρ+ β)
,

and by using the Euler-Rayleigh inequalities η
−1/k
k < σρ,β,1 <

ηk

ηk+1
, for k ∈ {1, 2}

we get the inequalities of the theorem.

2.2. The radii of convexity of order α of functions fρ,β, gρ,β and

hρ,β

In this subsection, we present the radii of convexity of order α for functions fρ,β ,
gρ,β and hρ,β . In addition, we find tight lower and upper bounds for the radii of
convexity of order zero for the functions gρ,β and hρ,β .

Theorem 5. Let ρ > 0, β > 0 and α ∈ [0, 1).

a. The radius of convexity of order α of fρ,β is the smallest positive root of

1 +
rΨ′′

ρ,β(r)

Ψ′
ρ,β(r)

+

(

1

β
− 1

)

rΨ′
ρ,β(r)

Ψρ,β(r)
= α,

where Ψρ,β(z) = zβλρ,β(z).

b. The radius of convexity of order α of gρ,β is the smallest positive root of

1 +
rg′′ρ,β(r)

g′ρ,β(r)
= α.

c. The radius of convexity of order α of hρ,β is the smallest positive root of

1 +
rh′′ρ,β(r)

h′ρ,β(r)
= α.
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Proof. a. Observe that

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

= 1 +
zΨ′′

ρ,β(z)

Ψ′
ρ,β(z)

+

(

1

β
− 1

)

zΨ′
ρ,β(z)

Ψρ,β(z)
.

Now, we consider the following infinite product representations

Γ(β)Ψρ,β(z) = zβ
∏

n≥1

(

1− z2

ζ2ρ,β,n

)

, Γ(β)Ψ′
ρ,β(z) = zβ−1

∏

n≥1

(

1− z2

ζ′2ρ,β,n

)

,

where ζρ,β,n and ζ′ρ,β,n are the nth positive roots of Ψρ,β and Ψ′
ρ,β , respectively.

Note that ζρ,β,n is in fact equal to λρ,β,n; however since the zeros of λ′ρ,β and Ψ′
ρ,β

do not coincide, we use different notations for the zeros of the derivatives, and hence
also for the zeros of Ψρ,β. The logarithmic differentiation on both sides of the above
relations yields

zΨ′
ρ,β(z)

Ψρ,β(z)
= β −

∑

n≥1

2z2

ζ2ρ,β,n − z2
,

zΨ′′
ρ,β(z)

Ψ′
ρ,β(z)

= β − 1−
∑

n≥1

2z2

ζ′2ρ,β,n − z2
,

which implies that

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

= 1−
(

1

β
− 1

)

∑

n≥1

2z2

ζ2ρ,β,n − z2
−
∑

n≥1

2z2

ζ′2ρ,β,n − z2
.

By using inequality (4) for β ∈ (0, 1] we obtain that

Re

(

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

)

≥ 1−
(

1

β
− 1

)

∑

n≥1

2r2

ζ2ρ,β,n − r2
−
∑

n≥1

2r2

ζ′2ρ,β,n − r2
, (18)

where |z| = r. Moreover, in view of [7, Lemma 2.1], that is,

αRe

(

z

a− z

)

− Re

(

z

b− z

)

≥ α
|z|

a− |z| −
|z|

b− |z| ,

where a > b > 0, z ∈ C such that |z| < b, we obtain that (18) is also valid when
β > 1 for all z ∈ Dζ′

ρ,β,1
. Here we used tacitly that the zeros of ζρ,β,n and ζ′ρ,β,n

interlace according to Lemma 1, that is, we have ζ′ρ,β,1 < ζρ,β,1. Now, the above
deduced inequalities imply for r ∈ (0, ζ′ρ,β,1)

inf
z∈Dr

{

Re

(

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

)}

= 1 + r
f ′′
ρ,β(r)

f ′
ρ,β(r)

.

On the other hand, the function uρ,β : (0, ζ′ρ,β,1) → R, defined by

uρ,β(r) = 1 +
rf ′′

ρ,β(r)

f ′
ρ,β(r)

,
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is strictly decreasing when β ∈ (0, 1]. Moreover, it is also strictly decreasing when
β > 1 since

u′ρ,β(r) = −
(

1

β
− 1

)

∑

n≥1

4rζ2ρ,β,n
(ζ2ρ,β,n − r2)2

−
∑

n≥1

4rζ′2ρ,β,n
(ζ′2ρ,β,n − r2)2

<
∑

n≥1

4rζ2ρ,β,n
(ζ2ρ,β,n − r2)2

−
∑

n≥1

4rζ′2ρ,β,n
(ζ′2ρ,β,n − r2)2

< 0

for r ∈ (0, ζ′ρ,β,1). Here we used the interlacing property of the zeros stated in Lemma
1. Observe also that limrց0 uρ,β(r) = 1 and limrրζ′

ρ,β,1
uρ,β(r) = −∞, which means

that for z ∈ Dr1 we get

Re

(

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

)

> α

if and only if r1 is the unique root of

1 +
rf ′′

ρ,β(r)

f ′
ρ,β(r)

= α

situated in (0, ζ′ρ,β,1).
b. Since gρ,β ∈ LP , it follows that g′ρ,β ∈ LP , and since their growth orders

(which coincide according to the theory of entire functions) are equal to (ρ + 1)−1,
via the Hadamard theorem we get the Weierstrassian canonical representation

g′ρ,β(z) =
∏

n≥1

(

1− z2

ϑ2ρ,β,n

)

.

The logarithmic derivation of both sides yields

1 +
zg′′ρ,β(z)

g′ρ,β(z)
= 1−

∑

n≥1

2z2

ϑ2ρ,β,n − z2
.

Application of inequality (4) implies that

Re

(

1 +
zg′′ρ,β(z)

g′ρ,β(z)

)

≥ 1−
∑

n≥1

2r2

ϑ2ρ,β,n − r2
,

where |z| = r. Thus, for r ∈ (0, ϑρ,β,1), we get

inf
z∈Dr

{

Re

(

1 +
zg′′ρ,β(z)

g′ρ,β(z)

)}

= 1−
∑

n≥1

2r2

ϑ2ρ,β,n − r2
= 1 +

rg′′ρ,β(r)

g′ρ,β(r)
.

The function vρ,β : (0, ϑρ,β,1) → R defined by

lim
rց0

vρ,β(r) = 1, lim
rրϑρ,β,1

vρ,β(r) = −∞.
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Consequently, the equation

1 +
rg′′ρ,β(r)

g′ρ,β(r)
= α

has a unique root r2 in (0, ϑρ,β,1). In other words, we have

Re

(

1 +
zg′′ρ,β(z)

g′ρ,β(z)

)

> α, z ∈ Dr2 and inf
z∈Dr2

{

Re

(

1 +
zg′′ρ,β(z)

g′ρ,β(z)

)}

= α.

c. By using again the fact that the zeros of the Wright function λρ,β are all real
and in view of the Hadamard theorem, we obtain

h′ρ,β(z) =
∏

n≥1

(

1− z

τρ,β,n

)

,

which implies that

1 +
zh′′ν(z)

h′ν(z)
= 1−

∑

n≥1

z

τρ,β,n − z
.

Let r ∈ (0, τρ,β,1) be a fixed number. The minimum principle for harmonic functions
and inequality (4) imply that for z ∈ Dr we have

Re

(

1 +
zh′′ρ,β(z)

h′ρ,β(z)

)

= Re



1−
∑

n≥1

z

τρ,β,n − z



 ≥ min
|z|=r

Re



1−
∑

n≥1

z

τρ,β,n − z





= min
|z|=r



1−
∑

n≥1

Re
z

τρ,β,n − z





≥ 1−
∑

n≥1

r

τρ,β,n − r
= 1 +

rh′′ν (r)

h′ν(r)
.

Consequently, it follows that

inf
z∈Dr

{

Re

(

1 +
zh′′ρ,β(z)

h′ρ,β(z)

)}

= 1 +
rh′′ρ,β(r)

h′ρ,β(r)
.

Now, let r3 be the smallest positive root of the equation

1 +
rh′′ρ,β(r)

h′ρ,β(r)
= α (19)

For z ∈ Dr3 , we have

Re

(

1 +
zh′′ρ,β(z)

h′ρ,β(z)

)

> α.

In order to finish the proof, we need to show that equation (19) has a unique root
in (0, τρ,β,1) . But, equation (19) is equivalent to

wν(r) = 1− α−
∑

n≥1

r

τρ,β,n − r
= 0,
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and we have

lim
rց0

wν(r) = 1− α > 0, lim
rրτρ,β,1

wν(r) = −∞.

Now, since the function wν is strictly decreasing on (0, τρ,β,1), it follows that the
equation wν(r) = 0 has a unique root.

Now, we present some lower and upper bounds for the radii of convexity of the
functions gρ,β and hρ,β by using the corresponding Euler-Rayleigh inequalities.

Theorem 6. For ρ, β > 0, the radius of convexity rc(gρ,β) of the function gρ,β is
the smallest positive root of the equation (zg′ρ,β(z))

′ = 0 and it satisfies the following
inequalities

√

Γ(ρ+ β)

9Γ(β)
< rc(gρ,β) <

√

9Γ(ρ+ β)Γ(2ρ+ β)

∆81,25(ρ, β)
,

4

√

Γ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆81,25(ρ, β)
< rc(gρ,β)

<

√

2Γ(ρ+ β)Γ(3ρ+ β)∆81,25(ρ, β)

Γ(β)Γ(3ρ+ β)∆1458,675(ρ, β) + 49Γ3(ρ+ β)Γ(2ρ+ β)
.

Proof. By using the infinite series representations of the Wright function and its
derivative we obtain

Θρ,β(z) = (zg′ρ,β)
′ = 1 +

∑

n≥1

(−1)n(2n+ 1)2Γ(β)

n!Γ(nρ+ β)
z2n.

We know that the function gρ,β belongs to the Laguerre-Pólya class and LP is closed
under differentiation. Thus, the function Θρ,β also belongs to the Laguerre-Pólya
class and hence its zeros are all real. Assume that ςρ,β,n are the positive zeros of the
function Θρ,β . The function Θρ,β can be written as follows

Θρ,β(z) =
∏

n≥1

(

1− z2

ς2ρ,β,n

)

,

which for |z| < ςρ,β,1 yields

Θ′
ρ,β(z)

Θρ,β(z)
= −2

∑

n≥1

z

ς2ρ,β,n − z2
= −2

∑

k≥0

∑

n≥1

z2k+1

ς2k+2
ρ,β,n

= −2
∑

k≥0

κk+1z
2k+1, (20)

where κk =
∑

n≥1 ς
−2k
ρ,β,n. On the other hand, we have

Θ′
ρ,β(z)

Θρ,β(z)
= −2

∑

n≥0

qnz
2n+1

/

∑

n≥0

rnz
2n, (21)
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where

qn =
(−1)n(2n+ 3)2Γ(β)

n!Γ((n+ 1)ρ+ β)
rn =

(−1)n(2n+ 1)2Γ(β)

n!Γ(nρ+ β)
.

By comparing the coefficients of (20) and (21) we obtain

κ1 =
9Γ(β)

Γ(ρ+ β)
, κ2 =

81Γ2(β)

Γ2(ρ+ β)
− 25Γ(β)

Γ(2ρ+ β)

and

κ3 =
729Γ3(β)

Γ3(ρ+ β)
+

49

2

Γ(β)

Γ(3ρ+ β)
− 675

2

Γ2(β)

Γ(ρ+ β)Γ(2ρ+ β)
.

By using the Euler-Rayleigh inequalities κ
−1/k
k < ς2ρ,β,1 <

κk

κk+1
for k ∈ {1, 2} we

obtain the inequalities of the theorem.

Theorem 7. For ρ, β > 0, the radius of convexity rc(hρ,β) of the function hρ,β is
the smallest positive root of the equation (zh′ρ,β(z))

′ = 0 and it satisfies the following
inequalities

Γ(ρ+ β)

4Γ(β)
< rc(hρ,β) <

4Γ(ρ+ β)Γ(2ρ+ β)

∆16,9(ρ, β)
,

√

Γ2(ρ+ β)Γ(2ρ+ β)

Γ(β)∆16,9(ρ, β)
< rc(hρ,β)

<
Γ(ρ+ β)Γ(3ρ+ β)∆16,9(ρ, β)

8Γ3(ρ+ β)Γ(2ρ+ β) + 2Γ(β)Γ(3ρ+ β)∆32,27(ρ, β)
.

Proof. By definition we have

ωρ,β(z) = (zh′ρ,β(z))
′ = 1 +

∑

n≥1

(−1)n(n+ 1)2Γ(β)

n!Γ(nρ+ β)
zn. (22)

Moreover, we know that hρ,β belongs to the Laguerre-Pólya class LP , and conse-
quently the function ωρ,β also belongs to the Laguerre-Pólya class. In other words,
the zeros of the function ωρ,β are all real. Assume that ̺ρ,β,n are the positive ze-
ros of the function ωρ,β. In this case, the function ωρ,β has the infinite product
representation as follows:

ωρ,β(z) =
∏

n≥1

(

1− z

̺ρ,β,n

)

. (23)

By taking the logarithmic derivative of both sides of (23) for |z| < ̺ρ,β,1 we have

ω′
ρ,β(z)

ωρ,β(z)
= −

∑

k≥0

µk+1z
k, (24)
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where µk =
∑

n≥1 ̺
−k
ρ,β,n. In addition, by using the derivative of the infinite sum

representation of (22) we obtain

ω′
ρ,β(z)

ωρ,β(z)
= −

∑

n≥0

tnz
n

/

∑

n≥0

snz
n, (25)

where

tn =
(−1)n(n+ 2)2Γ(β)

n!Γ((n+ 1)ρ+ β)
sn =

(−1)n(n+ 1)2Γ(β)

n!Γ(nρ+ β)
.

By comparing the coefficients of (24) and (25) we get

µ1 =
4Γ(β)

Γ(ρ+ β)
, µ2 =

16Γ2(β)

Γ2(ρ+ β)
− 9Γ(β)

Γ(2ρ+ β)

and

µ3 =
64Γ3(β)

Γ3(ρ+ β)
+

8Γ(β)

Γ(3ρ+ β)
− 54Γ2(β)

Γ(ρ+ β)Γ(2ρ+ β)
.

By considering the Euler-Rayleigh inequalities µ
−1/k
k < ̺ρ,β,1 <

µk

µk+1
, k ∈ {1, 2}, we

have the inequalities of the theorem.

2.3. Some particular cases of the main results

It is important to mention that the Wright function is actually a generalization of a
transformation of the Bessel function of the first kind. Namely, we have the relation

λ1,1+ν(z) = φ(1, 1 + ν,−z2) = z−νJν(2z),

where Jν stands for the Bessel function of the first kind and order ν. Taking this into
account, it is clear that Theorem 1, in particular when ρ = 1 and β = ν+1 , reduces
to some interesting results, and one of them naturally complements the results from
[4, Theorem 1]. The result on f1,ν+1 is new and complements [4, Theorem 1];
however, the results on g1,ν+1 and h1,ν+1 are not new, they were proved in [4,
Theorem 1]. Thus the last two parts of Theorem 1 are natural generalizations of
parts b and c of [4, Theorem 1].

Corollary 1. Let ν > −1 and α ∈ [0, 1).

a. The radius of starlikeness of order α of f1,ν+1(z) = (Γ(ν + 1)zJν(2z))
1

ν+1 is
the smallest positive root of the equation

2zJ ′
ν(2z) + (1− α(ν + 1))Jν(2z) = 0.

b. The radius of starlikeness of order α of g1,ν+1(z) = Γ(ν + 1)z1−νJν(2z) is the
smallest positive root of the equation

2zJ ′
ν(2z) + (1− α− ν)Jν(2z) = 0.
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c. The radius of starlikeness of order α of h1,ν+1(z) = Γ(ν + 1)z1−
ν
2 Jν(2

√
z) is

the smallest positive root of the equation

2
√
zJ ′

ν(2
√
z) + (2− 2α− ν)Jν(2

√
z) = 0.

By choosing the values ρ = 1 and β = ν+1 in Theorem 2 we obtain the following
corollary.

Corollary 2. If ν > −1, then we have

√

ν + 1

ν + 3
< r⋆(f1,ν+1) < (ν + 1)

√

(ν + 2)(ν + 3)

ν3 + 7ν2 + 15ν + 13
,

4

√

(ν + 1)3(ν + 2)

ν3 + 7ν2 + 15ν + 13
< r⋆(f1,ν+1)

< (ν + 1)

√

2(ν + 3)(ν3 + 7ν2 + 15ν + 13)

ν5 + 15ν4 + 80ν3 + 222ν2 + 319ν + 196
.

Now, by using the relation between the Wright function and the Bessel function
of the first kind we can see that our main results, which are given in Theorem 3
and Theorem 4 when we take ρ = 1 and β = ν + 1, correspond to the results in [2,
Theorem 1] and [2, Theorem 2].

Corollary 3. If ν > −1, then we have

√

ν + 1

3
< r⋆(g1,ν+1) <

√

3(ν + 1)(ν + 2)

4ν + 13
,

4

√

(ν + 1)2(ν + 2)

4ν + 13
< r⋆(g1,ν+1) <

√

(ν + 1)(ν + 3)(4ν + 13)

2(4ν2 + 26ν + 49)
.

Consider the function z 7→ ϕν(z) = 2νΓ(ν + 1)z1−νJν(z), which is a normalized
Bessel function of the first kind, considered in [2, Theorem 1]. Since ϕν(2z) =
2g1,ν+1(z), we obtain that the above inequalities coincide with the inequalities of [2,
Theorem 1].

Corollary 4. If ν > −1, then we have

ν + 1

2
< r⋆(h1,ν+1) <

2(ν + 1)(ν + 2)

ν + 5
,

(ν + 1)
√
ν + 2√

ν + 5
< r⋆(h1,ν+1) <

(ν + 1)(ν + 3)(ν + 5)

ν2 + 8ν + 23
.

By considering that φν(4z) = 4h1,ν+1(z), where Φν(z) = 2νΓ(ν+1)z1−
ν
2 Jν(

√
z),

we can see that the above inequalities correspond to the results of [2, Theorem 2].
Finally, we mention that if we take ρ = 1, β = ν + 1 with ν > −1 in Theorem 6

and Theorem 7, we can see that the following inequalities correspond to the results
which are given in [1, Theorem 6] and [1, Theorem 7], respectively.
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Corollary 5. If ν > −1, then we have

√
ν + 1

3
< rc(g1,ν+1) < 3

√

(ν + 1)(ν + 2)

56ν + 137
,

4

√

(ν + 1)2(ν + 2)

56ν + 137
< rc(g1,ν+1) <

√

(ν + 1)(ν + 3)(56ν + 137)

2(208ν2 + 1172ν + 1693)
.

Corollary 6. If ν > −1, then we have

ν + 1

4
< rc(h1,ν+1) <

4(ν + 1)(ν + 2)

7ν + 23
,

√

(ν + 1)2(ν + 2)

7ν + 23
< rc(h1,ν+1) <

(ν + 1)(ν + 3)(7ν + 23)

2(9ν2 + 60ν + 115)
.

2.4. Problems for further research

It is interesting to see how far the properties of Bessel functions of the first kind may
be extended to apply to the Wright function. In this paper, we can see that those
properties of Bessel functions which come from the fact that they are entire can be
extended to the Wright function without a major difficulty. However, we would like
to see whether other properties of Bessel functions of the first kind can be extended
to Wright functions or not. Here is a short list of possible open questions/problems,
which are worth studying:

1. What can we say about the monotonicity of the zeros λρ,β,n with respect to β
(or ρ)? The answer to this question would ensure that it would be possible
to obtain necessary and sufficient conditions on the parameters ρ and β such
that the normalized forms of the Wright function belong to a certain class
of univalent functions, like starlike, convex or spirallike. Such kind of results
would improve the existing results in the literature (see [20, 21, 22, 23, 24, 25]).

2. Is it possible to express the derivative of the zeros λρ,β,n with respect to β (or
ρ) for fixed n? In [7], the Watson formulae for the derivative of the zeros of the
Bessel function of the first kind and its derivative played an important role in
obtaining necessary conditions for the order of normalized Bessel functions of
the first kind such that these functions belong to the class of convex functions.

3. Is it possible to use continued fractions to obtain the order of starlikeness and
convexity of normalized Wright functions?

Each of the above problems seems to be difficult to solve because the Wright function
is not a solution of a second order homogeneous linear differential equation (as the
Bessel function) and although its power series structure is similar to that of Bessel
functions, it seems that its properties are more difficult to be studied.
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[5] Á. Baricz, H.Orhan, R. Szász, The radius of α-convexity of normalized Bessel func-

tions of the first kind, Comput. Methods Funct. Theory 16(2016), 93–103.
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