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Abstract. In this paper, stability with respect to part of the variables of nonlinear Ca-
puto fractional differential equations is studied. Sufficient conditions of stability, uniform
stability, Mittag Leffler stability and asymptotic uniform stability of this type are obtained
within the method of Lyapunov-like functions.
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1. Introduction

The study of fractional order systems [8, 3] has gained importance in recent years.
Based on the concept of integration or differentiation of fractional order, several
dynamic systems are better described with fractional order model [6], for example,
in electromagnetic systems [5], dielectric polarization [17], economy [10] and image
processing [13].

Because of the development of science and complex engineering systems, previ-
ous research has documented the use of fractional calculus in many issues of control
theory, such as stability [4, 11, 14, 18]. Indeed, in [4], authors described an uniform
stability for fractional order systems using general quadratic Lyapunov functions.
In [11], Yan Li et al. presented the Mittag-Leffler stability of fractional order non-
linear dynamic systems. Furthermore, stability analysis of Hilfer fractional differ-
ential systems is shown in [14]. On the other hand, in [18], the authors described
the asymptotical stability of nonlinear fractional differential system with Caputo
derivative.

In this way, considerable attention has been paid to the concept of stability with
respect to part of the system’s states [12, 15]. Such concept for integer-order systems
was originally introduced by [16]. From then on, stability with respect to part of
the variables (SPV) analysis for integer-order systems has gained lots of attention
[1, 7, 12, 15]. For instance, in [1] authors presented an approach to SPV in systems
with impulse effect, and introduced sufficient conditions based on the Lyapunov
function to guarantee their main results.

However, to the best of our knowledge, no paper in the literature has tackled
the problem of SPV analysis for fractional order systems. By this fact, the main
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contribution of this paper is to study SPV of nonautonomous systems in the sense
of Caputo fractional derivative.

The remainder of this paper is organized as follows. In Section 2, necessary
notations and preliminaries are given. Sufficient conditions for stability, uniform
stability, asymptotic uniform stability and Mittag-Leffler stability with respect to
part of the variables of fractional nonautonomous systems are presented in Section
3. In Section 4, two illustrative examples are given.

2. Preliminaries

In this section, some notations and preliminary results are introduced.

Definition 1 (see [3]). Given an interval [a, b] of R, the Riemann-Liouville frac-
tional integral of a function x ∈ L1([a, b]) of order α > 0 is defined by

Iαa x(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ)dτ, t ∈ [a, b],

where Γ is the Gamma function.
For α = 0, I0a := I, the identity operator.

Definition 2 (see [3]). Given an interval [a, b] of R, the Caputo fractional derivative
of a function x of order α > 0 is defined by

CDα
a,tx(t) = Im−α

a x(m)(t), t ∈ [a, b],

where 0 < m− 1 < α ≤ m.

When 0 < α < 1, then the Caputo fractional derivative of order α of an absolutely
continuous function x on [a, b] reduces to

CDα
t0,t
x(t) =

1

Γ(1 − α)

∫ t

t0

(t− τ)−αx′(τ)dτ, t ∈ [a, b]. (1)

Lemma 1 (see [4]). Let α ∈ (0, 1) and let P ∈ Rn×n be a constant, square, sym-
metric and positive definite matrix. Then the following relationship holds

1

2
CDα

t0,t
(xT (t)Px(t)) ≤ xT (t)P CDα

t0,t
x(t), t ≥ t0.

Similarly to the exponential function used in the solutions of integer-order dif-
ferential systems, the Mittag-Leffler function is frequently used in the solutions of
fractional-order differential systems.

Definition 3 (see [8]). The Mittag-Leffler function with two parameters is defined
as

Eα,β(z) =

+∞
∑

k=0

zk

Γ(kα+ β)
,

where α > 0, β > 0, z ∈ C.
When β = 1, we have Eα(z) = Eα,1(z); furthermore, E1,1(z) = ez.
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We consider the nonhomogeneous linear fractional differential equation with the
Caputo fractional derivative

CDα
t0,t
x(t) = λx+ h(t), t ≥ t0

x(t0) = x0. (2)

Problem (2) was studied by Kilbas et al. [8] (see pp. 295, (5.2.83)), and its solution
has the form

x(t; t0, x0) = x0Eα(λ(t− t0)
α) +

∫ t

t0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds, (3)

provided that the integral on the right-hand side of (3) is convergent.

3. Main results

In this section, several sufficient conditions on stability with respect to part of the
variables of nonlinear Caputo fractional differential equations are given.

Consider the system of fractional differential equations with a Caputo derivative
for α ∈ (0, 1)

CDα
t0,t
x(t) = f(t, x), t ≥ t0, (4)

x ∈ Rn, x = (y, z), y ∈ Rm, z ∈ Rp, m > 0,

with initial condition x(t0) = x0 = (y0, z0), where α ∈ (0, 1) and f ∈ C(R+ ×
Rn, Rn).

Suppose that f is smooth enough to guarantee the existence of a global solution
x(t) = x(t; t0, x0) of system (4) for each initial condition (t0, x0). Some sufficient
conditions for the existence and uniqueness of solutions for fractional differential
equations are given in [2, 9].

Assume that the origin x = 0 is an equilibrium point of fractional-order system
(4); that is, f(t, 0) = 0, ∀t ≥ 0.

Definition 4. The equilibrium point x = 0 of fractional-order system (4) is said to
be

(i) Stable with respect to y, if for every ǫ > 0 and t0 ∈ R+ there exists δ := δ(ǫ, t0)
such that for any x0 ∈ Rn, the inequality ‖x0‖ < δ implies ‖y(t; t0, x0)‖ < ǫ

for t ≥ t0.

(ii) Uniformly stable with respect to y, if it is stable and δ depends only on ǫ.

(iii) Uniformly attractive with respect to y, if there exists β > 0 such that for every
ǫ > 0 there exists T := T (ǫ) > 0 such that for any t0 ∈ R+, x0 ∈ Rn with
‖x0‖ < β the inequality ‖y(t; t0, x0)‖ < ǫ holds for t ≥ t0 + T .

(iv) Globally uniformly attractive with respect to y if (iii) is satisfied for any β > 0.

(v) Uniformly asymptotically stable with respect to y, if it is uniformly stable with
respect to y and uniformly attractive with respect to y.
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(vi) Globally uniformly asymptotically stable with respect to y, if it is uniformly
stable with respect to y and globally uniformly attractive with respect to y.

(vii) Uniformly Mittag-Leffler stable with respect to y, if each solution of system (4)
satisfies:

‖y(t; t0, x0)‖ ≤
[

m
(

x0
)

Eα

(

− λ(t− t0)
α
)

]b

, ∀t ≥ t0, (5)

with b > 0, λ > 0, m(0) = 0, m(x) ≥ 0 and m is locally Lipschitz.

Definition 5. A continuous function ψ : R+ −→ R+ is said to belong to class K
if it is strictly increasing and ψ(0) = 0. It is to belong to class K∞ if in addition
lim

s−→+∞

ψ(s) = +∞.

Within the method of Lyapunov-like functions, we present the following results.

Theorem 1. Consider system (4) and assume that there exist a continuously dif-
ferentiable function V : R+ ×Rn −→ R and class K function α1 satisfying

α1(‖y‖) ≤ V (t, x), V (t, 0) = 0, ∀t ≥ 0, ∀x ∈ Rn, (6)

CDα
t0,t
V (t, x(t; t0, x0)) ≤ 0, ∀t ≥ t0, ∀t0 ≥ 0; (7)

then x = 0 is stable with respect to y.
Moreover, if for some α2 ∈ K:

V (t, x) ≤ α2(‖x‖), ∀t ≥ 0, ∀x ∈ Rn; (8)

then, x = 0 is uniformly stable with respect to y.

Proof. It follows from (7) that there exists a nonnegative function h(t) satisfying

CDα
t0,t
V (t, x(t; t0, x0)) = −h(t), ∀t ≥ t0. (9)

It follows from (3) that for t ≥ t0,

V (t, x(t; t0, x0)) = V (t0, x0)−
1

Γ(α)

∫ t

t0

(t− s)α−1h(s)ds

≤ V (t0, x0). (10)

Using (6) and (10) we obtain

α1(‖y(t; t0, x0)‖) ≤ V (t0, x0), ∀t ≥ t0, (11)

Let ǫ > 0. Since V (t0, 0) = 0 and V is continuous, then there exists δ := δ(ǫ, t0)
such that:

‖x0‖ < δ =⇒ V (t0, x0) < α1(ǫ). (12)

Hence, by (11) and (12) we have:

‖x0‖ < δ =⇒ ‖y(t; t0, x0)‖ < ǫ, ∀ t ≥ t0. (13)
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Therefore, x = 0 is stable with respect to y.
Let us now show uniform stability of x = 0 with respect to y.
Let ǫ > 0, there exists δ := δ(ǫ) > 0 such that α2(δ) < α1(ǫ).
Let x0 ∈ Rn such that ‖x0‖ < δ; then using (8) and (11) we obtain:

α1(‖y(t; t0, x0)‖) ≤ V (t0, x0)

≤ α2(‖x0‖) < α2(δ) < α1(ǫ).

Since α1 ∈ K, then
‖y(t; t0, x0)‖ < ǫ, ∀t ≥ t0.

Hence, x = 0 is uniformly stable with respect to y.

Theorem 2. Consider system (4) and assume that there exist a continuously dif-
ferentiable function V : R+ × Rn −→ R, k ∈ {m,m + 1, ...n}, c > 0 and class K
functions αi, (i = 1, 2) satisfying

α1(‖y‖) ≤ V (t, x) ≤ α2(‖w‖), ∀t ≥ 0, ∀x ∈ Rn, (14)

CDα
t0,t
V (t, x(t; t0, x0)) ≤ −cα2(‖w(t; t0, x0)‖), ∀t ≥ t0, ∀t0 ≥ 0, (15)

where, w = (x1, x2, ..., xk).
Then, x = 0 is uniformly asymptotically stable with respect to y.
Moreover, if αi ∈ K∞, (i = 1, 2), then x = 0 is globally uniformly asymptotically

stable with respect to y.

Proof. From Theorem 1 we have that x = 0 is uniformly stable with respect to y.
Let r1 = lim

s−→+∞

α1(s) and r ∈
(

0, r1
)

.

It follows from (14) and (15) that

CDα
t0,t
V (t, x(t; t0, x0)) ≤ −cV (t, x(t; t0, x0)). (16)

There exists a nonnegative function h(t) satisfying:

CDα
t0,t
V (t, x(t; t0, x0)) = −cV (t, x(t; t0, x0))− h(t). (17)

Since Eα,α

(

− c(t− s)α
)

and h(t) are nonnegative functions, it follows from (3) that

for t ≥ t0,
V (t, x(t; t0, x0)) ≤ V (t0, x0)Eα

(

− c(t− t0)
α
)

, ∀t ≥ t0. (18)

Hence by (14) we have for t ≥ t0:

α1(‖y(t; t0, x0)‖) ≤ V (t, x(t; t0, x0)) ≤ V (t0, x0)Eα

(

− c(t− t0)
α
)

≤ α2(‖w0‖)Eα

(

− c(t− t0)
α
)

≤ α2(‖x0‖)Eα

(

− c(t− t0)
α
)

. (19)

Let x0 ∈ Rn such that ‖x0‖ < α−1
2 (r). It follows from (19) that

‖y(t; t0, x0)‖ ≤ α−1
1

(

rEα

(

− c(t− t0)
α
)

)

, ∀t ≥ t0. (20)
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Let ǫ > 0. We have
lim

s→+∞

Eα

(

− csα
)

= 0. (21)

Then there exists T := T (ǫ) such that

Eα

(

− c(t− t0)
α
)

)

<
α1(ǫ)

r
, ∀t− t0 ≥ T. (22)

From (20) and (22), it follows that

‖y(t; t0, x0)‖ ≤ ǫ, ∀t ≥ t0 + T.

This inequality shows that x = 0 is uniformly attractive with respect to y.
Hence, x = 0 is uniformly asymptotically stable with respect to y.
Let us consider now the case where αi ∈ K∞, (i = 1, 2).
It follows from (19) that

‖y(t; t0, x0)‖ ≤ α−1
1

(

α2(‖x0‖)Eα

(

− c(t− t0)
α
)

)

, ∀t ≥ t0. (23)

Let ǫ > 0, β > 0 and x0 ∈ Rn such that ‖x0‖ < β.
Then by (23) we have:

‖y(t; t0, x0)‖ ≤ α−1
1

(

α2(β)Eα

(

− c(t− t0)
α
)

)

, ∀t ≥ t0. (24)

It follows from (21) that there exists T := T (ǫ, β) such that

Eα

(

− c(t− t0)
α
)

)

<
α1(ǫ)

α2(β)
, ∀t− t0 ≥ T. (25)

From (24) and (25), it follows that

‖y(t; t0, x0)‖ ≤ ǫ, ∀t ≥ t0 + T.

This inequality shows that x = 0 is globally uniformly attractive with respect to y.
Hence, x = 0 is globally uniformly asymptotically stable with respect to y.

Theorem 3. Consider system (4) and assume that there exist a continuously dif-
ferentiable function V : R+ ×Rn −→ R and k ∈ {m,m+ 1, ...n} such that

c1‖y‖
a ≤ V (t, x) ≤ c2‖w‖

a, ∀t ≥ 0, ∀x ∈ Rn, (26)

CDα
t0,t
V (t, x(t; t0, x0)) ≤ −c3‖w(t; t0, x0)‖

a, ∀t ≥ t0, ∀t0 ≥ 0, (27)

where w = (x1, x2, ..., xk) ∈ Rk, a ≥ 1, c1, c2 and c3 are positive constants.
Then x = 0 is uniformly Mittag-Leffler stable with respect to y.

Proof. Consider the functions α1(s) = c1s
a, α2(s) = c2s

a and the constant c = c3
c2
.

We have c3s
a = c3

c2
α2(s). Then the assumptions of Theorem 2 are satisfied and

from (23) it follows that:

‖y(t; t0, x0)‖ ≤
(c2

c1
‖x0‖

aEα

(

−
c3

c2
(t− t0)

α
)

)
1

a

, ∀t ≥ t0. (28)

Hence, x = 0 is uniformly Mittag-Leffler stable with respect to y.
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4. Two illustrative examples

The following two illustrative examples are provided to show the usefulness of the
stability with respect to part of variables notion.

Example 1. Consider the following fractional order system

CDα
t0,t
x1 = −x1 + sin(x3)x1,

CDα
t0,t
x2 = −x2 + e−t cos(x1)x2

CDα
t0,t
x3 = x3,

(29)

where 0 < α < 1 and x(t) =
(

x1(t), x2(t), x3(t)
)

∈ R
3.

Consider the Lyapunov-like function: V (t, x) =
x21 + x22

2
.

By Lemma 1 we have

CDα
t0,t
V (t, x(t; t0, x0))

≤ x1(t; t0, x0)
CDα

t0,t
x1(t; t0, x0) + x2(t; t0, x0)

CDα
t0,t
x2(t; t0, x0)

≤ −x21(t; t0, x0) + sin(x3(t; t0, x0))x
2
1(t; t0, x0)− x22(t; t0, x0)

+x22(t; t0, x0)e
−t cos(x1(t; t0, x0))

≤ 0. (30)

Then, the assumptions of Theorem 1 are satisfied.
Hence, x = 0 is uniformly stable with respect to (x1, x2).

Remark 1. We have x3(t; t0, x0) = x30Eα

(

(t − t0)
α
)

, where x30 = x3(t0; t0, x0);
then x = 0 is unstable.

Example 2. Consider the following fractional-order system

CDα
t0,t
x1 = −2x1 +

sin(x3)
1+t2

x1,

CDα
t0,t
x2 = −2x2 + cos(x1)x2

CDα
t0,t
x3 = x3,

(31)

where 0 < α < 1 and x(t) =
(

x1(t), x2(t), x3(t)
)

∈ R
3.

Consider the Lyapunov-like function: V (t, x) =
x21 + x22

2
.

By Lemma 1 we have

CDα
t0,t
V (t, x(t; t0, x0))

≤ x1(t; t0, x0)
CDα

t0,t
x1(t; t0, x0) + x2(t; t0, x0)

CDα
t0,t
x2(t; t0, x0)

≤ −2x1(t; t0, x0) +
sin(x3(t; t0, x0))

1 + t2
x21(t; t0, x0)− 2x22(t; t0, x0)

+x22(t; t0, x0) cos(x1(t; t0, x0))

≤ −(x21(t; t0, x0) + x22(t; t0, x0)). (32)

Then, the assumptions of Theorem 3 are satisfied.
Hence, x = 0 is uniformly Mittag-Leffler stable with respect to (x1, x2).
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