Box-counting dimension of solution curves for a class of two-dimensional nonautonomous linear differential systems*

Masakazu Onitsuka and Satoshi Tanaka ${ }^{\dagger}$
Department of Applied Mathematics, Faculty of Science, Okayama University of Science, Ridaichou 1-1, Okayama 700-0005, Japan

Received March 14, 2017; accepted June 12, 2017

Abstract

The two-dimensional linear differential system $$
x^{\prime}=y, \quad y^{\prime}=-x-h(t) y
$$ is considered on $\left[t_{0}, \infty\right)$, where $h \in C^{1}\left[t_{0}, \infty\right)$ and $h(t)>0$ for $t \geq t_{0}$. The box-counting dimension of graphs of solution curves is calculated. Criteria to obtain the box-counting dimension of spirals are also established.

AMS subject classifications: 34A30, 37C45, 28A80
Key words: linear system, box-counting dimension, spiral

1. Introduction

In this paper, we consider the following two-dimensional linear differential system

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=-x-h(t) y \tag{1}
\end{align*}
$$

for $t \geq t_{0}$, where $h \in C^{1}\left[t_{0}, \infty\right)$ and $h(t)>0$ for $t \geq t_{0}$. This system has the zero solution $(x(t), y(t)) \equiv(0,0)$. Setting $y=x^{\prime}$, we can rewrite (1) as the damped linear oscillator

$$
x^{\prime \prime}+h(t) x^{\prime}+x=0, \quad t \geq t_{0}
$$

By a general theory (for example $[1,4]$), there exists a unique solution of (1) on $\left[t_{0}, \infty\right)$ with the initial condition $x\left(t_{1}\right)=\alpha$ and $y\left(t_{1}\right)=\beta$ for every $\alpha, \beta \in \mathbf{R}$ and $t_{1} \geq t_{0}$. Hence, we note that every nontrivial solution $(x(t), y(t))$ satisfies $(x(t), y(t)) \neq(0,0)$ for $t \geq t_{0}$.

The zero solution $(x(t), y(t)) \equiv(0,0)$ of (1) is said to be attractive if every solution $(x(t), y(t))$ of (1) satisfies $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$. There are a lot of studies of the attractivity to (1) (see, for example, $[2,11,12,20,21]$).

Now, we assume that the zero solution of (1) is attractive. Let $(x(t), y(t))$ be a solution of (1). We define the solution curve of $(x(t), y(t))$ on $\left[t_{1}, \infty\right)$ in \mathbf{R}^{2} by

$$
\Gamma_{\left(x, y ; t_{1}\right)}=\left\{(x(t), y(t)): t \geq t_{1}\right\}
$$

[^0]for each fixed $t_{1} \geq t_{0}$. A curve $\Gamma_{\left(x, y ; t_{1}\right)}$ is said to be simple if $(x(t), y(t)) \neq(x(s), y(s))$ for $t, s \in\left[t_{1}, \infty\right)$ with $t \neq s$. A simple solution curve $\Gamma_{\left(x, y ; t_{1}\right)}$ is said to be rectifiable if the length of $\Gamma_{\left(x, y ; t_{1}\right)}$ is finite, that is,
$$
\int_{t_{1}}^{\infty} \sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}} d t<\infty
$$

Otherwise, it is said to be non-rectifiable, that is,

$$
\int_{t_{1}}^{\infty} \sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}} d t=\infty
$$

The rectifiability of solutions to two-dimensional linear differential systems was studied by Miličić and Pašić [8] and Naito and Pašić [9]. Naito, Pašić and Tanaka [10] obtained rectifiable and non-rectifiable results of solutions to half-linear differential systems. Recently, the following Theorem A has been established in [13]. In what follows, the following notation will be used:

$$
H(t)=\int_{t_{0}}^{t} h(s) d s
$$

Theorem A. Let $h \in C^{1}\left[t_{0}, \infty\right)$ satisfy $h(t)>0$ for $t \geq t_{0}$. Assume that the following conditions (2) and (3) are satisfied:

$$
\begin{array}{r}
\int_{t_{0}}^{\infty} h(t) d t=\infty \\
\int_{t_{0}}^{\infty}\left|2 h^{\prime}(t)+|h(t)|^{2}\right| d t<\infty \tag{3}
\end{array}
$$

Then, the zero solution of (1) is attractive and every nontrivial solution $(x(t), y(t))$ of (1) is a spiral, rotating in a clockwise direction for all sufficiently large $t \geq t_{0}$, and its solution curve $\Gamma_{\left(x, y ; t_{0}\right)}$ is simple. Moreover, the following properties (i) and (ii) hold:
(i) every nontrivial solution of (1) is rectifiable if

$$
\int_{t_{0}}^{\infty} e^{-H(t) / 2} d t<\infty
$$

(ii) every nontrivial solution of (1) is non-rectifiable if

$$
\int_{t_{0}}^{\infty} e^{-H(t) / 2} d t=\infty
$$

In the above theorem, we adopt the definition of a spiral, according to a celebrated book by Hartman [4, Chapters VII and VIII] as follows. For every nontrivial solution $(x(t), y(t))$ of (1), we introduce polar coordinates

$$
x(t)=r(t) \cos \theta(t), \quad y(t)=r(t) \sin \theta(t)
$$

where the amplitude $r(t)>0$. A nontrivial solution $(x(t), y(t))$ of (1) is said to be a spiral if $|\theta(t)| \rightarrow \infty$ as $t \rightarrow \infty$.

In this paper, we obtain the box-counting dimension of the solution curve $\Gamma_{\left(x, y ; t_{1}\right)}$ for a nontrivial solution $(x(t), y(t))$ of (1). For a bounded subset Γ of \mathbf{R}^{2}, we define the box-counting dimension (Minkowski-Bouligand dimension) of Γ by

$$
\operatorname{dim}_{\mathrm{B}} \Gamma=2-\lim _{\varepsilon \rightarrow+0} \frac{\log \left|\Gamma_{\varepsilon}\right|}{\log \varepsilon}
$$

where Γ_{ε} denotes the ε-neighborhood of Γ defined by

$$
\begin{equation*}
\Gamma_{\varepsilon}=\left\{(x, y) \in \mathbf{R}^{2}: d((x, y), \Gamma) \leq \varepsilon\right\} \tag{4}
\end{equation*}
$$

$d((x, y), \Gamma)$ denotes the Euclidean distance from (x, y) to Γ, and $\left|\Gamma_{\varepsilon}\right|$ denotes the two-dimensional Lebesgue measure of Γ_{ε}. More details on the definition of the box-counting dimension can be found in Falconer [3] and Tricot [22]. If there exist $d \in[0,2], c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} \varepsilon^{2-d} \leq\left|\Gamma_{\varepsilon}\right| \leq c_{2} \varepsilon^{2-d}
$$

for each sufficiently small $\varepsilon>0$, then $\operatorname{dim}_{\mathrm{B}} \Gamma=d$.
The following result has been established in Tricot [22, §9.1, Theorem].
Proposition 1. Let Γ be a simple curve of finite length. Then

$$
\lim _{\varepsilon \rightarrow+0} \frac{\left|\Gamma_{\varepsilon}\right|}{2 \varepsilon}=\operatorname{length}(\Gamma)
$$

where length (Γ) denotes the length of Γ.
Therefore, if length $(\Gamma)<\infty$, then $\operatorname{dim}_{\mathrm{B}} \Gamma=1$.
The box-counting dimension of graphs of solutions to the nonautonomous differential equation was first obtained by Pašić [14]. Thereafter, it was obtained about the nonautonomous second order linear differential equations in $[7,15,16,17]$. On the other hand, the box-counting dimensions of solution curves to autonomous twodimensional nonlinear differential systems were established in [18, 19, 23, 24]. Recently, Korkut, Vlah and Županović [6] have considered the equation

$$
\begin{equation*}
t^{2} x^{\prime \prime}+t(2-\mu) x^{\prime}+\left(t^{2}-\nu^{2}\right) x=0 \tag{5}
\end{equation*}
$$

where $\mu, \nu \in \mathbf{R}$, and defined generalized Bessel functions $\widetilde{J}_{\nu, \mu}$ and $\widetilde{Y}_{\nu, \mu}$ by two linearly independent solutions of (5). When $\mu=1$, equation (5) is known as Bessel's differential equation and Bessel functions J_{ν} and Y_{ν} are its two linearly independent solutions. In [6], the relation

$$
\widetilde{J}_{\nu, \mu}(t)=t^{\frac{\mu-1}{2}} J_{\widetilde{\nu}}(t), \quad \widetilde{Y}_{\nu, \mu}(t)=t^{\frac{\mu-1}{2}} Y_{\widetilde{\nu}}(t), \quad \widetilde{\nu}=\sqrt{\left(\frac{\mu-1}{2}\right)^{2}+\nu^{2}}
$$

is found, and the following result is established.

Theorem B (see [6]). Let $\mu \in(0,2), \nu \in \mathbf{R}$ and $t_{0}>0$. Let $x(t)=\widetilde{J}_{\nu, \mu}(t)$ or $\widetilde{Y}_{\nu, \mu}(t)$. Then the planar curve $\Gamma=\left\{\left(x(t), x^{\prime}(t)\right): t \geq t_{0}\right\}$ satisfies $\operatorname{dim}_{\mathrm{B}} \Gamma=$ $4 /(4-\mu)$.

It is worth noting that if $x(t)=\widetilde{J}_{\nu, \mu}(t)$ or $\widetilde{Y}_{\nu, \mu}(t)$, then $(x(t), y(t)):=\left(x(t), x^{\prime}(t)\right)$ is a solution of the linear differential system

$$
\begin{align*}
x^{\prime} & =y \\
y^{\prime} & =-\left(1-\frac{\nu^{2}}{t^{2}}\right) x-\frac{2-\mu}{t} y \tag{6}
\end{align*}
$$

The following two results are the main results of this paper.
Theorem 1. Let $h \in C^{1}\left[t_{0}, \infty\right)$ satisfy $h(t)>0$ for $t \geq t_{0}$. Assume that (3) and the following conditions are satisfied:

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} t h(t)<\infty \tag{7}\\
H(t)=2 \alpha \log t+O(1) \quad \text { as } t \rightarrow \infty \quad \text { for some } \alpha \in(0,1) \tag{8}
\end{gather*}
$$

Then, for every nontrivial solution $(x(t), y(t))$ of (1), there exists $t_{1} \geq t_{0}$ such that $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{1}\right)}=2 /(1+\alpha)$.

Here and hereafter, $f(t)=O(1)$ as $t \rightarrow \infty$ means that there exist $M>0$ and t_{1} such that $|f(t)| \leq M$ for $t \geq t_{1}$.

Theorem 2. Let $h \in C^{1}\left[t_{0}, \infty\right)$ satisfy $h(t)>0$ for $t \geq t_{0}$. Assume that (3) and the following condition are satisfied:

$$
\begin{equation*}
H(t)=2 \log t+O(1) \quad \text { as } t \rightarrow \infty \tag{9}
\end{equation*}
$$

Then, for every nontrivial solution $(x(t), y(t))$ of (1), there exists $t_{1} \geq t_{0}$ such that $\operatorname{dim}_{B} \Gamma_{\left(x, y ; t_{1}\right)}=1$.

Example 1. We consider the case where $h(t)=\lambda t^{-\gamma}, \lambda>0,1 / 2<\gamma \leq 1$ and $t_{0}=1$. It is easy to check that (2) and (3) are satisfied, and

$$
H(t)= \begin{cases}\frac{\lambda}{1-\gamma}\left(t^{1-\gamma}-1\right), & \frac{1}{2}<\gamma<1 \\ \lambda \log t, & \gamma=1\end{cases}
$$

Theorem A implies that the zero solution of (1) is attractive and every nontrivial solution $(x(t), y(t))$ of (1) is a spiral, rotating in a clockwise direction on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$, and its solution curve $\Gamma_{\left(x, y ; t_{0}\right)}$ is simple and that every nontrivial solution of (1) is rectifiable when either $1 / 2<\gamma<1$ or $\gamma=1$ and $\lambda>2$, and every nontrivial solution of (1) is non-rectifiable when $\gamma=1$ and $0<\lambda \leq 2$. Let $(x(t), y(t))$ be a nontrivial solution of (1). Therefore, by Proposition 1, if either $1 / 2<\gamma<1$ or $\gamma=1$ and $\lambda>2$, then $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{1}\right)}=1$. Moreover, Theorem 2 implies that $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{2}\right)}=1$ for some $t_{2} \geq t_{1}$ when $\gamma=1$ and $\lambda=2$. Applying

Theorem 1, we conclude that if $\gamma=1$ and $0<\lambda<2$, then there exists $t_{2} \geq t_{1}$ such that $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{2}\right)}=4 /(2+\lambda)$.

Now, we set either

$$
(x(t), y(t))=\left(\widetilde{J}_{0,2-\lambda}(t), \widetilde{J}_{0,2-\lambda}^{\prime}(t)\right) \quad \text { or } \quad(x(t), y(t))=\left(\widetilde{Y}_{0,2-\lambda}(t), \widetilde{Y}_{0,2-\lambda}^{\prime}(t)\right)
$$

where $0<\lambda<2$. Recalling that $\left(\widetilde{J}_{\nu, \mu}(t), \widetilde{J}_{\nu, \mu}^{\prime}(t)\right)$ and $\left(\widetilde{Y}_{\nu, \mu}(t), \widetilde{Y}_{\nu, \mu}^{\prime}(t)\right)$ are solutions of system (6), we find that $(x(t), y(t))$ is a solution of (1) with $h(t)=\lambda t^{-1}$.

Here, we give numerical simulations of solution curves.

$h(t)=3 t^{-3 / 4}$
$\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{1}\right)}=1$, rectifiable

$$
h(t)=2 t^{-1}
$$

$\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{2}\right)}=1$, non-rectifiable

$h(t)=3 t^{-1}$
$\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{1}\right)}=1$, rectifiable

Figure 1: Solution curves for the case where $h(t)=\lambda t^{-\gamma}$

The box-counting dimension of the graph of the spiral $r=\varphi^{-\alpha}, \varphi \geq \varphi_{1}>0$ in polar coordinates is $2 /(1+\alpha)$ when $0<\alpha<1$ (see, for example, Tricot [22, §10.4]). Žubrinić and Županović [23, Theorem 5] generalized this fact to the function $r=f(\varphi), \varphi \geq \varphi_{1}$. Korkut, Vlah, Žubrinić and Županović [5, Therem 2] improved this result. See also Korkut, Vlah and Županović [6, Theorem 2]. In this paper, we give the following alternative criterion of the dimension of spirals.

Theorem 3. Let $\varphi_{1}>0$ and let $f \in C\left[\varphi_{1}, \infty\right)$ satisfy $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. Assume that there exist positive constants $\underline{m}, \bar{a}, M$ and $\alpha \in(0,1)$ such that for all $\varphi \geq \varphi_{1}$

$$
\begin{aligned}
\underline{m} \varphi^{-\alpha} & \leq f(\varphi), \\
0 & <f(\varphi)-f(\varphi+2 \pi) \leq \bar{a} \varphi^{-\alpha-1}, \\
\operatorname{length}\left(\Gamma\left(\varphi_{1}, \varphi\right)\right) & \leq M \varphi^{1-\alpha} .
\end{aligned}
$$

Let Γ be the graph of $r=f(\varphi)$ in polar coordinates, that is,

$$
\Gamma=\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{1}\right\} .
$$

Then, $\operatorname{dim}_{\mathrm{B}} \Gamma=2 /(1+\alpha)$.
From Theorem 3, we have the following Corollary.
Corollary 1. Let $\varphi_{1}>0$ and let $f \in C^{1}\left[\varphi_{1}, \infty\right)$ satisfy $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. Assume that there exist positive constants \underline{m}, K and $\alpha \in(0,1)$ such that for all $\varphi \geq \varphi_{1}$

$$
\begin{aligned}
\underline{m} \varphi^{-\alpha} & \leq f(\varphi), \\
-K \varphi^{-\alpha-1} & \leq f^{\prime}(\varphi) \leq 0 .
\end{aligned}
$$

Assume, moreover, that $f^{\prime}(\varphi) \not \equiv 0$ on $[\varphi, \varphi+2 \pi)$ for each fixed $\varphi \geq \varphi_{1}$. Let $\Gamma=$ $\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{1}\right\}$. Then, $\operatorname{dim}_{B} \Gamma=2 /(1+\alpha)$.

The proof of Corollary 1 will be given in Section 2. Using Corollary 1, we prove Theorem 1 in Section 4. Corollary 1 is similar to the criterion by Korkut, Vlah, Žubrinić and Županović [5, Therem 2]. The proof of Theorem 2 in [5] is based on the proof of Theorem 5 in [23]. Žubrinić and Županović employed the radial box dimension to prove Theorem 5 in [23]. On the other hand, the proof of Theorem 3, which will be given in Section 2, is more direct.

The box-counting dimension of the graph of the spiral $r=\varphi^{-1}, \varphi \geq \varphi_{1}>0$ in polar coordinates is 1 (see Tricot $[22, \S 10.4]$). We generalize this fact as follows.
Theorem 4. Let $\varphi_{1}>1$ and let $f \in C\left[\varphi_{1}, \infty\right)$ satisfy $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. Assume that there exist positive constants \bar{m} and M such that for all $\varphi \geq \varphi_{1}$

$$
\begin{aligned}
& 0<f(\varphi) \leq \bar{m} \varphi^{-1} \\
& 0<f(\varphi)-f(\varphi+2 \pi) \\
& \text { Let } \Gamma=\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{1}\right\} . \text { Then, } \operatorname{dim}_{\mathrm{B}} \Gamma=1 \\
& \operatorname{length}\left(\Gamma\left(\varphi_{1}, \varphi\right)\right) \leq M \log \varphi
\end{aligned}
$$

The following corollary follows from Theorem 4.
Corollary 2. Let $\varphi_{1}>1$ and let $f \in C\left[\varphi_{1}, \infty\right)$ satisfy $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. Assume that there exist positive constants \bar{m} and K such that for all $\varphi \geq \varphi_{1}$

$$
\begin{aligned}
0 & <f(\varphi) \leq \bar{m} \varphi^{-1} \\
-K \varphi^{-1} & \leq f^{\prime}(\varphi) \leq 0
\end{aligned}
$$

Assume, moreover, that $f^{\prime}(\varphi) \not \equiv 0$ on $[\varphi, \varphi+2 \pi)$ for each fixed $\varphi \geq \varphi_{1}$. Let $\Gamma=$ $\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{1}\right\}$. Then, $\operatorname{dim}_{\mathrm{B}} \Gamma=1$.

The proofs of Theorem 4 and Corollary 2 will be given in Section 3.

2. Box-counting dimension of spirals

In this section, we prove Theorem 3 and Corollary 1. First, we give a lemma.
Lemma 1. Let $\varphi_{1}>0$ and let $f \in C\left[\varphi_{1}, \infty\right)$ satisfy $f(\varphi)>0$ for $\varphi \geq \varphi_{1}$ and $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. Assume that there exist positive constants \bar{a} and $\alpha \in(0,1)$ such that

$$
0<f(\varphi)-f(\varphi+2 \pi) \leq \bar{a} \varphi^{-\alpha-1}, \quad \varphi \geq \varphi_{1}
$$

Then, there exists a positive constant \bar{m} such that $f(\varphi) \leq \bar{m} \varphi^{-\alpha}$ for $\varphi \geq \varphi_{1}$.
Proof. Let $\varphi \geq \varphi_{1}$. Then, there exist $N \in \mathbf{N} \cup\{0\}$ and $\varphi_{0} \in\left[\varphi_{1}, \varphi_{1}+2 \pi\right)$ such that $\varphi=\varphi_{0}+2 N \pi$. Let $n \in \mathbf{N}$ with $n>N$. It follows that

$$
\begin{aligned}
f(\varphi) & =f\left(\varphi_{0}+2 N \pi\right) \\
& =f\left(\varphi_{0}+2(n+1) \pi\right)+\sum_{k=N}^{n}\left[f\left(\varphi_{0}+2 k \pi\right)-f\left(\varphi_{0}+2(k+1) \pi\right)\right] \\
& \leq f\left(\varphi_{0}+2(n+1) \pi\right)+\sum_{k=N}^{n} \bar{a}\left(\varphi_{0}+2 k \pi\right)^{-\alpha-1}
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{\left(\varphi_{0}+2 k \pi\right)^{-\alpha-1}}{\left(\varphi_{0}+2(k+1) \pi\right)^{-\alpha-1}} & =\left(\frac{\varphi_{0}+2(k+1) \pi}{\varphi_{0}+2 k \pi}\right)^{\alpha+1} \\
& =\left(1+\frac{2 \pi}{\varphi_{0}+2 k \pi}\right)^{\alpha+1} \\
& \leq\left(1+\frac{2 \pi}{\varphi_{1}}\right)^{\alpha+1}, \quad k \in \mathbf{N} \cup\{0\}
\end{aligned}
$$

we have

$$
\left(\varphi_{0}+2 k \pi\right)^{-\alpha-1} \leq M_{1}\left(\varphi_{0}+2(k+1) \pi\right)^{-\alpha-1}, \quad k \in \mathbf{N} \cup\{0\}
$$

where $M_{1}=\left[1+\left(2 \pi / \varphi_{1}\right)\right]^{\alpha+1}$. Therefore,

$$
\begin{aligned}
f(\varphi) & \leq f\left(\varphi_{0}+2(n+1) \pi\right)+\sum_{k=N}^{n} \bar{a} M_{1}\left(\varphi_{0}+2(k+1) \pi\right)^{-\alpha-1} \\
& =f\left(\varphi_{0}+2(n+1) \pi\right)+\bar{a} M_{1} \sum_{k=N}^{n} \int_{k}^{k+1}\left(\varphi_{0}+2(k+1) \pi\right)^{-\alpha-1} d t \\
& \leq f\left(\varphi_{0}+2(n+1) \pi\right)+\bar{a} M_{1} \sum_{k=N}^{n} \int_{k}^{k+1}\left(\varphi_{0}+2 \pi t\right)^{-\alpha-1} d t \\
& =f\left(\varphi_{0}+2(n+1) \pi\right)+\bar{a} M_{1} \int_{N}^{n+1}\left(\varphi_{0}+2 \pi t\right)^{-\alpha-1} d t \\
& =f\left(\varphi_{0}+2(n+1) \pi\right)+\frac{\bar{a} M_{1}}{2 \pi \alpha}\left[\left(\varphi_{0}+2 N \pi\right)^{-\alpha}-\left(\varphi_{0}+2(n+1) \pi\right)^{-\alpha}\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
f(\varphi) \leq \frac{\bar{a} M_{1}}{2 \pi \alpha}\left(\varphi_{0}+2 N \pi\right)^{-\alpha}=\frac{\bar{a} M_{1}}{2 \pi \alpha} \varphi^{-\alpha} .
$$

Hereafter, in this section, we assume all assumptions of Theorem 3. Then, by Lemma 1, there exists a positive constant \bar{m} such that $f(\varphi) \leq \bar{m} \varphi^{-\alpha}$ for $\varphi \geq \varphi_{1}$.

Let $\varepsilon \in(0,1)$ be sufficiently small. We use the following notation:

$$
\begin{aligned}
\varphi_{2}(\varepsilon) & =\left(\frac{2 \bar{a}}{\varepsilon}\right)^{\frac{1}{\alpha+1}} ; \\
\Gamma\left(\psi_{1}, \psi_{2}\right) & =\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \psi_{1} \leq \varphi<\psi_{2}\right\} \\
T(\Gamma, \varepsilon) & =\Gamma\left(\varphi_{1}, \varphi_{2}(\varepsilon)\right)_{\varepsilon} \\
N(\Gamma, \varepsilon) & =\Gamma\left(\varphi_{2}(\varepsilon), \infty\right)_{\varepsilon},
\end{aligned}
$$

where Γ_{ε} denotes the ε-neighborhood of Γ defined by (4). Then, $\Gamma_{\varepsilon}=T(\Gamma, \varepsilon) \cup$ $N(\Gamma, \varepsilon)$.

Lemma 2.

$\left\{(r \cos \varphi, r \sin \varphi): 0 \leq r \leq f(\varphi), \varphi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right)\right\} \subset N(\Gamma, \varepsilon)$.

Proof. Let

$$
\left(x_{0}, y_{0}\right) \in\left\{(r \cos \varphi, r \sin \varphi): 0 \leq r \leq f(\varphi), \varphi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right)\right\} .
$$

Set $r_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}}$. Then, there exists $\varphi_{0} \geq \varphi_{2}(\varepsilon)$ such that

$$
\left(x_{0}, y_{0}\right)=\left(r_{0} \cos \varphi_{0}, r_{0} \sin \varphi_{0}\right)
$$

and

$$
f\left(\varphi_{0}+2 \pi\right) \leq r_{0} \leq f\left(\varphi_{0}\right) .
$$

We have

$$
0 \leq f\left(\varphi_{0}\right)-r_{0} \leq f\left(\varphi_{0}\right)-f\left(\varphi_{0}+2 \pi\right) \leq \bar{a} \varphi_{0}^{-\alpha-1} \leq \bar{a}\left(\varphi_{2}(\varepsilon)\right)^{-\alpha-1}=\frac{\varepsilon}{2} .
$$

Therefore,

$$
d\left(\left(x_{0}, y_{0}\right),\left(f\left(\varphi_{0}\right) \cos \varphi_{0}, f\left(\varphi_{0}\right) \sin \varphi_{0}\right)\right)=f\left(\varphi_{0}\right)-r_{0}<\varepsilon
$$

which means that $\left(x_{0}, y_{0}\right) \in N(\Gamma, \varepsilon)$.

Lemma 3.

$$
\pi \underline{m}^{2}\left[(2 \bar{a})^{\frac{1}{\alpha+1}}+2 \pi\right]^{-2 \alpha} \varepsilon^{\frac{2 \alpha}{\alpha+1}} \leq|N(\Gamma, \varepsilon)| \leq \pi\left[\bar{m}(2 \bar{a})^{-\frac{\alpha}{\alpha+1}}+1\right]^{2} \varepsilon^{\frac{2 \alpha}{\alpha+1}} .
$$

Proof. Set

$$
r_{*}(\varepsilon)=\min _{\psi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right]} f(\psi), \quad r^{*}(\varepsilon)=\max _{\psi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right]} f(\psi),
$$

and

$$
A=\left\{(r \cos \varphi, r \sin \varphi): 0 \leq r \leq f(\varphi), \varphi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right)\right\} .
$$

Then, we easily find that

$$
\left\{(r \cos \varphi, r \sin \varphi): 0 \leq r \leq r_{*}(\varepsilon), \varphi \in \mathbf{R}\right\} \subset A
$$

Therefore, Lemma 2 implies that

$$
\begin{aligned}
|N(\Gamma, \varepsilon)| & \geq|A| \\
& \geq \pi\left(r_{*}(\varepsilon)\right)^{2} \\
& \geq \pi\left(\min _{\psi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right]} \underline{m} \psi^{-\alpha}\right)^{2} \\
& =\pi \underline{m}^{2}\left(\varphi_{2}(\varepsilon)+2 \pi\right)^{-2 \alpha} \\
& =\pi \underline{m}^{2}\left[(2 \bar{a})^{\frac{1}{\alpha+1}}+2 \pi \varepsilon^{\frac{1}{\alpha+1}}\right]^{-2 \alpha} \varepsilon^{\frac{2 \alpha}{\alpha+1}} \\
& \geq \pi \underline{m}^{2}\left[(2 \bar{a})^{\frac{1}{\alpha+1}}+2 \pi\right]^{-2 \alpha} \varepsilon^{\frac{2 \alpha}{\alpha+1}},
\end{aligned}
$$

since $\varepsilon \in(0,1)$.
Let $(x, y) \in N(\Gamma, \varepsilon)$. Then, there exists $\left(x_{0}, y_{0}\right) \in \Gamma\left(\varphi_{2}(\varepsilon), \infty\right)$ and

$$
d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\varepsilon .
$$

Hence,

$$
d((x, y),(0,0)) \leq d\left((x, y),\left(x_{0}, y_{0}\right)\right)+d\left(\left(x_{0}, y_{0}\right),(0,0)\right)<\varepsilon+r^{*}(\varepsilon)
$$

It follows that

$$
\begin{aligned}
|N(\Gamma, \varepsilon)| & \leq \pi\left(\varepsilon+r^{*}(\varepsilon)\right)^{2} \\
& \leq \pi\left(\varepsilon+\max _{\psi \in\left[\varphi_{2}(\varepsilon), \varphi_{2}(\varepsilon)+2 \pi\right]} \bar{m} \psi^{-\alpha}\right)^{2} \\
& =\pi\left[\varepsilon+\bar{m}\left(\varphi_{2}(\varepsilon)\right)^{-\alpha}\right]^{2} \\
& =\pi\left[\varepsilon^{\frac{1}{\alpha+1}}+\bar{m}(2 \bar{a})^{-\frac{\alpha}{\alpha+1}}\right]^{2} \varepsilon^{\frac{2 \alpha}{\alpha+1}} \\
& \leq \pi\left[1+\bar{m}(2 \bar{a})^{-\frac{\alpha}{\alpha+1}}\right]^{2} \varepsilon^{\frac{2 \alpha}{\alpha+1}} .
\end{aligned}
$$

Lemma 4. Let $x, y \in C[a, b]$ and let

$$
G=\{(x(s), y(s)): a \leq s \leq b\}
$$

Assume that $(x(s), y(s)) \neq(x(t), y(t))$ for $a \leq s<t \leq b$. Then,

$$
\left|G_{\varepsilon}\right| \leq 4 \pi \varepsilon \operatorname{length}(G)+4 \pi \varepsilon^{2}
$$

Proof. The proof is similar to the proof of Lemma 26 in [17]. Let $\varepsilon>0$. Set $s_{1}=a$ and

$$
s_{i+1}=\max \left\{s \in\left[s_{i}, b\right]: d\left((x(t), y(t)),\left(x\left(s_{i}\right), y\left(s_{i}\right)\right)\right) \leq \varepsilon, t \in\left[s_{i}, s\right]\right\}
$$

for $i=1,2, \cdots$. Then, there exists $n \geq 2$ such that $s_{n}=b$. Set $N=\max \{i \in \mathbf{N}$: $\left.s_{i}<b\right\}$. We find that $N \geq 1$,

$$
a=s_{1}<s_{2}<\cdots<s_{i}<s_{i+1}<\cdots<s_{N}<s_{N+1}=b
$$

and if $N \geq 2$, then

$$
d\left(\left(x\left(s_{i}\right), y\left(s_{i}\right)\right),\left(x\left(s_{i+1}\right), y\left(s_{i+1}\right)\right)\right)=\varepsilon, \quad i=1,2, \cdots, N-1
$$

We will prove that

$$
\begin{equation*}
G_{\varepsilon} \subset \bigcup_{i=1}^{N} B_{2 \varepsilon}\left(x\left(s_{i}\right), y\left(s_{i}\right)\right) \tag{10}
\end{equation*}
$$

where

$$
B_{2 \varepsilon}\left(x_{0}, y_{0}\right)=\left\{(x, y) \in \mathbf{R}^{2}: d\left(\left(x_{0}, y_{0}\right),(x, y)\right) \leq 2 \varepsilon\right\}
$$

Let $\left(x_{1}, y_{1}\right) \in G_{\varepsilon}$. Then, there exists $\sigma \in[a, b]$ such that

$$
d\left(\left(x_{1}, y_{1}\right),(x(\sigma), y(\sigma))\right) \leq \varepsilon
$$

Because of the definition of s_{i}, we find that $\sigma \in\left[s_{k}, s_{k+1}\right]$ for some $k \in\{1,2, \cdots, N\}$, which implies that

$$
d\left((x(\sigma), y(\sigma)),\left(x\left(s_{k}\right), y\left(s_{k}\right)\right)\right) \leq \varepsilon
$$

Hence, it follows that

$$
\begin{aligned}
& d\left(\left(x_{1}, y_{1}\right),\left(x\left(s_{k}\right), y\left(s_{k}\right)\right)\right) \\
& \quad \leq d\left(\left(x_{1}, y_{1}\right),(x(\sigma), y(\sigma))\right)+d\left((x(\sigma), y(\sigma)),\left(x\left(s_{k}\right), y\left(s_{k}\right)\right)\right) \leq 2 \varepsilon
\end{aligned}
$$

which means that $\left(x_{1}, y_{1}\right) \in B_{2 \varepsilon}\left(x\left(s_{k}\right), y\left(s_{k}\right)\right)$. Therefore, we obtain (10). By (10), we conclude that

$$
\begin{equation*}
\left|G_{\varepsilon}\right| \leq \sum_{i=1}^{N}\left|B_{2 \varepsilon}\left(x\left(s_{i}\right), y\left(s_{i}\right)\right)\right|=4 N \pi \varepsilon^{2} \tag{11}
\end{equation*}
$$

When $N=1$, from (11) it follows that

$$
\left|G_{\varepsilon}\right| \leq 4 \pi \varepsilon^{2} \leq 4 \pi \varepsilon \text { length }(G)+4 \pi \varepsilon^{2}
$$

Now, we assume that $N \geq 2$. We observe that

$$
\begin{aligned}
\operatorname{length}(G) & \geq \sum_{i=1}^{N} d\left(\left(x\left(s_{i}\right), y\left(s_{i}\right)\right),\left(x\left(s_{i+1}\right), y\left(s_{i+1}\right)\right)\right) \\
& \geq \sum_{i=1}^{N-1} d\left(\left(x\left(s_{i}\right), y\left(s_{i}\right)\right),\left(x\left(s_{i+1}\right), y\left(s_{i+1}\right)\right)\right) \\
& =(N-1) \varepsilon
\end{aligned}
$$

that is,

$$
\begin{equation*}
N \varepsilon \leq \operatorname{length}(G)+\varepsilon \tag{12}
\end{equation*}
$$

Combining (11) with (12), we obtain $\left|G_{\varepsilon}\right| \leq 4 \pi \varepsilon$ length $(G)+4 \pi \varepsilon^{2}$.

Lemma 5.

$$
|T(\Gamma, \varepsilon)| \leq 4 \pi\left[M(2 \bar{a})^{\frac{1-\alpha}{\alpha+1}}+1\right] \varepsilon^{\frac{2 \alpha}{\alpha+1}}
$$

Proof. From Lemma 4, it follows that

$$
\begin{aligned}
|T(\Gamma, \varepsilon)| & \leq 4 \pi \varepsilon \operatorname{length}\left(\Gamma\left(\varphi_{1}, \varphi_{2}(\varepsilon)\right)\right)+4 \pi \varepsilon^{2} \\
& \leq 4 \pi \varepsilon M\left(\varphi_{2}(\varepsilon)\right)^{1-\alpha}+4 \pi \varepsilon^{2} \\
& =4 \pi M(2 \bar{a})^{\frac{1-\alpha}{\alpha+1}} \varepsilon^{\frac{2 \alpha}{\alpha+1}}+4 \pi \varepsilon^{2} \\
& =4 \pi\left[M(2 \bar{a})^{\frac{1-\alpha}{\alpha+1}}+\varepsilon^{\frac{2}{\alpha+1}}\right] \varepsilon^{\frac{2 \alpha}{\alpha+1}} \\
& \leq 4 \pi\left[M(2 \bar{a})^{\frac{1-\alpha}{\alpha+1}}+1\right] \varepsilon^{\frac{2 \alpha}{\alpha+1}}
\end{aligned}
$$

Now, we are ready to prove Theorem 3.
Proof of Theorem 3. Since

$$
\left|\Gamma_{\varepsilon}\right| \geq|N(\Gamma, \varepsilon)|
$$

and

$$
\left|\Gamma_{\varepsilon}\right| \leq|T(\Gamma, \varepsilon)|+|N(\Gamma, \varepsilon)|
$$

Lemmas 3 and 5 imply that there exist positive constants C_{1} and C_{2} such that

$$
C_{1} \varepsilon^{\frac{2 \alpha}{\alpha+1}} \leq\left|\Gamma_{\varepsilon}\right| \leq C_{2} \varepsilon^{\frac{2 \alpha}{\alpha+1}}
$$

for all sufficiently small $\varepsilon \in(0,1)$. Consequently, $\operatorname{dim}_{B} \Gamma=2 /(1+\alpha)$.
Proof of Corollary 1. Let $\varphi \geq \varphi_{1}$ be fixed. Since $f^{\prime}(\varphi) \leq 0$ and $f^{\prime}(\varphi) \not \equiv 0$ on $[\varphi, \varphi+2 \pi)$, we have

$$
0>\int_{\varphi}^{\varphi+2 \pi} f^{\prime}(\psi) d \psi=f(\varphi+2 \pi)-f(\varphi)
$$

By the mean value theorem, there exists $c \in(\varphi, \varphi+2 \pi)$ such that

$$
\frac{f(\varphi+2 \pi)-f(\varphi)}{2 \pi}=f^{\prime}(c)
$$

which implies that

$$
f(\varphi)-f(\varphi+2 \pi)=-2 \pi f^{\prime}(c) \leq 2 \pi K c^{-\alpha-1} \leq 2 \pi K \varphi^{-\alpha-1}
$$

Then, by Lemma 1, there exists a positive constant \bar{m} such that $f(\psi) \leq \bar{m} \psi^{-\alpha}$ for $\psi \geq \varphi_{1}$. Therefore,

$$
\begin{aligned}
\operatorname{length}\left(\Gamma\left(\varphi_{1}, \varphi\right)\right) & =\int_{\varphi_{1}}^{\varphi} \sqrt{(f(\psi))^{2}+\left(f^{\prime}(\psi)\right)^{2}} d \psi \\
& \leq \int_{\varphi_{1}}^{\varphi} \sqrt{\left(\bar{m} \psi^{-\alpha}\right)^{2}+\left(K \psi^{-\alpha-1}\right)^{2}} d \psi \\
& =\int_{\varphi_{1}}^{\varphi} \psi^{-\alpha} \sqrt{\bar{m}^{2}+K^{2} \psi^{-2}} d \psi \\
& \leq \sqrt{\bar{m}^{2}+K^{2} \varphi_{1}^{-2}} \int_{\varphi_{1}}^{\varphi} \psi^{-\alpha} d \psi \\
& =\frac{\sqrt{\bar{m}^{2}+K^{2} \varphi_{1}^{-2}}}{1-\alpha}\left(\varphi^{1-\alpha}-\varphi_{1}^{1-\alpha}\right) \\
& \leq \frac{\sqrt{\bar{m}^{2}+K^{2} \varphi_{1}^{-2}}}{1-\alpha} \varphi^{1-\alpha}
\end{aligned}
$$

Theorem 3 implies that $\operatorname{dim}_{\mathrm{B}} \Gamma=2 /(1+\alpha)$.

3. Spiral with the box-counting dimension one

In this section, we prove Theorem 4 and assume all assumptions of Theorem 4. Let $\varepsilon \in\left(0, \varphi_{1}^{-2}\right)$ be sufficiently small. We use the following notation:

$$
\begin{aligned}
& T_{1}(\Gamma, \varepsilon)=\Gamma\left(\varphi_{1}, \varepsilon^{-1 / 2}\right)_{\varepsilon} \\
& N_{1}(\Gamma, \varepsilon)=\Gamma\left(\varepsilon^{-1 / 2}, \infty\right)_{\varepsilon}
\end{aligned}
$$

where $\Gamma\left(\psi_{1}, \psi_{2}\right)=\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \psi_{1} \leq \varphi<\psi_{2}\right\}$. In the same way as in the proof of Lemma 3, we have the following result.

Lemma 6. $\left|N_{1}(\Gamma, \varepsilon)\right| \leq \pi(\bar{m}+1)^{2} \varepsilon$.
Lemma 7. $\left|T_{1}(\Gamma, \varepsilon)\right| \leq-2 \pi M \varepsilon \log \varepsilon+4 \pi \varepsilon^{2}$.
Proof. By Lemma 4, we find that

$$
\begin{aligned}
\left|T_{1}(\Gamma, \varepsilon)\right| & \leq 4 \pi \varepsilon \operatorname{length}\left(\Gamma\left(\varphi_{1}, \varepsilon^{-1 / 2}\right)\right)+4 \pi \varepsilon^{2} \\
& \leq 4 \pi M \varepsilon \log \varepsilon^{-1 / 2}+4 \pi \varepsilon^{2} \\
& =-2 \pi M \varepsilon \log \varepsilon+4 \pi \varepsilon^{2}
\end{aligned}
$$

The following inequality has been obtained in Tricot $[22, \S 9.1]$.
Lemma 8. Let G be a curve in \mathbf{R}^{2} and let $\operatorname{diam}(G)$ be the largest distance between each two points in G, that is,

$$
\operatorname{diam}(G)=\sup _{z, w \in G} d(z, w)
$$

Assume that $\operatorname{diam}(G)<\infty$. Then,

$$
\left|G_{\varepsilon}\right| \geq 2 \varepsilon \operatorname{diam}(G)+\pi \varepsilon^{2}
$$

Now, we give the proof of Theorem 4.
Proof of Theorem 4. Since the distance between two points

$$
\left(f\left(\varphi_{1}\right) \cos \varphi_{1}, f\left(\varphi_{1}\right) \sin \varphi_{1}\right)
$$

and

$$
\left(f\left(\varphi_{1}+\pi\right) \cos \left(\varphi_{1}+\pi\right), f\left(\varphi_{1}+\pi\right) \sin \left(\varphi_{1}+\pi\right)\right)
$$

is equal to $f\left(\varphi_{1}\right)+f\left(\varphi_{1}+\pi\right)$, we have

$$
\operatorname{diam}(\Gamma) \geq f\left(\varphi_{1}\right)+f\left(\varphi_{1}+\pi\right)
$$

Hence, from Lemma 8, it follows that

$$
\left|\Gamma_{\varepsilon}\right| \geq 2 \varepsilon \operatorname{diam}(\Gamma)+\pi \varepsilon^{2} \geq 2\left(f\left(\varphi_{1}\right)+f\left(\varphi_{1}+\pi\right)\right) \varepsilon
$$

which implies that

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow+0} \frac{\log \left|\Gamma_{\varepsilon}\right|}{\log \varepsilon} & \geq \liminf _{\varepsilon \rightarrow+0} \frac{\log \left(f\left(\varphi_{1}\right)+f\left(\varphi_{1}+\pi\right)\right) \varepsilon}{\log \varepsilon} \\
& =\liminf _{\varepsilon \rightarrow+0}\left(\frac{\log \left(f\left(\varphi_{1}\right)+f\left(\varphi_{1}+\pi\right)\right)}{\log \varepsilon}+1\right)=1
\end{aligned}
$$

By Lemmas 6 and 7, we conclude that

$$
\begin{aligned}
\left|\Gamma_{\varepsilon}\right| & \leq\left|T_{1}(\Gamma, \varepsilon)\right|+\left|N_{1}(\Gamma, \varepsilon)\right| \\
& \leq-2 \pi M \varepsilon \log \varepsilon+4 \pi \varepsilon^{2}+\pi(\bar{m}+1)^{2} \varepsilon \\
& =\left[-2 \pi M \log \varepsilon+4 \pi \varepsilon+\pi(\bar{m}+1)^{2}\right] \varepsilon \\
& \leq\left[-2 \pi M \log \varepsilon+4 \pi+\pi(\bar{m}+1)^{2}\right] \varepsilon
\end{aligned}
$$

since $\varepsilon \in(0,1)$. Therefore,

$$
\left|\Gamma_{\varepsilon}\right| \leq\left(-c_{1} \log \varepsilon+c_{2}\right) \varepsilon
$$

for some $c_{1}>0$ and $c_{2}>0$, which implies that

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow+0} \frac{\log \left|\Gamma_{\varepsilon}\right|}{\log \varepsilon} & \leq \limsup _{\varepsilon \rightarrow+0} \frac{\log \left(-c_{1} \log \varepsilon+c_{2}\right) \varepsilon}{\log \varepsilon} \\
& =\limsup _{\varepsilon \rightarrow+0}\left(\frac{\log \left(-c_{1} \log \varepsilon+c_{2}\right)}{\log \varepsilon}+1\right)=1
\end{aligned}
$$

Consequently, $\operatorname{dim}_{B} \Gamma=1$.
Proof of Corollary 2. Let $\varphi \geq \varphi_{1}$ be fixed. By the same argument as in the proof of Corollary 1, we find that $0<f(\varphi)-f(\varphi+2 \pi)$. We observe that

$$
\begin{aligned}
\operatorname{length}\left(\Gamma\left(\varphi_{1}, \varphi\right)\right) & =\int_{\varphi_{1}}^{\varphi} \sqrt{(f(\psi))^{2}+\left(f^{\prime}(\psi)\right)^{2}} d \psi \\
& \leq \int_{\varphi_{1}}^{\varphi} \sqrt{\left(\bar{m} \psi^{-1}\right)^{2}+\left(K \psi^{-1}\right)^{2}} d \psi \\
& =\sqrt{\bar{m}^{2}+K^{2}} \int_{\varphi_{1}}^{\varphi} \psi^{-1} d \psi \\
& =\sqrt{\bar{m}^{2}+K^{2}}\left(\log \varphi-\log \varphi_{1}\right) \\
& \leq \sqrt{\bar{m}^{2}+K^{2}} \log \varphi
\end{aligned}
$$

since $\varphi_{1}>1$. Applying Theorem 4, we conclude that $\operatorname{dim}_{\mathrm{B}} \Gamma=1$.

4. Box-counting dimension of solution curves

In this section, we give proofs of Theorems 1 and 2.
For each solution $(x(t), y(t))$ of (1), we use the following notation:

$$
r(t)=\sqrt{|x(t)|^{2}+|y(t)|^{2}}
$$

The following Lemmas 9, 10 and 11 have been obtained in [13, Lemmas 2.2, 3.1 and 4.2].

Lemma 9. Let $(x(t), y(t))$ be a nontrivial solution of (1). Assume that (3) is satisfied. Then, there exist a constant $C>0$ and a function $\delta \in C\left[t_{0}, \infty\right)$ such that $\lim _{t \rightarrow \infty} \delta(t)=0$ and

$$
[r(t)]^{2}=e^{-H(t)}[C+\delta(t)], \quad t \geq t_{0}
$$

Lemma 10. Let $(x(t), y(t))$ be a nontrivial solution of (1). If $x(t)=r(t) \cos \theta(t)$ and $y(t)=r(t) \sin \theta(t)$, then

$$
\left\{\begin{array}{l}
r^{\prime}(t)=-h(t) r(t) \sin ^{2} \theta(t) \\
\theta^{\prime}(t)=-1-\frac{1}{2} h(t) \sin 2 \theta(t)
\end{array}\right.
$$

Lemma 11. If (3) is satisfied, then $\lim _{t \rightarrow \infty} h(t)=0$.
Proof of Theorem 1. Let $(x(t), y(t))$ be a nontrivial solution of (1). We note that (2) holds, by (8). From Theorem A, it follows that $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$, $(x(t), y(t))$ is a spiral rotating in a clockwise direction on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$ and $\Gamma_{\left(x, y ; t_{0}\right)}$ is simple. By l'Hopital's rule and Lemmas 10 and 11, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\theta(t)}{t}=\lim _{t \rightarrow \infty} \theta^{\prime}(t)=-1 \tag{13}
\end{equation*}
$$

Since

$$
t^{\alpha} r(t)=t^{\alpha} e^{-H(t) / 2} \sqrt{e^{H(t)}[r(t)]^{2}}=e^{-\frac{1}{2}(H(t)-2 \alpha \log t)} \sqrt{e^{H(t)}[r(t)]^{2}}
$$

Lemma 9 and (8) imply that

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty} t^{\alpha} r(t) \leq \limsup _{t \rightarrow \infty} t^{\alpha} r(t)<\infty \tag{14}
\end{equation*}
$$

By (13), (14) and (7), there exist $t_{2} \geq \max \left\{t_{1}, 1\right\}, C_{1}>0, C_{2}>0$ and $C_{3}>0$ such that for $t \geq t_{2}$

$$
\begin{align*}
-\frac{3}{2} t & \leq \theta(t) \leq-\frac{1}{2} t \tag{15}\\
-\frac{3}{2} & \leq \theta^{\prime}(t) \leq-\frac{1}{2} \tag{16}\\
C_{1} & \leq t^{\alpha} r(t) \leq C_{2} \tag{17}\\
t h(t) & \leq C_{3} \tag{18}
\end{align*}
$$

In view of (15), we note that $\lim _{t \rightarrow \infty} \theta(t)=-\infty$. Set $\eta(t)=-\theta(t)$. Then η is positive and strictly increasing on $\left[t_{2}, \infty\right)$. Hence, η has the inverse function η^{-1}. Set $\varphi_{2}=\eta\left(t_{2}\right)>0$ and $f(\varphi)=r\left(\eta^{-1}(\varphi)\right)$ on $\left[\varphi_{2}, \infty\right)$. Since $\lim _{t \rightarrow \infty} x(t)=$ $\lim _{t \rightarrow \infty} y(t)=0$, we have $\lim _{t \rightarrow \infty} r(t)=0$, and hence, $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. From (15) and (17), it follows that

$$
\varphi^{\alpha} f(\varphi)=\varphi^{\alpha} r\left(\eta^{-1}(\varphi)\right)=(\eta(t))^{\alpha} r(t)=\left(\frac{-\theta(t)}{t}\right)^{\alpha} t^{\alpha} r(t) \geq \frac{C_{1}}{2^{\alpha}}, \quad \varphi \geq \varphi_{2}
$$

where $t=\eta^{-1}(\varphi)$. By (16) and Lemma 10, we find that

$$
\begin{equation*}
f^{\prime}(\varphi)=r^{\prime}\left(\eta^{-1}(\varphi)\right) \frac{1}{\eta^{\prime}\left(\eta^{-1}(\varphi)\right)}=-\frac{r^{\prime}(t)}{\theta^{\prime}(t)}=\frac{h(t) r(t) \sin ^{2} \theta(t)}{\theta^{\prime}(t)} \leq 0, \quad \varphi \geq \varphi_{2} \tag{19}
\end{equation*}
$$

where $t=\eta^{-1}(\varphi)$. We conclude that $f^{\prime}(\varphi) \not \equiv 0$ on $[\varphi, \varphi+2 \pi)$ for each fixed $\varphi \geq \varphi_{2}$. Indeed, if $f^{\prime}(\varphi) \equiv 0$ on $[\varphi, \varphi+2 \pi)$ for some $\varphi \geq \varphi_{2}$, then, by (19), $\sin ^{2} \theta(t) \equiv 0$ on $I:=\left[\eta^{-1}(\varphi), \eta^{-1}(\varphi+2 \pi)\right)$, that is, $\theta^{\prime}(t) \equiv 0$ on I. This contradicts (16). Combining (15), (17), (18) with (19), we find that

$$
\begin{aligned}
-\varphi^{\alpha+1} f^{\prime}(\varphi) & =(\eta(t))^{\alpha+1} \frac{h(t) r(t) \sin ^{2} \theta(t)}{-\theta^{\prime}(t)} \\
& =\left(\frac{-\theta(t)}{t}\right)^{\alpha+1} \frac{t^{\alpha+1} h(t) r(t) \sin ^{2} \theta(t)}{-\theta^{\prime}(t)} \\
& \leq\left(\frac{3}{2}\right)^{\alpha+1} 2 C_{2} C_{3}, \quad \varphi \geq \varphi_{2}
\end{aligned}
$$

where $t=\eta^{-1}(\varphi)$. Set

$$
\Gamma=\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{2}\right\}
$$

Corollary 1 implies that $\operatorname{dim}_{B} \Gamma=2 /(1+\alpha)$. Since

$$
\begin{aligned}
\Gamma_{\left(x,-y ; t_{2}\right)} & =\left\{(x(t),-y(t)): t \geq t_{2}\right\} \\
& =\left\{(r(t) \cos \theta(t),-r(t) \sin \theta(t)): t \geq t_{2}\right\} \\
& =\left\{\left(r\left(\eta^{-1}(\varphi)\right) \cos \theta\left(\eta^{-1}(\varphi)\right),-r\left(\eta^{-1}(\varphi)\right) \sin \theta\left(\eta^{-1}(\varphi)\right)\right): \varphi \geq \varphi_{2}\right\} \\
& =\left\{(f(\varphi) \cos (-\varphi),-f(\varphi) \sin (-\varphi)): \varphi \geq \varphi_{2}\right\} \\
& =\left\{(f(\varphi) \cos \varphi, f(\varphi) \sin \varphi): \varphi \geq \varphi_{2}\right\} \\
& =\Gamma
\end{aligned}
$$

we have $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x,-y ; t_{2}\right)}=2 /(1+\alpha)$. Since $\Gamma_{\left(x, y ; t_{2}\right)}$ and $\Gamma_{\left(x,-y ; t_{2}\right)}$ are symmetric, we conclude that

$$
\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{2}\right)}=\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x,-y ; t_{2}\right)}=\operatorname{dim}_{\mathrm{B}} \Gamma=\frac{2}{1+\alpha}
$$

Proof of Theorem 2. Let $(x(t), y(t))$ be a nontrivial solution of (1). Using (9), we have (2). Hence, from Theorem A, it follows that $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$, $(x(t), y(t))$ is a spiral rotating in a clockwise direction on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$ and $\Gamma_{\left(x, y ; t_{0}\right)}$ is simple. By the same argument as in the proof of Theorem 1 and noting Lemma 11, there exist $t_{2} \geq \max \left\{t_{1}, 1\right\}, C_{1}>0, C_{2}>0$ and $C_{3}>0$ such that (15), (16) and the following (20) and (21) hold for $t \geq t_{2}$

$$
\begin{gather*}
C_{1} \leq \operatorname{tr}(t) \leq C_{2}, \tag{20}\\
h(t) \leq C_{3} . \tag{21}
\end{gather*}
$$

Set $\eta(t)=-\theta(t)$. Then, η has the inverse function η^{-1}. Set $\varphi_{2}=\eta\left(t_{2}\right)>0$ and $f(\varphi)=r\left(\eta^{-1}(\varphi)\right)$ on $\left[\varphi_{2}, \infty\right)$. Then, $\lim _{\varphi \rightarrow \infty} f(\varphi)=0$. We observe that

$$
\varphi f(\varphi)=\varphi r\left(\eta^{-1}(\varphi)\right)=\left(\frac{-\theta(t)}{t}\right) \operatorname{tr}(t) \leq \frac{3 C_{2}}{2}, \quad \varphi \geq \varphi_{2}
$$

where $t=\eta^{-1}(\varphi)$. In the same way as in the poof of Theorem 1 , using (15), (16), $(19),(20)$ and (21), we conclude that $f^{\prime}(\varphi) \leq 0$ for $\varphi \geq \varphi_{2}, f^{\prime}(\varphi) \not \equiv 0$ on $[\varphi, \varphi+2 \pi)$ for each fixed $\varphi \geq \varphi_{2}$, and that

$$
-\varphi f^{\prime}(\varphi)=\left(\frac{-\theta(t)}{t}\right) \frac{h(t) \operatorname{tr}(t) \sin ^{2} \theta(t)}{-\theta^{\prime}(t)} \leq 3 C_{2} C_{3}, \quad \varphi \geq \varphi_{2}
$$

where $t=\eta^{-1}(\varphi)$. Corollary 2 implies that $\operatorname{dim}_{\mathrm{B}} \Gamma=1$. Hence, $\operatorname{dim}_{\mathrm{B}} \Gamma_{\left(x, y ; t_{2}\right)}=$ 1.

References

[1] W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Co., Boston, 1965.
[2] L. H. Duc, A. Ilchmann, S. Siegmund, P. Taraba, On stability of linear timevarying second-order differential equations, Quart. Appl. Math. 64(2006), 137-151.
[3] K. Falconer, Fractal Geometry. Mathematical Fondations and Applications, John Willey-Sons, 1999.
[4] P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition. With a foreword by Peter Bates.
[5] L. Korkut, D. Vlah, D. Žubrinić, V. Županović, Wavy spirals and their fractal connection with chirps, Math. Commun. 21(2016), 251-271.
[6] L. Korkut, D. Vlah, V. Županović, Fractal properties of Bessel functions, Appl. Math. Comput. 283(2016), 55-69.
[7] M. K. Kwong, M. Pašić, J. S. W. Wong, Rectifiable oscillations in second order linear differential equations, J. Differential Equations 245(2008), 2333-2351.
[8] S. Miličıć, M. Pašıć, Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two-dimensional linear differential systems, Abstr. Appl. Anal. 2013(2013), Art. ID 935089, 10 pp.
[9] Y. Naito, M. Pašić, Characterization for rectifiable and nonrectifiable attractivity of nonautonomous systems of linear differential equations, Int. J. Differ. Equ. 2013(2013), Art. ID 740980, 11 pp.
[10] Y. Naito, M. Pašić, S. Tanaka, Rectifiable and nonrectifiable solution curves of halflinear differential systems, Math. Slovaca, to appear.
[11] M. Onitsuka, Non-uniform asymptotic stability for the damped linear oscillator, Nonlinear Anal. 72(2010), 1266-1274.
[12] M. Onitsuka, Uniform asymptotic stability for damped linear oscillators with variable parameters, Appl. Math. Comput. 218(2011), 1436-1442.
[13] M. Onitsuka, S. Tanaka, Rectifiability of solutions for a class of two-dimensional linear differential systems, Mediterr. J. Math. 14(2017), Art. 51, 11 pp.
[14] M. Pašić, Minkowski-Bouligand dimension of solutions of the one-dimensional pLaplacian, J. Differential Equations 190(2003), 268-305.
[15] M. Pašić, Fractal oscillations for a class of second-order linear differential equations of Euler type, J. Math. Anal. Appl. 341(2008), 211-223.
[16] M. Pašić, S. Tanaka, Fractal oscillations of self-adjoint and damped linear differential equations of second-order, Appl. Math. Comput. 218(2011), 2281-2293.
[17] M. Pašić, S. Tanaka, Fractal oscillations of chirp functions and applications to second-order linear differential equations, Int. J. Differ. Equ. 2013(2013), Art. ID 857410, 11 pp.
[18] M. Pašić, D. Žubrinić, V. Županović, Oscillatory and phase dimensions of solutions of some second-order differential equations, Bull. Sci. Math. 133(2009), 859-874.
[19] G. Radunović, D. Žubrinić, V. Županović, Fractal analysis of Hopf bifurcation at infinity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22(2012), 1230043, 15 pp.
[20] R. A. Smith, Asymptotic stability of $x^{\prime \prime}+a(t) x^{\prime}+x=0$, Quart. J. Math. Oxford Ser. 12(1961), 123-126.
[21] J. Sugie, M. Onitsuka, Integral conditions on the uniform asymptotic stability for two-dimensional linear systems with time-varying coefficients, Proc. Amer. Math. Soc. 138(2010), 2493-2503.
[22] C. Tricot, Curves and Fractal Dimension, Springer-Verlag, New York, 1995.
[23] D. Žubrinić, V. Županović, Fractal analysis of spiral trajectories of some planar vector fields, Bull. Sci. Math. 129(2005), 457-485.
[24] D. Žubrinić, V. Županović, Poincaré map in fractal analysis of spiral trajectories of planar vector fields, Bull. Belg. Math. Soc. Simon Stevin 15(2008), 947-960.

[^0]: *This work was supported by JSPS KAKENHI Grant Number 26400182.
 ${ }^{\dagger}$ Corresponding author. Email addresses: onitsuka@xmath.ous.ac.jp (M. Onitsuka), tanaka@xmath.ous.ac.jp (S. Tanaka)

