Un upper bound for Kullback-Leibler divergence with a small number of outliers

Alexander Gofman ${ }^{1}$ and Mark Kelbert ${ }^{2, *}$
${ }^{1}$ Faculty of Economics, Moscow Economics National Research University, 20
Myasnitskaya str., Moscow, 101 000, RF
${ }^{2}$ Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK

Received November 24, 2011; accepted October 22, 2012

Abstract

We establish a new upper bound for the Kullback-Leibler divergence of two discrete probability distributions which are close in a sense that typically the ratio of probabilities is nearly one and the number of outliers is small. AMS subject classifications: 94A17, 62B10

Key words: Kullback-Leibler divergence, relative entropy, mutual information, information inequality

1. Introduction

Let $\mathbb{P}=\left(p_{i}\right)$ and $\mathbb{Q}=\left(q_{i}\right)$ be two probability distributions on the set $\mathcal{R}=$ $\{1,2, \ldots, r\}$ and

$$
\begin{equation*}
D(\mathbb{P} \| \mathbb{Q})=\sum_{i=1}^{r} p_{i} \ln \frac{p_{i}}{q_{i}} \tag{1}
\end{equation*}
$$

the Kullback-Leibler divergence between these distributions (cf. [1, 3]). The problem of obtaining good upper and lower bounds for the relative entropy attracts considerable interest in information theory (see $[1-4]$). We present here two famous upper bounds (see proofs in [2]):

$$
\begin{equation*}
D(\mathbb{P} \| \mathbb{Q}) \leq \min \left[\sum_{i=1}^{r} \frac{p_{i}^{2}}{q_{i}}-1, \sum_{i=1}^{r} \sqrt{\frac{p_{i}}{q_{i}}}\left|p_{i}-q_{i}\right|\right] \tag{2}
\end{equation*}
$$

In the case $\left|\frac{p_{i}}{q_{i}}-1\right| \leq \epsilon$ for all i the first bound gives an estimate of order $O(\epsilon)$. In the second bound the distributions should be close in the \mathbf{L}_{1} sense. We present here a new upper bound for $D(\mathbb{P} \| \mathbb{Q})$ of the first type. However, we achieve the order of approximation $O\left(\epsilon^{2}\right)$ and also allow a possibility of outliers for \mathbb{P} and \mathbb{Q} with a small total mass. We say that $(\mathbb{P}, \mathbb{Q}) \in \mathcal{C}(\epsilon, \delta, c, d)$ if there exists a partition $\mathcal{R}=\mathcal{R}_{1} \cup \mathcal{R}_{2}$ where \mathcal{R}_{1} is called a regular set and \mathcal{R}_{2} is the set of outliers with the following properties. Assume that for some $\epsilon, \delta>0$ and some constant $0<c<1<d<\infty$

[^0]\[

$$
\begin{equation*}
\left|\frac{q_{i}}{p_{i}}-1\right| \leq \epsilon \forall i \in \mathcal{R}_{1}, \sum_{j \in \mathcal{R}_{2}} q_{j}=\delta, c \leq \frac{q_{j}}{p_{j}} \leq d \forall j \in \mathcal{R}_{2} \tag{3}
\end{equation*}
$$

\]

The main result is the upper bound of the Kullback-Leibler divergence for small enough $\epsilon, \delta>0$:

Theorem 1. For any $(\mathbb{P}, \mathbb{Q}) \in \mathcal{C}(\epsilon, \delta, c, d)$

$$
\begin{equation*}
0 \leq D(\mathbb{P} \| \mathbb{Q}) \leq \phi(\epsilon)+\psi(\epsilon, \delta) \tag{4}
\end{equation*}
$$

where $\phi(\epsilon)=\frac{1}{2} \epsilon^{2}+0\left(\epsilon^{3}\right), \psi(\epsilon, \delta) \leq C \delta$ for ϵ, δ small enough, and $C=2 d-c-1+\ln \frac{1}{c}$.
Explicit formulas for the functions ϕ and ψ are presented in $(12 a, b)$.
Corollary 1. Suppose that the joint distribution $P_{X, Y}$ on $\mathcal{R}^{\times 2}$ of random variables X and Y satisfies for all i, j the inequality

$$
\left|p_{X, Y}(i, j) / p_{X}(i) p_{Y}(j)-1\right| \leq \epsilon
$$

Then the mutual information between X and Y

$$
I(X: Y)=D\left(p_{X, Y} \| p_{X} \times p_{Y}\right) \leq \phi(\epsilon)
$$

2. Bound on the ratio of arithmetic and geometric means

Let $0<c<a<b<d<\infty, x_{i} \in[a, b], i=1, \ldots, r_{1}, y_{j} \in[c, a) \cup(b, d], j=$ $1, \ldots, r_{2}$ and $\sum_{j=1}^{r_{2}} y_{j}=\delta, r=r_{1}+r_{2}$. Following the strategy used in [5], write $x_{i}=\lambda_{i} a+\left(1-\lambda_{i}\right) b$ and $y_{j}=\mu_{j} c+\left(1-\mu_{j}\right) d$ with $0 \leq \lambda_{i}, \mu_{j} \leq 1$. Then for any distribution \mathbb{P} on \mathcal{R} and any convex function f on $[c, d]$

$$
\begin{equation*}
0 \leq \sum_{i=1}^{r_{1}+r_{2}} p_{i} f\left(t_{i}\right)-f\left(\sum_{i=1}^{r_{1}+r_{2}} p_{i} t_{i}\right)=S-T \tag{5}
\end{equation*}
$$

with $t_{i} \in\left\{x_{i}\right\} \cup\left\{y_{j}\right\}$. Let us estimate the first sum as follows

$$
\begin{aligned}
S & \leq \sum_{i=1}^{r_{1}} p_{i}\left(\lambda_{i} f(a)+\left(1-\lambda_{i}\right) f(b)\right)+\sum_{i=1}^{r_{2}} p_{i}\left(\mu_{i} f(c)+\left(1-\mu_{i}\right) f(d)\right) \\
& =(f(a)-f(b)) p_{\lambda}+f(b)(1-\delta)+(f(c)-f(d)) p_{\mu}+f(d) \delta
\end{aligned}
$$

with $p_{\lambda}=\sum_{i=1}^{r_{1}} p_{i} \lambda_{i}, p_{\mu}=\sum_{j=1}^{r_{2}} p_{j} \mu_{j} \leq \delta$.
If we select the convex function as $f(x)=-\ln x$ inequality (5) may be considered as a logarithmic form of the inequality for the ratio of arithmetic and geometric means. We proceed by specifying the second term

$$
-T=\ln \left((a-b) p_{\lambda}+b(1-\delta)+(c-d) p_{\mu}+d \delta\right)
$$

and using the Taylor expansion

$$
-T=\ln \left((a-b) p_{\lambda}+b(1-\delta)+d \delta\right)+\frac{1}{\xi}(c-d) p_{\mu}
$$

with $(a-b) p_{\lambda}+b(1-\delta)+d \delta+(c-d) p_{\mu}<\xi<(a-b) p_{\lambda}+b(1-\delta)+d \delta$. So, the RHS of (5) for the function $f(x)=-\ln x$ is estimated as follows:

$$
\begin{equation*}
S-T \leq\left(\ln \frac{b}{a}\right) p_{\lambda}+\left(\ln \frac{d}{c}\right) p_{\mu}+C_{1}+\ln \left[(a-b) p_{\lambda}+b(1-\delta)+d \delta\right]-\frac{d-c}{\xi} p_{\mu} \tag{6}
\end{equation*}
$$

with $C_{1}=-(1-\delta) \ln b-\delta \ln d$. An upper bound will be obtained if we estimate ξ from above $\xi<b(1-\delta)+d \delta$ as $c<d$. This result provides an upper bound which is a linear function of p_{μ} :

$$
\begin{equation*}
S-T \leq\left(\ln \frac{b}{a}\right) p_{\lambda}+K(d, c, b, \delta) p_{\mu}+C_{1}+\ln \left[(a-b) p_{\lambda}+b(1-\delta)+d \delta\right] \tag{7}
\end{equation*}
$$

In case the coefficient

$$
K=K(d, c, b, \delta)=\ln \frac{d}{c}-\frac{d-c}{b(1-\delta)+d \delta}>0
$$

an upper bound is obtained by selecting $p_{\mu}=\delta$. In the case $K<0$ we select $p_{\mu}=0$. In any case, the term proportional to p_{μ} does not depend on p_{λ} and the value p_{λ}^{*} maximizing the RHS in (7) is the solution of equation

$$
\begin{equation*}
\ln b-\ln a+\frac{a-b}{(a-b) p_{\lambda}+b(1-\delta)+d \delta}=0, \text { i.e. } p_{\lambda}^{*}=\frac{b(1-\delta)+d \delta}{b-a}-\frac{1}{\ln b-\ln a} \tag{8}
\end{equation*}
$$

It is straightforward to check that the second derivative is negative at p_{λ}^{*}. Next, note that

$$
p_{\lambda}^{*}>\frac{b}{b-a}-\frac{1}{\ln b-\ln a}>0
$$

and $p_{\lambda}^{*}<1-\delta$ for $\delta<\delta^{*}=\frac{1}{d-a}\left(\frac{b-a}{\ln b-\ln a}-a\right)$.
Let $L(a, b)=\frac{b-a}{\ln b-\ln a}$. Combining all results together we obtain that

$$
\begin{equation*}
S-T \leq \ln \Lambda(a, b)+\delta \Gamma(a, b, c, d, \delta) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\ln \Lambda(a, b)=\frac{b}{L(a, b)}-1-\ln b+\ln (L(a, b)) \tag{10}
\end{equation*}
$$

The function $\Lambda(a, b)$ in first term may be represented as follows (cf. [5]):

$$
\Lambda(a, b)=a b L(a, b) / G^{2}(a, b), G(a, b)=\frac{1}{e}\left(b^{b} / a^{a}\right)^{1 /(b-a)}
$$

in the case $K(d, c, b, \delta)>0$ we have

$$
\begin{equation*}
\Gamma(a, b, c, d, \delta)=\frac{(d-a) \ln b-(d-b) \ln a}{b-a}-\ln c+\frac{d-c}{b+(d-b) \delta} \tag{11a}
\end{equation*}
$$

and in the case $K(d, c, b, \delta) \leq 0$

$$
\begin{equation*}
\Gamma(a, b, c, d, \delta)=\frac{(d-a) \ln b-(d-b) \ln a}{b-a}-\ln c \tag{11b}
\end{equation*}
$$

Observe that $\Gamma(a, b, c, d, \delta)>0$ in both cases.

3. Proof of the Theorem 1

Let us apply the results of the previous section with $t_{i}=\frac{q_{i}}{p_{i}}, a=1-\epsilon, b=1+\epsilon$. By straightforward calculations the expression in (10) admits the expansion

$$
\ln \Lambda(1-\epsilon, 1+\epsilon)=\epsilon+\frac{1}{3} \epsilon^{2}-\epsilon+\frac{1}{2} \epsilon^{2}-\frac{1}{3} \epsilon^{2}+\ldots=\frac{1}{2} \epsilon^{2}+\ldots
$$

For ϵ small enough both expressions in (11a,b) are bounded by $2 d-c-1+\ln \frac{1}{c}$ by inspection. Now the Theorem follows from (9) with

$$
\begin{equation*}
\phi(\epsilon)=(1+\epsilon) F(\epsilon)^{-1}-1-\ln (1+\epsilon)-\ln F(\epsilon), \quad F(\epsilon)=\left(\ln \frac{1+\epsilon}{1-\epsilon}\right) / 2 \epsilon \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(\epsilon, \delta)=\delta\left[(d-1+\epsilon) F(\epsilon)-\ln c+\frac{d-c}{1+(d-1-\epsilon) \delta}\right] \tag{12b}
\end{equation*}
$$

References

[1] T. M. Cover, J. M. Thomas, Elements of Information Theory, Wiley, New York, 2006.
[2] S. S. Dragomir, V. GluščEvić, New estimates of the Kullback-Leibler distance and applications, in: Inequality Theory and Applications Vol. I, (Y. J. Cho, J. K. Kim and S. S. Dragomir, Eds.), Nova Sci. Publ., Huntington, NY, 2001, 123-137.
[3] M. Kelbert, Y. Suhov, Information Theory and Coding by Example, Cambridge Univ. Press, Cambridge, 2013.
[4] A. Sayyareh, A new upper bound for Kullback-Leibler divergence, Appl. Math. Sci. 67(2011), 3303-3317.
[5] S. Simic, Best possible global bounds for Jensen functional, AMS Proceedings 138(2010), 2457-2462.

[^0]: *Corresponding author. Email addresses: agofman@rambler.ru (A. Gofman), m.kelbert@swansea.ac.uk (M. Kelbert)

