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Abstract. A singularly perturbed reaction-diffusion problem in one dimension is solved
numerically by a collocation method with quadratic C1-splines. Using an appropriately
graded mesh of Gartland type, second order of convergence is obtained in the supremum
norm uniformly, up to a logarithmic factor, in the singular perturbation parameter. The
aim of this paper is to establish the advantage of using the Gartland-type mesh. The
method presented here generates results that are superior to those obtained on the so-
called ”smoothed Shishkin mesh”. Results of numerical experiments which illustrate our
theoretical findings are presented. Furthermore, numerical results for a two-dimensional
problem reveal the same order of the convergence as in the one-dimensional case, though
efforts to establish its theoretical foundation are still ongoing.
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1. Introduction

Singularly perturbed reaction-diffusion problems represent mathematical models of
various phenomena in many areas, such as fluid mechanics, heat transfer, etc. These
problems can be solved by various methods, such as difference schemes or finite ele-
ment methods of different flavours, see [6, 9, 12] and references therein. In contrast,
collocation methods are studied only in a small number of papers [10, 14].

The main goal in the construction of numerical methods for singularly perturbed
problems is to obtain convergence that is uniform with respect to the perturbation
parameter. Let uε be the solution of a singularly perturbed problem, and uNε its nu-
merical approximation obtained by a numerical method with N degrees of freedom.
Then the numerical method is said to be uniformly convergent of order p > 0 in the
norm ‖ · ‖ if there exist a constant C and an integer N0, both independent of ε, such
that

‖uε − uNε ‖ ≤ CN−p, for all N ≥ N0. (1)
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In the present paper, we use a layer-adapted mesh constructed in a special way, in
order to ensure the uniform convergence of a collocation method.

Consider the problem of finding u such that
(

Lu
)

(x) := −ε2u′′(x) + r(x)u(x) = f(x), x ∈ (0, 1),

u(0) = g0, u(1) = g1,
(2)

where ε ∈ (0, 1], r, f ∈ C4([0, 1]) and 0 < ̺2 ≤ r(x), x ∈ (0, 1), with some positive
constant ̺. Under these conditions, problem (2) possesses a unique solution. If ε is a
small parameter, then our problem is singularly-perturbed and the solution exhibits
sharp boundary layers of identical widths in the vicinity of x = 0 and x = 1.

A general theory for spline-collocation methods applied to classical problems,
i.e. problems with ε = 1, has been developed in [1]. A first error bound for the
collocation method applied to a reaction-diffusion problem was obtained in [14]. In
that paper, the authors studied collocation with a quadratic spline on a Shishkin
mesh. However, error bounds were given for the discrete maximum norm only.

In the present paper, we aim at improving the theoretical and numerical results
obtained in [10]. We analyse the quadratic spline collocation method on a Gartland-
type mesh, that we adapt to (2) from [4]. Our analysis requires some properties of
the mesh that the smoothed Shishkin mesh and the Gartland-type mesh satisfy, but
not the standard Shishkin and Bakhvalov meshes (see Remark 2).

The standard Shishkin mesh is characterised by a transition point

τ := min

{

σε

̺
lnN, q

}

, (3)

where σ, ̺ > 0 and q ∈ (0, 1/2). It is generated by xi = ϕS(i/N), i = 0, 1, . . . , N ,
with the mesh generating function

ϕS(t) :=



















τ

q
t, t ∈ [0, q],

τ +
1− 2τ

1− 2q
(t− q), t ∈ [q, 1/2],

1− ϕS(1− t), t ∈ [1/2, 1].

Typically, q = 1/4 is chosen in the literature. The intervals [0, τ ] and [1 − τ, 1] are
split into N/4 subintervals of equal length, and [τ, 1− τ ] into N/2 subintervals.

The smoothed Shishkin mesh is a modification of the Shishkin mesh presented
in [15]. It is generated by nodes xi = ϕsS(i/N), i = 0, 1, . . . , N , with the mesh
generating function

ϕsS(t) :=











λ
q t, t ∈ [0, q],

κ(t) := p(t− q)3 + λ
q t, t ∈ [q, 1/2],

1− ϕsS(1 − t), t ∈ [1/2, 1],

where p is chosen such that ϕsS

(

1
2

)

= 1
2 , i.e. p = 1

2

(

1 − λ
q

)(

1
2 − q

)−3
. On this

mesh, uniform convergence of almost second order was established for a collocation
method with quadratic splines in [10].
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The main contribution of the present paper is uniform convergence of order two
up to a logarithmic factor in the supremum norm. The results obtained in numerical
examples for the Gartland-type mesh are better then those for the smoothed Shishkin
mesh. The orders of convergence are better and the errors are actually smaller on
the graded mesh than on the smoothed Shishkin mesh, see Section 5.

For the reaction-diffusion problem posed on a square, we expect that the a priori
analysis can be extended to biquadratic C1-splines using tensor-product meshes of
Gartland-type in both space directions. The numerical results obtained on these
graded meshes are better than the results obtained on tensor-product smoothed
Shishkin meshes.

The outline of the paper is as follows. In Section 2, we introduced the recursively
defined graded mesh. The following section contains error analysis for the one-
dimensional discretisation and the main convergence result. The collocation method
for 2D reaction-diffusion problems is introduced in Section 4. Finally, in Section 5,
numerical experiments are presented that confirm our theoretical findings.

Notation: Throughout the paper C will denote a generic positive constant that is
independent of the perturbation parameter ε and of the number of mesh points N . For
any set I ⊂ [0, 1] and any function u defined on I we set ‖w‖∞,I := supx∈I |w(x)|.

2. The Gartland-type mesh

A recursively defined graded mesh was proposed by Gartland, [7]. It is an interesting
alternative to the Shishkin mesh. Moreover, this type of layer-adapted meshes was
used in [5] for the reaction-diffusion problem and in [4, 13] for convection-diffusion
problems in one and two dimension. Paper [7] is related to a finite difference method,
while in [5], a finite element method was considered. We shall use the mesh defined
in [4], but adjusted to the reaction-diffusion problem (2).

Given a parameter 0 < h < 1, we follow [4] and define a graded mesh by










































x0 = 0,

xi = ihε, for 1 ≤ i <
1

h
+ 1,

xi = xi−1 + hxi−1, for
1

h
+ 1 ≤ i < M,

xM =
1

2
,

xi = 1− x2M−i, for M + 1 ≤ i ≤ 2M,

(4)

where M is that uniquely defined integer with

xM−1 <
1
2 and xM−1 + hxM−1 ≥ 1

2 .

We modify the construction by imposing equality in the last inequality, i.e.

1
2 = xM−1 + hxM−1. (5)

Then we have

|hi − hi−1| ≤ Ch2, for all i = 1, 2, . . . , N, (6)
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which is essential to our later convergence analysis. In practice, we fix M , compute
the corresponding h and then construct the mesh according to (4). Some examples
of these Gartland-type meshes are depicted in Figure 1.

Figure 1: The graded meshes with N = 32 mesh points and various ε

We introduce a further notation. Let N := 2M and M1 :=
⌈

1
h

⌉

. From (4) we
have

xi = xi−1 +
h

1 + h
(1− xi−1), for i =M + 2,M + 3, ..., N −M1.

The mesh step sizes will be denoted by hi := xi − xi−1, i = 1, 2, . . . , N .

Remark 1. The choice x1 = hε is motivated by the necessity to have h1 = O(ε)
which is required to obtain uniform convergence, see [12, 13].

For i =M + 1,M + 2, ..., N −M1 − 1, we have

xi = 1− xN−i = 1− (xN−i−1 + hxN−i−1) = xi+1 − h(1− xi+1),

because M1 + 1 ≤ N − i ≤M − 1. Then for M + 1 ≤ i ≤ N −M1 − 1,

xi+1 = xi +
h

1 + h
(1− xi) and hi+1 = h(1− xi+1).

Now, we prove that for any integer M ≥M0 ∈ N, there exists an h such that (5)
holds. To this end, letM1 ∈ N\{1}. The number M1 is chosen so that M1h ≥ 1 and
(M1 − 1)h < 1, because of the definition of the function ⌈·⌉. Hence, for fixed M1,

we can choose any h ∈
[

1
M1
, 1
M1−1

)

. From (4) we get

xM−1 = (1 + h)M−M1−1xM1
= (1 + h)M−M1−1M1hε,

and (5) yields

1
2 = xM = (1 + h)M−M1M1hε.
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Therefore

M =
ln

1

2M1ε
+ ln

1

h
ln (1 + h)

+M1.

In order to find h such that M ∈ N, we consider the following function

f̃M1
(h) =

ln
1

2M1ε
+ ln

1

h
ln(1 + h)

+M1, h ∈ Φ :=

[

1

M1
,

1

M1 − 1

)

.

The first-order derivative of the function f̃M1
is

f̃ ′

M1
(h) = −

ln(1 + h)

h
+

ln(2hM1ε)
−1

1 + h

ln2(1 + h)
< −

ln(1 + h)

h
+

ln(4ε)−1

1 + h

ln2(1 + h)
< 0,

for ε ≤ 1/4. Obviously, f̃M1
is a continuous and decreasing function on Φ. Thus,

f̃M1
takes all values in the interval

(

f̃M1

(

1
M1−1

)

, f̃M1

(

1
M1

)]

.

Next, consider

f̃M1+1(h) =

ln
1

2(M1 + 1)ε
+ ln

1

h

ln(1 + h)
+M1 + 1, h ∈ Φ.

Again, f̃M1+1 is continuous and decreasing on Φ. Hence, f̃M1+1 takes all values in

the interval
(

f̃M1+1

(

1
M1

)

, f̃M1+1

(

1
M1+1

)]

.

Furthermore,

lim
h→1/M1−0

f̃M1+1(h) = f̃M1

(

1

M1

)

.

Hence, f̃ takes all values on the following set

S =

∞
⋃

M1=2

(

f̃

(

1

M1 − 1

)

, f̃

(

1

M1

)]

= (f̃(1),∞),

where f̃ is defined by

f̃ :=

∞
⋃

M1=2

f̃M1
.

Consequently, we can always choose 0 < h < 1 such that condition (5) is satisfied,

for all M ≥ f̃(1) = f̃2(1) =
− ln(4ε)

ln 2 + 2.
Table 1 presents different values of the perturbation parameter ε ≤ 1/4, those

values of h for which condition (5) is satisfied.
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❛
❛
❛
❛
❛❛

M
ε 10−2 10−4 10−6 10−8 10−10

25 0.1631827 0.3404057 0.5443164 0.7791426 1.0535690
26 0.0791271 0.1589883 0.2448140 0.3370096 0.4357913
27 0.0389655 0.0768791 0.1161645 0.1568887 0.1991299
28 0.0193347 0.0378008 0.0566015 0.0757433 0.0952300
29 0.0096305 0.0187436 0.0279390 0.0372174 0.0465793
210 0.0048061 0.0093329 0.0138801 0.0184478 0.0230360
211 0.0024007 0.0046567 0.0069178 0.0091840 0.0114553
212 0.0011998 0.0023260 0.0034534 0.0045821 0.0057120
213 0.0005998 0.0011624 0.0017253 0.0022886 0.0028521
214 0.0002998 0.0005810 0.0008623 0.0011437 0.0014251

Table 1: Values of h, in dependence of M = N/2 and ε, that generate mesh (4)-(5).

Because of (5), the Gartland-type mesh (4) satisfies

hi =











hε for i ≤M1 and i ≥ N −M1 + 1,

hxi−1 for M1 < i ≤M,

h(1− xi) for M + 1 ≤ i < N −M1 + 1.

(7)

The following property is essential to the a priori analysis on the Gartland-type
mesh.

Lemma 1. Given mesh (4)-(5), we have

|hi − hi−1| =











0 for i ≤M1, i =M + 1 and i > N −M1 + 1,

hhi−1 for M1 + 1 < i ≤M,

hhi for M + 1 < i ≤ N −M1.

Specifically, |hi − hi−1| ≤ h2ε for i =M1 + 1 and i = N −M1 + 1.

Proof. First, consider i ≤ M + 1. Obviously, the mesh sizes hi i ≤ M , are nonde-
creasing. Consequently hi − hi−1 ≥ 0, for i ≤M .

If i ≤M1, then hi − hi−1 = 0.

If i =M1 + 1, then

hi − hi−1 = hε (M1h− 1) < hε

((

1

h
+ 1

)

h− 1

)

= h2ε.

ForM1+1 < i ≤M we obtain hi−hi−1 = hxi−1−hxi−2 = hhi−1, and i =M+1
implies that hM+1 − hM = 0.

The nodes in mesh (4)-(5) are symmetric with respect to the point xM = 1/2
and therefore the proposition of the lemma holds for i > M + 1 as well.

The error bounds will be given in terms of the number N of mesh points. The
following lemma establishes a relation between h and N .
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Lemma 2. Let h < 1. Then for the Gartland-type mesh

h < 4N−1 ln
e2

2ε
.

Proof. Assuming h < 1, we have

M −M1 − 2 =
M−2
∑

i=M1+1

1 =
M−2
∑

i=M1+1

1

hi+1

∫ xi+1

xi

dx =
M−2
∑

i=M1+1

1

hxi

∫ xi+1

xi

dx

≤
M−2
∑

i=M1+1

2

hxi+1

∫ xi+1

xi

dx,

because xi+1 = xi + hxi ≤ 2xi for i =M1 + 1,M1 + 2, . . . ,M − 2.

We know that
1

xi+1
≤ 1

x
for all x ∈ [xi, xi+1] and then

M −M1 − 2 ≤
M−2
∑

i=M1+1

2

h

∫ xi+1

xi

1

x
dx ≤ 2

h

∫ 1/2

ε

1

x
dx ≤ 2

h
ln

1

2ε
.

Recalling M = (M1 + 1) + (M −M1 − 2) + 1, we obtain

N

2
=M <

1

h
+ 2 +

2

h
ln

1

2ε
+ 1.

Further, 1 <
1

h
implies

N

2
<

4

h
+

2

h
ln

1

2ε
=

2

h

(

2 + ln
1

2ε

)

,

i.e.

N <
4

h
ln
e2

2ε
.

Now, the proposition of the lemma follows.

Remark 2. Either the standard Shishkin or the Bakhvalov mesh do not satisfy (6).
This inequality is violated where the meshes change from fine to coarse. However,
(6) is essential to our a priori analysis (see the proof of Theorem 1) and we have
been unable to prove convergence of order (almost) two for those meshes. This is
the reason why the smoothed Shishkin mesh was used in [10]. The previous lemma
implies that the Gartland-type mesh satisfies |hi+1 − hi| ≤ CN−2 ln2 ε−1.

3. Error analysis

Let ∆ be an arbitrary partition of [0, 1]. For m, l ∈ N set

Sl
m(∆) := {s ∈ Cm[0, 1] : s|Ji

∈ Πl, for i = 1, 2, . . . , N} ,
where Πl is the space of polynomials of highest degree l. Then our discretization is:
Find u∆ ∈ S1

2 (∆) such that

u∆,0 = g0,
(

Lu∆
)

i−1/2
= fi−1/2, i = 1, 2, . . . , N, u∆,N = g1. (8)
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3.1. Solution properties

The solution u of problem (2) has two boundary layers according to the following
lemma, which we quote from [9].

Lemma 3. Let r, f ∈ C4[0, 1]. Then

∣

∣u(k)(x)
∣

∣ ≤ C
{

1 + ε−ke−̺x/ε + ε−ke−̺(1−x)/ε
}

, for x ∈ (0, 1), k = 0, . . . , 4.

Furthermore, the solution u can be decomposed as u = v+w0+w1. For k = 0, . . . , 4,
the regular solution component v satisfies

∥

∥v(k)
∥

∥

∞
≤ C, while for the layer parts w0

and w1 we have

∣

∣w
(k)
0 (x)

∣

∣ ≤ Cε−ke−̺x/ε,
∣

∣w
(k)
1 (x)

∣

∣ ≤ Cε−ke−̺(1−x)/ε, x ∈ [0, 1].

The following lemma gives additional properties for the layer components of the
exact solution that shall be employed later.

Lemma 4. The components w0 and w1 of the exact solution satisfy

εl
∥

∥

∥

∥

xk
dl+kw0

dxl+k

∥

∥

∥

∥

∞,Ji

≤ C and εl
∥

∥

∥

∥

(1− x)k
dl+kw1

dxl+k

∥

∥

∥

∥

∞,Ji

≤ C,

for l, k ∈ N0 and l + k ≤ 4, where Ji = [xi−1, xi].

Proof. Lemma 3 gives

εl
∥

∥

∥

∥

xk
dl+kw0

dxl+k

∥

∥

∥

∥

∞,Ji

≤ C
∥

∥

∥
ε−kxke−̺x/ε

∥

∥

∥

∞,Ji

.

For k = 0 the proposition of lemma follows easily.

Now, for k > 0, set s(x) = ε−kxke−̺x/ε. We have to determine the maximum of
this function. Differentiation yields

s′(x) = ε−k−1xk−1e−̺x/ε(kε− x̺),

and then the function s attains its maximum in the point x = kε/̺. Thus,

∥

∥

∥
ε−kxke−̺x/ε

∥

∥

∥

∞,Ji

≤ s

(

kε

̺

)

≤ C.

The first inequality in the proposition of the lemma follows. The bounds for w1 and
its derivatives follow by symmetry.

In the rest of the paper, we use the following bound

s̃i(ε) = ε−ie−̺/(2ε) ≤ s̃i

( ̺

2i

)

≤ C for ε > 0, i = 1, 2, 3, 4. (9)
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3.2. S0
2 -interpolation

For an arbitrary function g ∈ C0[0, 1], we define the piecewise quadratic function
I02g ∈ S0

2 (∆) with
(

I02 g
)

i
= gi, i = 0, . . . , N, and

(

I02g
)

i−1/2
= gi−1/2, i = 1, . . . , N, (10)

where gi = g(xi) and gi−1/2 = g(xi−1/2) for each i. Here xi−1/2 = (xi−1 + xi)/2.
We have the following interpolation error bounds, see [10].

Lemma 5. Let s ∈ S0
2 (∆) with si−1/2 = 0, i = 1, 2, . . . , N . Then

‖s‖
∞,Ji

≤ max
{

|si−1| , |si|
}

, ‖s′′‖
∞,Ji

≤ 8

h2i
max

{

|si−1| , |si|
}

, i = 1, . . . , N.

Theorem 1. Assume r, f ∈ C4[0, 1]. Let u be the solution of (2). Then the inter-
polation error I02u− u on the Gartland-type mesh (4)-(5) satisfies

∥

∥u− I02u
∥

∥

∞
≤ Ch3 and ε2 max

i=1,...,N

∣

∣

∣

(

u− I02u
)′′

i−1/2

∣

∣

∣
≤ Ch2.

Proof. The following two bounds are well-known from Lagrange interpolation and
Taylor expansion:

∥

∥u− I02u
∥

∥

∞,Ji
≤ h3i

72
√
3
‖u′′′‖

∞,Ji
and

∣

∣

(

u− I02u
)′′

i−1/2

∣

∣ ≤ h2i
48

∥

∥u(4)
∥

∥

∞,Ji
. (11)

Using the linearity of I02 , we split the interpolation error corresponding to the de-
composition of the exact solution, cf. Lemma 3:

u− I02u =
(

v − I02v
)

+
(

w0 − I02w0

)

+
(

w1 − I02w1

)

.

The regular component satisfies

∥

∥v − I02v
∥

∥

∞,Ji
≤ h3i

72
√
3
‖v′′′‖

∞,Ji
≤ C

h3i
72

√
3
≤ Ch3,

while for the singular component w0, we shall distinguish three cases.
(i) If Ji ⊂ [0, xM1

], then hi = hε and

∥

∥w0 − I02w0

∥

∥

∞,Ji
≤ h3i

72
√
3
‖w′′′

0 ‖
∞,Ji

≤ h3ε3

72
√
3
Cε−3‖e−̺x/ε‖∞,Ji

≤ Ch3.

(ii) Consider Ji ⊂ [xM1
, xM ]. Then hi ≤ hxi−1 ≤ hx for x ∈ [xi−1, xi] and

∥

∥w0 − I02w0

∥

∥

∞,Ji
≤ h3x3i−1

72
√
3

‖w′′′

0 ‖
∞,Ji

≤ h3

72
√
3

∥

∥x3w′′′

0

∥

∥

∞,Ji
≤ Ch3, by Lemma 4.

(iii) Let Ji ⊂ [xM , xN ]. Then

∥

∥w0 − I02w0

∥

∥

∞,Ji
≤ h3i

72
√
3
ε−3‖e−̺x/ε‖∞,Ji

≤ h3i
72

√
3
ε−3e−̺/(2ε) ≤ Ch3, by (9).

Because of symmetry we have identical bounds for
∥

∥w1−I02w1

∥

∥

∞,Ji
. Then, using

a triangle inequality, we complete the proof for the first inequality of the theorem.
The same technique, combined with Lemma 4, gives the desired bound for ε2

(

u−
I02u

)′′

.
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3.3. S1
2 -interpolation

For an arbitrary function, we define g ∈ C0[0, 1], a piecewise quadratic function
I12g ∈ S1

2 (∆) with

(

I12g
)

0
= g0,

(

I12g
)

i−1/2
= gi−1/2, i = 1, . . . , N,

(

I12g
)

N
= gN . (12)

For any s ∈ S1
2 (∆) from [10], we have

[Fs]i := aisi−1 + 3si + cisi+1 = 4aisi−1/2 + 4cisi+1/2, (13)

where ai := hi+1/ (hi + hi+1) and ci := 1 − ai = hi/ (hi + hi+1), see [8]. For the
operator F we have the following stability properties, which we quote from [10]:

Lemma 6. For all vectors s ∈ R
N+1 with s0 = sN = 0, there holds

max
i=1,...,N−1

|si| ≤
1

2
max

i=1,...,N−1
|[Fs]i| .

Theorem 2. Assume r, f ∈ C4[0, 1]. Let u be the solution of (2). Then the inter-
polation error I021− u on the Gartland-type mesh (4)-(5) satisfies

max
i=0,...,N

∣

∣

(

u− I12u
)

i

∣

∣ ≤ Ch4, (14a)

∥

∥u− I12u
∥

∥

∞
≤ Ch3, (14b)

ε2 max
i=1,...,N

∣

∣

∣

(

u− I12u
)′′

i−1/2

∣

∣

∣
≤ Ch2. (14c)

Proof. (a) We start by deriving (14a). The interpolation error satisfies
(

u −
I12u

)

0
=

(

u− I12u
)

N
= 0 and

[

F
(

u− I12u
)]

i
= aiui−1 − 4aiui−1/2 + 3ui − 4ciui+1/2 + ciui+1 =: τi,

for i = 1, 2, . . . , N. Taylor expansion gives

|τi| ≤
1

12
hihi+1 |hi+1 − hi| |u′′′i |+ 5

96
h4i

∥

∥u(4)
∥

∥

∞,Ji
+

5

96
h4i+1

∥

∥u(4)
∥

∥

∞,Ji+1
. (15)

With the technique used in the proof of Theorem 1, we can bound the last two terms
and obtain

5

96
h4i

∥

∥u(4)
∥

∥

∞,Ji
≤ Ch4 and

5

96
h4i+1

∥

∥u(4)
∥

∥

∞,Ji+1
≤ Ch4, (16)

for i = 1, . . . , N − 1.
Bounding the first term in (15) is more tedious. Set

ψg,i :=
1

12
hihi+1 |hi+1 − hi| |g′′′i | for any g ∈ C3[0, 1].

Clearly, we have

ψu,i ≤ ψv,i + ψw0,i + ψw1,i .
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For the regular solution component v, Lemma 4 and (6) yield ψv,i ≤ Ch4.
For the layer component w0, the arguments split into six cases.

(i) Let i < M1 or i > N −M1. Then ψw0,i = 0.
(ii) Let i =M1. Then hi+1 − hi = h2ε and hi ≤ hi+1 ≤ hxi+1. Thus

ψw0,i ≤ Chihi+1h
2ε|w′′′

0,i| ≤ Ch2ε‖x2w′′′

0 ‖∞,Ji+1
≤ Ch4,

by Lemma 4.
(iii) ConsiderM1 < i ≤M−1. Then hi+1 = hxi ≤ hx for x ∈ Ji+1 and consequently

ψw0,i ≤ Chihi+1hhi+1|w′′′

0,i| ≤ Ch3i+1h‖w′′′

0 ‖∞,Ji+1
≤ Ch4‖x3w′′′

0 ‖∞,Ji+1
≤ Ch4,

by Lemma 4.
(iv) If i =M , then ψw0,M = 0.
(v) In the case when M + 1 ≤ i < N −M1, we have

ψw0,i ≤ Chihi+1hhi+1ε
−3e−̺/(2ε) ≤ Ch4ε−3e−̺/(2ε) ≤ Ch4, because of (9).

(vi) Let i = N −M1. Then |hi+1 − hi| ≤ h2ε and hi+1 = hε and

ψw0,i ≤ Chihi+1(h
2ε)ε−3e−̺/(2ε) ≤ Ch4ε−1e−̺/(2ε) ≤ Ch4, by (9).

Gathering all six cases, we have established that ψw0,i ≤ Ch4 for i = 1, 2, . . . , N .
Clearly, we have an identical bound for ψw1,i. Combining these with our earlier
bound for ψv,i, we get

ψu,i ≤ Ch4, for i = 1, 2, . . . , N.

This inequality together with (16) and (15) establishes

∣

∣

[

F
(

u− I12u
)]

i

∣

∣ = |τi| ≤ Ch4, for i = 1, 2, . . . , N.

Finally, application of Lemma 6 completes the proof of (14a).
(b) The following short argument proves inequality (14b).

∥

∥u− I12u
∥

∥

∞
≤

∥

∥u− I02u
∥

∥

∞
+
∥

∥I02u− I12u
∥

∥

∞

=
∥

∥u− I02u
∥

∥

∞
+ max

i=0,...,N

∣

∣

(

u− I12u
)

i

∣

∣ ≤ Ch3 + Ch4 ≤ Ch3,

by Theorem 1 and (14a).
(c) Finally, we verify (14c). Again,

ε2
∣

∣

∣

(

u− I12u
)′′

i−1/2

∣

∣

∣
≤ ε2

∣

∣

∣

(

u− I02u
)′′

i−1/2

∣

∣

∣
+ ε2

∣

∣

∣

(

I02u− I12u
)′′

i−1/2

∣

∣

∣
, (17)

and from Lemma 5, we obtain

ε2
∣

∣

∣

(

I02u− I12u
)′′

i−1/2

∣

∣

∣
≤ 8ε2

h2i
max

{
∣

∣

∣

(

u− I12u
)

i−1

∣

∣

∣
,
∣

∣

(

u− I12u
)

i

∣

∣

}

.
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If i ≤ M1 or i ≥ N −M1 + 1, then hi = hε. Otherwise, hN−i = hi = hxi ≥ hε for
i =M1 + 1,M1 + 2, . . . ,M . Consequently,

ε2 max
i=1,2,...,N

∣

∣

∣

(

I02u− I12u
)′′

i−1/2

∣

∣

∣
≤ max

i=1,2,...,N

8ε2

h2i

∣

∣

(

u− I12u
)

i

∣

∣ ≤ Ch2,

because of (14a). Combining this and (17), we obtain

ε2 max
i=1,2,...,N

∣

∣

∣

(

u− I02u
)′′

i−1/2

∣

∣

∣
≤ Ch2,

and the proof is complete.

3.4. A priori error analysis

Let {B2,i}N+1
i=0 be the B-spline basis in S1

2 (∆). Then we may represent u∆ as

u∆(x) :=

N+1
∑

i=0

αiB2,i(x),

where αi are determined by the collocation, i.e. equation (8). That equation is
equivalent to

α0 = γ0, [Lα]i−1/2 = fi−1/2, i = 1, . . . , N, αN+1 = γ1, (18)

with α = (α0, . . . , αN+1)
T ∈ R

N+2 and

[Lα]i−1/2 := − ε2
[

2(αi+1 − αi)

hi(hi + hi+1)
− 2(αi − αi−1)

hi(hi−1 + hi)

]

+ri−1/2

[

q+i αi+1 +
(

1− q+i − q−i
)

αi + q−i αi−1

]

, i = 1, . . . , N,

q+i :=
hi

4(hi + hi+1)
and q−i :=

hi
4(hi + hi−1)

,

where we have formally set h0 = hN+1 = 0, see [10].
The step sizes of the Gartland-type mesh satisfy max {hi+1, hi−1} ≥ hi for i =

1, . . . , N . Therefore, from [10] we have the following stability result.

Theorem 3. The operator L is maximum-norm stable on the mesh (4)-(5) with

‖γ‖
∞

≤ 4

̺2
‖Lγ‖

∞
for all γ ∈ R

N+2
0 ,

where R
N+2
0 =

{

v ∈ R
N+2 : v0 = vN+1 = 0

}

.

Theorem 4. Let u be the solution of (2), 0 < ε ≤ 1
4 and u∆ its approximation by

the collocation method (8) on the Gartland-type mesh (4)-(5). Then

‖u− u∆‖∞ ≤ Ch2.
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Proof. We start with the triangle inequality:

‖u− u∆‖∞ ≤
∥

∥u− I12u
∥

∥

∞
+
∥

∥I12u− u∆
∥

∥

∞
.

The interpolant I12u can be represented by means of the quadratic B-spline basis
{B2,k} as

I12u =

N+1
∑

k=0

βkB2,k with some β ∈ R
N+2
0 .

Using (10) and (18), we get

[L(α− β)]i−1/2 = L(u∆ − I12u)i−1/2 = ε2(I12u− u)′′i−1/2, i = 1, . . . , N.

Because α − β ∈ R
N+2
0 , (14c) and Theorem 3 give ‖α− β‖

∞
≤ Ch2. Next, the

stability of the B-spline basis implies
∥

∥I12u− u∆
∥

∥

∞
≤ C ‖α− β‖

∞
≤ Ch2.

Using (14b), we complete the proof.

A direct consequence of Lemma 2 and Theorem 4 is our main result.

Theorem 5. Let u be the solution of (2), 0 < ε ≤ 1
4 and u∆ its approximation by

the collocation method (8) on the Gartland-type mesh (4)-(5). Then

‖u− u∆‖∞ ≤ CN−2 ln2(1/ε).

Remark 3. The error estimate in Theorem 5 appears to be quite sharp. Our nu-
merical experiments in Section 5 (Tables 3 and 5) confirm a dependence on the
perturbation parameter ε that is only marginally weaker than ln2(1/ε).

4. Collocation method for a 2D reaction-diffusion problem

In this section, we consider 2D reaction-diffusion problem of finding u ∈ C(Ω̄)∩C2(Ω)
such that
(

Lu
)

(x, y) := −ε2△u(x, y) + r(x, y)u(x, y) = f(x, y) in Ω = (0, 1)× (0, 1),

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,
(19)

where ε ∈ (0, 1], △ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator, r, f ∈ C(Ω) and
0 ≤ β < r on Ω with some positive constant β. Under these conditions, problem (19)
has a unique solution, [11]. If ε is a small parameter, then our problem is singularly-
perturbed and the solution exhibits sharp boundary layers of width O(ε ln ε−1) along
the boundary ∂Ω, see [3].

We extend the collocation method (8) to 2D. Consider the rectangle Ω̄ = Ω∪∂Ω =
[0, 1]× [0, 1] and let

∆x : 0 = x0 < x1 < . . . < xN = 1,

∆y : 0 = y0 < y1 < . . . < yM = 1,
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be two partitions of the interval [0, 1]. Then ∆ = ∆x × ∆y forms a rectangular
tensor-product grid on Ω̄.

We look for a biquadratic C1-spline u∆ that satisfies differential equation (19)
in the midpoints of the mesh rectangles, see [2] for some classical problems, i.e.
problems without layers. A basis for the space of biquadratic C1-splines on Ω̄ can
be constructed by forming tensor products of the one-dimensional B-spline basis
functions {B2,i(x)}N+1

i=0 and {B̄2,j(y)}M+1
j=0 .

Then, we seek an approximation u∆ of the solution u of (19) as

u∆(x, y) :=

N+1
∑

i=0

M+1
∑

j=0

αi,jB2,i(x)B̄2,j(y),

where αi,j are determined such that u∆ satisfies differential equation (19) in the
midpoints (xi−1/2, yj−1/2) of the partition, i.e.,

−ε2△u∆,i−1/2,j−1/2 + ri−1/2,j−1/2u∆,i−1/2,j−i/2 = fi−1/2,j−1/2, (20)

for i = 1, . . . , N and j = 1, . . . ,M , while the non-homogeneous boundary conditions
are discretised by imposing

u∆(xi, 0) = g(xi, 0), u∆(xi, 1) = g(xi, 1), i = 0, 12 , 1, 1 +
1
2 , . . . , N,

and

u∆(1, yj) = g(1, yj), u∆(1, yj) = g(1, yj), j = 0, 12 , 1, 1 +
1
2 , . . . ,M.

We expect that the a priori analysis from Section 3 can be extended to biquadratic
C1-splines on the tensor-product of the smoothed Shishkin meshes and on the tensor-
product of our Gartland-type meshes. However, this is ongoing work and the subject
of a forthcoming paper. Nonetheless, in Section 5, we presume numerical results for
a 2D problem suggesting properties of the scheme extended directly to this case.
Our tests confirm that our Gartland-type mesh outperforms the smoothed Shishkin
mesh.

5. Numerical experiments

5.1. Numerical experiments for a one-dimensional problem

We verify the theoretical results of the preceding section by applying the collocation
method to two different test problems.

The first problem is:

−ε2u′′(x) + 4u(x) = cos 12x, x ∈ (0, 1), u(0) = u(1) = 0. (21)

Its exact solution can be found easily. We approximate the supremum-norm errors
by

‖u − u∆‖∞ ≈ χN,ε := max
i=1,...,N

m=0,...,K

∣

∣(u − u∆) (xi−1 +mK−1hi)
∣

∣ .
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In our experiments, we have chosen K = 7. The rates of convergence are computed
using the following formula

pN,ε =
lnχN,ε − lnχ2N,ε

ln 2
.

Also, we choose the parameters σ = 4 and q = 1/4 for the smoothed Shishkin mesh.
In Table 2, we compare numerical results obtained on the Gartland-type mesh

and on the smoothed Shishkin mesh, for the different values of N , but for fixed
ε. The second and third column contain the errors χsS

N,ε and convergence rates

psSN,ε for the smoothed Shishkin mesh, while the fourth and fifth column contain the

corresponding values χG
N,ε and pGN,ε for the Gartland-type mesh. For increasing N

the collocation method on the Gartland-type mesh gives much smaller errors than
on the smoothed Shishkin mesh.

N χsS
N,ε psSN,ε χG

N,ε pGN,ε

26 3.198e-03 1.93 2.827e-02 3.10
27 8.375e-04 1.69 3.307e-03 2.97
28 2.588e-04 1.73 4.234e-04 3.18
29 7.800e-05 1.74 4.659e-05 3.06
210 2.335e-05 1.75 5.570e-06 2.04
211 6.940e-06 1.76 1.351e-06 2.02
212 2.046e-06 1.78 3.326e-07 2.01
213 5.971e-07 1.79 8.252e-08 2.01
214 1.726e-07 1.80 2.055e-08 2.00
215 4.947e-08 1.81 5.128e-09 2.00
216 1.406e-08 — 1.285e-09 —

Table 2: Supremum-norm errors of the collocation method on the smoothed Shishkin mesh and on

the Gartland-type mesh for test problem (21) with ε = 10−6

ε χsS
N,ε χG

N,ε q̃ε q̄ε
10−2 4.929e-08 6.174e-10 2.166 2.250
10−3 4.947e-08 1.337e-09 1.741 1.778
10−4 4.947e-08 2.328e-09 1.543 1.563
10−5 4.947e-08 3.592e-09 1.428 1.440
10−6 4.947e-08 5.129e-09 1.353 1.361
10−7 4.947e-08 6.939e-09 1.300 1.306
10−8 4.947e-08 9.025e-09 1.261 1.266
10−9 4.947e-08 1.138e-08 1.231 1.235
10−10 4.947e-08 1.402e-08 — —

Table 3: Dependence of the supremum-norm errors on ε for test problem (21) with N = 215. The
errors of the collocation method on the smoothed Shishkin mesh and on the Gartland-type mesh
are shown in the second and third column, respectively.
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Table 3 shows the errors for the two meshes when the number N of mesh points
is fixed and ε attains various values. We compute two quotients:

q̃ε =
χN,ε/10

χN,ε
and q̄ε =

ln2 10/ε

ln2 1/ε
,

for the Gartland-type mesh to check the correlation between the actual error and
the logarithmic factor present in the error bound of Theorem 5. We see that the
theoretical and numerical results do strongly correlate. We conclude that the error
bound in Theorem 5 cannot be improved. Also, note that lim

ε→0
q̄ε = 1, which justifies

the use of the Gartland-type mesh.
Theoretically, for sufficiently small values of ε, the smoothed Shishkin mesh will

be a better choice than the Gartland-type graded mesh. However, in practice, this
does not happen for reasonable values of ε.

The second test problem is:

−ε2u′′(x) + (1 + x2)u(x) = ex, x ∈ (0, 1), u(0) = u(1) = 0. (22)

Its exact solution is not available. Therefore, we approximate the errors by compar-
ison with the numerical solution u∗ on a mesh obtained by uniformly bisecting the
original mesh (”the double mesh principle”), i.e.

‖u − u∆‖∞ ≈ ‖u∆ − u∗‖
∞

≈ χN,ε := max
i=1,...,N

m=0,...,K

∣

∣(u∆ − u∗) (xi−1 +mK−1hi)
∣

∣ .

Again, we choose K = 7. Our numerical tests for this example reveal similar be-
haviour as for (21). The results are documented in Tables 4 and 5.

N χsS
N,ε psSN,ε χG

N,ε pGN,ε

25 7.323e-02 1.52 4.315e-02 2.81
26 2.552e-02 1.66 6.157e-03 2.80
27 8.050e-03 1.81 8.821e-04 2.43
28 2.290e-03 1.78 1.635e-04 2.24
29 6.647e-04 1.76 3.472e-05 2.13
210 1.964e-04 1.77 7.917e-06 2.04
211 5.769e-05 1.77 1.920e-06 2.00
212 1.686e-05 1.78 4.795e-07 2.00
213 4.899e-06 1.79 1.198e-07 2.00
214 1.412e-06 1.81 2.995e-08 2.00
215 4.041e-07 — 7.487e-09 —

Table 4: Supremum-norm errors of the collocation method for test problem (22) with ε = 10−6.
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ε χsS
N,ε χG

N,ε q̃ε q̄ε
10−2 1.471e-07 9.054e-10 2.158 2.250
10−3 4.045e-07 1.954e-09 1.740 1.778
10−4 4.042e-07 3.400e-09 1.542 1.563
10−5 4.041e-07 5.245e-09 1.428 1.440
10−6 4.041e-07 7.487e-09 1.353 1.361
10−7 4.041e-07 1.013e-08 1.300 1.306
10−8 4.041e-07 1.317e-08 1.261 1.266
10−9 4.041e-07 1.660e-08 1.231 1.235
10−10 4.041e-07 2.044e-08 — —

Table 5: Dependence of the supremum-norm errors on ε for test problem (22) with N = 215. The
errors of the collocation method on the smoothed Shishkin mesh and on the Gartland-type mesh
are shown in the second and third column, respectively.

5.2. Numerical experiments for two-dimensional problem

Finally, we test the collocation method when applied to the following 2D problem:

−ε2△u(x, y) + (1 + x2y2exy)u(x, y) = f(x, y) in Ω = (0, 1)× (0, 1), (23)

where the source term f and the boundary conditions are such that

u(x, y) = sin (x+ y)
π

2
+ (x+ y)

(

e−x/ε + e−(1−x)/ε + e−2y/ε + e−2(1−y)/ε
)

is the solution of (23). We approximate the supremum-norm errors by

‖u − u∆‖∞ ≈ χN = max
i,j=1,...,N

m,n=0,...,k

∣

∣(u − u∆) (xi−1 +mk−1hi, yj−1 + nk−1kj)
∣

∣ .

In our experiments, we have chosen k = 7. Table 6 contains the errors of the
collocation method on the smoothed Shishkin mesh and on our Gartland-type meshes
for a fixed value of ε. In addition, Table 7 illustrates the dependence of the errors
on the perturbation parameter ε when N is fixed. We observe that our Gartland-
type mesh outperforms the smoothed Shishkin mesh for two-dimensional reaction-
diffusion problems, too.

N χsS
N,ε psSN,ε χG

N,ε pGN,ε

25 2.374e-01 1.21 1.551e-01 2.41
26 1.029e-01 1.56 2.920e-02 2.69
27 3.498e-02 1.86 4.528e-03 2.32
28 9.640e-03 1.70 9.027e-04 2.14
29 2.971e-03 1.74 2.048e-04 2.08
210 8.908e-04 — 4.854e-05 —

Table 6: Supremum-norm errors of the collocation method on the smoothed Shishkin mesh and on

the Gartland-type mesh for test problem (23) with ε = 10−6
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ε 10−2 10−4 10−6 10−8

smoothed Shishkin mesh 3.006e-03 2.971e-03 2.971e-03 2.971e-03
Gartland-type mesh 2.338e-05 9.005e-05 2.048e-04 3.708e-04

Table 7: Dependence of the supremum-norm errors on ε for 2D test problem (23) with N = 29

6. Conclusion

Using the Gartland-type mesh (4)-(5) we have obtained optimal error bounds in
the supremum norm for the collocation method (8) using quadratic C1−splines.
The established rate of convergence is two. The factor ln2(1/ε) is not significant in
practice. For reasonably small values of ε, the results in the present paper are better
than those obtained for the smoothed Shishkin mesh in [10],

Special meshes (smoothed Shishkin and Gartland-type) have been constructed
for the collocation method, because we were unable to prove uniform convergence
of this method for standard Shishkin and Bakhvalov meshes.
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