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Abstract. The purpose of this paper is to introduce a new iterative algorithm for a semi-
group of nonexpansive operators in Hilbert space. We prove that the proposed iterative
algorithm converges strongly to the minimum-norm common fixed point of the semigroup
of nonexpansive operators. The results of this paper extend and improve some known
results in the literature.
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1. Introduction

Many problems in various branches of mathematical and physical sciences can be
reduced to finding a common fixed point in a given family of mappings. It is usually
called the common fixed point problem (hereinafter referred to as: CFPP), that is

Find x ∈ F :=
⋂
i∈I

Fix(Ti) 6= ∅, (1)

where Fix(Ti) denotes the fixed point set of Ti and I denotes the index of mappings
Ti. For example, if we take Ti = PCi

, for each i ∈ I, then the common fixed
point problem becomes a well-known convex feasibility problem (CFP) of finding
x ∈

⋂
i∈I Ci 6= ∅, where each Ci is a nonempty closed convex subset of Hilbert space

H and PΩ(x) is an orthogonal projection of a point x ∈ H onto a closed convex set
Ω ⊆ H which is defined by

PΩ(x) := arg min{‖x− z‖ | z ∈ Ω}, (2)

where ‖ · ‖ denotes the norm in H. A complete and exhaustive study on algorithms
and applications for solving the convex feasibility problem can be found in [3].

Throughout the paper, we always assume that F 6= ∅. Many iterative algorithms
have appeared to solve the CFPP (1). For a finite family of firmly nonexpansive
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mappings {Ti}i∈I , where I = {1, 2, · · · , N}, N ≥ 1 is an integer. Combettes [7]
introduced a simultaneous iterative algorithm as follows:

xn+1 = αnx0 + (1− αn)

(
λ
∑
i∈I

ωiTi(xn) + (1− λ)xn

)
, n ≥ 0, x0 ∈ C, (3)

where {αn} ⊂ (0, 1) satisfies

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn = +∞, (iii)

∞∑
n=0

|αn+1 − αn| < +∞. (4)

ωi ∈ (0, 1] for all i ∈ I,
∑

i∈I ωi = 1 and 0 < λ ≤ 2. Meanwhile, he defined a
sequential algorithm by

xn+1 = αnx0 + (1− αn)(T1 · · ·TN )(xn), n ≥ 0, x0 ∈ C, (5)

where {αn} is as in (4). He showed that any sequence {xn}n≥0 generated by both
algorithms (3) and (5) converges strongly to PFx0. Since every firmly nonexpansive
mapping is nonexpansive, Bauschke [2] proposed a sequential method to find the
common fixed point of a finite family of nonexpansive mappings. This iterative
algorithm has the following form.

xn+1 = αnu+ (1− αn)T[n]xn, n ≥ 0, u, x0 ∈ C, (6)

where [n] = n(mod N) + 1, the mod N function takes values in {1, 2, · · · , N}. He
proved the sequence generated by (6) converges in norm to PFu under assumptions
on the mappings that

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1TN−2 · · ·T1TN ), (7)

and {αn} is a sequence of parameters in (0, 1) which satisfies the following:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn = +∞, (iii)

∞∑
n=0

|αn − αn+N | < +∞. (8)

Remark 1. If {Ti}i∈I is a family of firmly nonexpansive mappings, then condition
(7) is naturally met (see Proposition 2.2 of [6]). Even to nonexpansive mappings,
by the results of [13] and [9], assumption (7) can be simplified by

F = Fix(TN · · ·T1). (9)

On the other hand, if I is a countable infinite set, Shimoji and Takahashi [11]
investigated the following iterative algorithm.

xn+1 = αnx0 + (1− αn)Wn(λnx0 + (1− λn)xn), n ≥ 0, x0 ∈ C, (10)

where Wn is a W -mapping defined by (16) below, {αn} ⊂ (0, 1) and {λn} ⊂ (0, 1)
satisfy limn→∞ αn = limn→∞ λn = 0,

∏∞
n=0(1 − αn)(1 − λn) = 0 and

∑∞
n=0(|αn −
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αn+1|+ |λn− λn+1|) < +∞. They proved the sequence {xn}n≥0 converges strongly
to PFx0. When I is an unbounded subset of R+, where R+ denotes the set of non-
negative real numbers. Aleyner and Censor [1] introduced the following algorithm
for a family of nonexpansive semigroups {Tt | t ∈ I}.

xn+1 = αnu+ (1− αn)Trnxn, n ≥ 0, u, x0 ∈ C, (11)

where {αn} ⊂ (0, 1) satisfies the condition as in (4) and {rn}n≥0 ⊂ I is some
given sequence. If {Tt | t ∈ I} is a uniformly asymptotically regular semigroup of
a nonexpansive operator, they proved the sequence {xn}n≥0 converges strongly to
PFu. Suzuki [14] proved the sequence {xn}n≥0 generated by (11) converges strongly
to PFu with an assumption that {Tt | t ∈ I} is a one-parameter nonexpansive
semigroup and the sequences {αn} and {rn} satisfying

(i) 0 < αn < 1, 0 ≤ rn and sn := lim infm→∞ |tm − tn| > 0, for any n ≥ 0;

(ii) {rn} is bounded;

(iii) limn→∞ αn/sn = 0,

since these iterative algorithms not only have strong convergence, but also converge
to the projection of the starting point x0 or any point u onto F . In contrast to the
common fixed point problem, it is in addition called the best approximation problem
with respect to F . Consider the projection operator PFx

PFx = arg min{‖x− z‖ | z ∈ F},

where F is as in (1). Define x∗ := PF 0 = arg min{‖z‖ | z ∈ F}, i.e., x∗ is the
minimum-norm common fixed point of F . If 0 ∈ C, then the iterative algorithms
(3), (5), (6), (10) and (11) do the job to find the minimum-norm common fixed
point of

⋂
i∈I Fix(Ti). In fact, one can let x0 = 0 or u = 0. However, if 0 /∈ C,

then none of these algorithms work to find the minimum-norm element of F . In
order to overcome this difficulty caused by possible exclusion of the origin from C,
some authors have applied the metrical projection PC on the right-hand side of the
iterative algorithm (see for example [6, 10 – 12]). The role of the metrical projection
PC is to pull the substituted sequence back to C, then the iterative sequences are
well-defined. In these works, Liu and Cui [9] proposed two iterative algorithms, one
was sequential; the other is simultaneous.

(i) The sequential method.

xn+1 = PC

(
(1− tn)T[n+1]xn

)
, n ≥ 0, x0 ∈ C, (12)

where {tn} ⊂ (0, 1) satisfies the following properties: (i) limn→∞ tn = 0; (ii)∑∞
n=0 tn = +∞; (iii) either

∑∞
n=0 |tn − tn+N | < +∞ or limn→∞ tn/tn+N =

1. T[n] := Tn mod N with the mod N function taking values in the set
{1, 2, · · · , N}.

(ii) The simultaneous method.

xn+1 = PC

(
(1− tn)

N∑
i=1

λ
(n)
i Tixn

)
, n ≥ 0, x0 ∈ C, (13)
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where λ
(n)
i > 0 for all n ≥ 0, i = 1, 2, · · · , N , and

∑N
i=1 λ

(n)
i = 1 for all n

and satisfy (i)
∑∞

n=0

∑N
i=1 |λ

(n+1)
i − λ

(n)
i | < +∞, infn≥0 λ

(n)
i > 0 for all i;

(ii) limn→∞ tn = 0 and
∑∞

n=0 tn = +∞; (iii) either
∑∞

n=0 |tn+1 − tn| < +∞
or limn→∞(tn/tn+1) = 1. Assume that {Ti}Ni=1 satisfy condition (9), they
proved that the sequence {xn}n≥0 generated by the sequential method and
the simultaneous method converge strongly to the minimum-norm common
fixed point of the mappings {Ti}Ni=1.

Motivated and inspired by the above works, we introduce a new iterative algo-
rithm for finding the minimum-norm common fixed point of a nonexpansive semi-
group {Tt | t ∈ I}. The proposed algorithm combines the iterative algorithm given
by Aleyner and Censor [1] and Liu and Cui [9]. The sequence {xn} is generated by
the following recursive.

xn+1 = (1− αn)xn + αnPC((1− tn)Trnxn), n ≥ 0, x0 ∈ C, (14)

where the parameters {αn} and {tn} are sequences in (0, 1), {rn}n≥0 ⊂ I is some
given sequence. Furthermore, we present a new way to prove the strong convergence
of the iterative algorithm (14) under a mild assumption on the parameters and its
limit is also the minimum-norm common fixed point of a nonexpansive semigroup
{Tt | t ∈ I}.

2. Preliminaries

In this section we present definitions and some tools that will be used later on in
the proof of our main theorem. Throughout this paper, by R we denote the set of
real numbers and by R+ the set of nonnegative real numbers. Let H be a Hilbert
space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. In a Hilbert space, it is
known that for all x, y ∈ H and α ∈ R,

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (15)

Recall that the orthogonal projection PCx of x onto C is defined by the following

PCx = arg min
y∈C
‖x− y‖.

The orthogonal projection has the following well-known properties. For a given
x ∈ H,

(i) 〈x− PCx, z − PCx〉 ≤ 0, for all z ∈ C;

(ii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, for all x, y ∈ H.

In what follows, we give some definitions and lemmas.

Definition 1. Let C be a nonempty closed convex subset of H. T : C → C is called

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C,
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(ii) firmly nonexpansive if ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, for all x, y ∈ C.

Remark 2. It is easy to see that the projection operator is firmly nonexpansive, and
the firmly nonexpansive mapping is a nonexpansive mapping. The relations between
them can be expressed as the visual picture.

Projection operator =⇒ Firmly nonexpansive =⇒ Nonexpansive

Definition 2 (See [11]). Let C be a nonempty closed convex subset of Banach space
E. Let {Ti}∞i=1 be infinite mappings of C into themselves and let α1, α2, · · · be real
numbers such that 0 ≤ αi ≤ 1 for every i. For any n ≥ 1, define a mapping Wn of
C into itself as follows:

Un,n+1 = I,

Un,n = αnTnUn,n+1 + (1− αn)I,

Un,n−1 = αn−1Tn−1Un,n + (1− αn−1)I,

...

Un,k = αkTkUn,k+1 + (1− αk)I,

Un,k−1 = αk−1Tk−1Un,k + (1− αk−1)I,

...

Un,2 = α2T2Un,3 + (1− α2)I,

Wn = Un,1 = α1T1Un,2 + (1− α1)I,

(16)

where I is the identity mapping. Such a mapping Wn is called a W -mapping gener-
ated by Tn, Tn−1, · · · , T1 and αn, αn−1, · · · , α1.

A semigroup of nonexpansive operators could be recognized as special families
of nonexpansive operators, see [10] and others.

Definition 3. Let I be an unbounded subset of R+ such that
(i) t+ s ∈ I, for all t, s ∈ I, (ii) t− s ∈ I, for all t, s ∈ I

with t ≥ s, and let Γ = {Tt | t ∈ I} be a family of self-operators on a nonempty
closed convex subset C of H. The family Γ is called a semigroup of nonexpansive
operators on C if the following conditions hold:

(i) Tt is a nonexpansive self-operator on C, for all t ∈ I,

(ii) Tt+sx = TtTsx, for all t, s ∈ I and all x ∈ C.

In addition,

(iii) for each x ∈ C, the mapping t 7→ Ttx from [0,+∞) into C is strongly contin-
uous.

Then the family of mappings {Tt | t ∈ I} is called a one-parameter strongly continu-
ous semigroup of nonexpansive mappings (a one-parameter nonexpansive semigroup,
for short).
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The concept of a uniformly asymptotically regular semigroup of nonexpansive
operators can be found in [4, 5].

Definition 4. Let Γ = {Tt | t ∈ I} be a semigroup of nonexpansive operators
on a nonempty closed convex subset C of H. The family Γ is called a uniformly
asymptotically regular semigroup of nonexpansive operators on C if

lim
r→∞

(
sup
x∈C
‖TsTrx− Trx‖

)
= 0, (17)

uniformly for all s ∈ I.

As a matter of fact, condition (17) implies that there exists a monotone sequence
{rn}n≥0 ⊆ I such that

0 ≤ r0 ≤ r1 ≤ · · · ≤ rn ≤ · · · , and lim
n→∞

rn =∞, (18)

and
∞∑

n=0

sup
x∈C
‖TsTrnx− Trnx‖ < +∞, (19)

uniformly for all s ∈ I.
The following demiclosedness principle of a nonexpansive mapping played an

important role in our work. We denote strong or weak convergence by ” → ” or
” ⇀ ”, respectively.

Lemma 1. Let T : C → C a nonexpansive mapping with Fix(T ) 6= ∅. If xn ⇀ x
and (I − T )xn → 0, then x = Tx.

In order to prove the main results in this paper, we shall make use of the following
lemmas.

Lemma 2 (See [12]). Let {xn} and {yn} be bounded sequences in a Banach space
E and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = βnyn + (1− βn)xn for all n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 3 (See [15]). Let {an} be a sequence of nonnegative real sequences satisfying
the following inequality:

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=0 γn = +∞;

(2) lim supn→∞ δn ≤ 0 or
∑∞

n=0 |γnδn| < +∞.

Then limn→∞ an = 0.
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3. Main results

The main result of our work is the next convergence theorem for the iterative algo-
rithm (14). Now, we are in the position to prove the following theorem.

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Γ = {Tt | t ∈ I} be a uniformly asymptotically regular semigroup of nonexpansive
operators on C such that F :=

⋂
t∈I Fix(Tt) 6= ∅. Let the sequence {xn}n≥0 be

generated by the iterative algorithm (14), where {αn} and {tn} ⊂ (0, 1) satisfy the
conditions:

(i) limn→∞ tn = 0,
∑∞

n=0 tn = +∞;

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then any sequence {xn}n≥0 generated by (14) converges strongly to the minimum-
norm common fixed point of F .

Proof. We divide the proof into five steps.

Step 1. We prove that the sequence {xn}n≥0 is bounded. In fact, take p ∈ F ,
by (14), we have

‖xn+1 − p‖ = ‖(1− αn)(xn − p) + αn(PC((1− tn)Trnxn)− p)‖
≤ (1− αn)‖xn − p‖+ αn‖(1− tn)Trnxn − p‖
≤ (1− αn)‖xn − p‖+ αn(1− tn)‖xn − p‖+ αntn‖p‖
= (1− αntn)‖xn − p‖+ αntn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By induction, we get

‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, for all n ≥ 0.

Hence, {xn} is bounded. So is the sequence {Trnxn}. Let M > 0, such that
M ≥ supn≥0{‖xn‖, ‖Trnxn‖}.

Set zn := PC((1− tn)Trnxn), we obtain

‖zn − p‖ = ‖PC((1− tn)Trnxn)− p‖
≤ ‖(1− tn)Trnxn − p‖
≤ (1− tn)‖xn − p‖+ tn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

Since {xn} is bounded, we get that {zn} is also bounded.

Step 2. We show that ‖xn+1 − xn‖ → 0 as n → ∞. Let C̃ be any bounded
subset of C which contains the sequence {xn}n≥0. Since zn = PC((1 − tn)Trnxn),
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we get

‖zn+1 − zn‖ =‖PC((1− tn+1)Trn+1
xn+1)− PC((1− tn)Trnxn)‖

≤‖(1− tn+1)Trn+1
xn+1 − (1− tn)Trnxn‖

≤‖(1− tn+1)Trn+1
xn+1 − (1− tn+1)Trn+1

xn‖ (20)

+ ‖(1− tn+1)Trn+1
xn − (1− tn)Trnxn‖

≤(1− tn+1)‖xn+1 − xn‖+ ‖(1− tn+1)Trn+1
xn − (1− tn)Trn+1

xn‖
+ ‖(1− tn)Trn+1

xn − (1− tn)Trnxn‖
≤(1− tn+1)‖xn+1 − xn‖+ |tn − tn+1|M + (1− tn)‖Trn+1

xn − Trnxn‖.

Since Γ is a semigroup, and by using (18), we are able to rewrite the last term as
follows

‖Trn+1xn − Trnxn‖ = ‖Trn+1−rnTrnxn − Trnxn‖.

It follows that

‖zn+1− zn‖− ‖xn+1− xn‖ ≤ |tn− tn+1|M + (1− tn) sup
x∈C̃
‖Trn+1−rnTrnxn−Trnxn‖.

By using (19) and condition (i), we deduce that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

With the help of Lemma 2, we get

lim
n→∞

‖xn − zn‖ = 0.

Hence, from (14), we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

αn‖xn − zn‖ = 0.

Step 3. We show that for each fixed s ∈ I, ‖Tsxn−xn‖ → 0 as n→∞. In fact,

‖xn − Trnxn‖ ≤‖xn − xn+1‖+ ‖xn+1 − Trnxn‖
≤‖xn − xn+1‖+ (1− αn)‖xn − Trnxn‖

+ αn‖PC((1− tn)Trnxn)− Trnxn‖
≤‖xn − xn+1‖+ (1− αn)‖xn − Trnxn‖+ αntnM,

which implies that

‖xn − Trnxn‖ ≤
‖xn − xn+1‖

αn
+ tnM → 0 as n→∞. (21)

On the other hand, by using (19) and (21), we have

‖Tsxn − xn‖ ≤ ‖Tsxn − TsTrnxn‖+ ‖TsTrnxn − Trnxn‖+ ‖Trnxn − xn‖
≤ 2‖xn − Trnxn‖+ sup

x∈C̃
‖TsTrnxn − Trnxn‖ → 0 as n→∞. (22)
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Step 4. We prove that lim supn→∞〈x∗ − xn, x∗〉 ≤ 0, where x∗ = PF 0. Indeed,
we can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈x∗ − xn, x∗〉 = lim
j→∞
〈x∗ − xnj

, x∗〉.

Since {xnj} is bounded, there exists a subsequence of {xnj} which converges weakly
to a point x̃. Without loss of generality, we may assume that {xnj

} converges weakly
to x̃. Therefore, from (22) and Lemma 1, we have xnj

⇀ x̃ ∈ F . Since x∗ = PF 0, it
follows from the properties of the projection operator that

lim sup
n→∞

〈x∗ − xn, x∗〉 = 〈x∗ − x̃, x∗〉 ≤ 0. (23)

Step 5. Finally, we prove that xn → x∗. We observe that

〈x∗ − Trnxn, x∗〉 = 〈x∗ − xn, x∗〉+ 〈xn − Trnxn, x∗〉
≤ 〈x∗ − xn, x∗〉+ ‖xn − Trnxn‖‖x∗‖.

Taking the limsup on both sides of the above inequality, and together with (21),
(23), we get

lim sup
n→∞

〈x∗ − Trnxn, x∗〉 ≤ 0.

From (15) and (14), we have

‖xn+1 − x∗‖2 = ‖(1− αn)(xn − x∗) + αn(PC((1− tn)Trnxn)− x∗)‖2

≤ (1− αn)‖xn − x∗‖2 + αn‖PC((1− tn)Trnxn)− x∗‖
≤ (1− αn)‖xn − x∗‖2 + αn‖(1− tn)(Trnxn − x∗)− tnx∗‖2

= (1− αn)‖xn − x∗‖2 + αn(1− tn)2‖Trnxn − x∗‖2

+ 2αn(1− tn)tn〈x∗ − Trnxn, x∗〉+ αnt
2
n‖x∗‖2

≤ (1− αntn)‖xn − x∗‖2 + 2αn(1− tn)tn〈x∗−Trnxn, x∗〉+αnt
2
n‖x∗‖2.

It is clear that all conditions of Lemma 3 are satisfied. Therefore, we immediately
deduce that xn → x∗ as n→∞. This completes the proof.

Remark 3. Theorem 1 improves the results of Aleyner and Censor [1] by discarding
the assumption that ”

∑∞
n=0 |αn+1 − αn| < +∞”. The proposed iterative algorithm

(14) is a sequential algorithm which combines the Krasnoselskii-Mann algorithm with
iterative algorithm (12) for solving the minimum-norm common fixed point problem
with respect to the common fixed point set of infinitely countable or non-countable
families of nonexpansive mappings in a real Hilbert space. Therefore, Theorem 1 also
generalizes the corresponding results of Liu and Cui [9] and removes the conditions
on {tn} that ”

∑∞
n=0 |tn − tn+N | < +∞ or limn→∞ tn/tn+N = 1”.
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