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Tubular surfaces in Galilean space
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Abstract. In this paper, firstly, the definition of tubular surfaces in Galilean space is
given. Then, differential properties of tubular surfaces are obtained. Consequently, we
proved that tubular surfaces in Galilean space are Weingarten surfaces.
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1. Introduction

Tubular surfaces are among the surfaces which are easier to describe both analyt-
ically and kinematically. They are still under active investigation [3-5,8,10,13]. A
large number of papers have been published in the literature which deal with tubular
surfaces in both Minkowski space and Euclidean space. The purpose of this paper
is to introduce, analyze and compare tubular surfaces between Galilean space and
Euclidean space.

The geometry of Galilean Relativity acts like a “bridge” from Euclidean geometry
to Special Relativity. Galilean space is the space of Galilean Relativity. More about
Galilean space and pseudo-Galilean space may be found in [1-2,6-7,9,11-12].

The Galilean space G3 is a Cayley–Klein space equipped with the projective met-
ric of signature (0, 0,+,+), as in [12]. The absolute figure of the Galilean geometry
consists of an ordered triple {ω, f, I}, where ω is the real (absolute) plane, f the
real line (absolute line) in ω and I the fixed elliptic involution of points of f . We
introduce homogeneous coordinates in G3 in such a way that the absolute plane ω
is given by x0 = 0, the absolute line f by x0 = x1 = 0 and the elliptic involution by

(0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2). (1)

A plane is called Euclidean if it contains f , otherwise it is called isotropic or i.e.,
planes x = const. are Euclidean, and so is the plane ω. Other planes are isotropic.
A vector u = (u1, u2, u3) is said to be non-isotropic if u1 ̸= 0. All unit non-isotropic
vectors are of the form u = (1, u2, u3). For isotropic vectors u1 = 0 holds.
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Definition 1. Let a = (x, y, z) and b = (x1, y1, z1) be vectors in the Galilean space.
The scalar product is defined by

< a,b >= x1x. (2)

The norm of a defined by ∥a∥ = |x|, and a is called a unit vector if ∥a∥ = 1.

The scalar product of two isotropic vectors p = (0, y, z) and q = (0, y1, z1) in
Galilean space is defined by

< p,q >1= yy1 + zz1. (3)

The orthogonality of these vectors, p ⊥1 q, means that < p,q >1= 0. The

norm of p defined by ∥p∥1 =
√
y2 + z2, and p is called a unit isotropic vector if

∥p∥1 = 1[7].

Definition 2. If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in the Galilean
space, we define the vector product of u and v as the following:

u ∧ v =

∣∣∣∣∣∣
0 e2 e3
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ = (0, u3v1 − u1v3, u1v2 − u2v1). (4)

Definition 3. If an admissible curve c of the class Cr(r ≥ 3) is given by the
parametrization

r(u) = (u, y(u), z(u)),

then u is a Galilean invariant of the arc length on C.

Figure 1:
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In Figure 1, the associated invariant moving trihedron is given by

t = (1, y′(u), z′(u)),

n =
1

κ
(0, y′′(u), z′′(u)),

b =
1

κ
(0,−z′′(u), y′′(u))

(5)

where κ =
√
y′′(u)2 + z′′(u)2 is the curvature and τ =

1

κ2
det[r′(u), r′′(u), r′′′(u)] is

the torsion.
Frenet formulas may be written as

d

du

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 . (6)

Definition 4. The equation of a surface in G3 is given by the parametrization

φ = φ(v1, v2) = (x(v1, v2), y(v1, v2), z(v1, v2)), v1, v2 ∈ R,

where x(v1, v2), y(v1, v2), z(v1, v2) ∈ C3 [9].

Figure 2:

In Figure 2, the isotropic unit normal vector N of the surface is defined by

N =
φ,1 ∧ φ,2

∥φ,1 ∧ φ,2∥1
, (7)

where φ,1 =
∂φ(v1, v2)

∂v1
and φ,2 =

∂φ(v1, v2)

∂v2
.
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Using (1) and w = ∥φ,1 ∧ φ,2∥1, we obtain the isotropic unit vector δ in the
tangent plane of the surface as

δ =
(0, y,1x,2 − y,2x,1, z,1x,2 − z,2x,1)

w
, (8)

where
< N, δ >1= 0, δ2 = 1

by means of Galilean geometry. Observe that a straightforward computation shows
that δ can be expressed by

δ =
x,2φ,1 − x1φ,2

w
, (9)

where x,1 =
∂x(v1, v2)

∂v1
and x,2 =

∂x(v1, v2)

∂v2
.

Consequently, to simplify the presentation (9), we may use Einstein summation
convention. Then, δ is

δ = giφ,i = g1φ,1 + g2φ,2,

where
g1 = x,1, g2 = x,2 gij = gigj (10)

and
g1 =

x,2

w
, g2 = −x,1

w
gij = gigj . (11)

The first fundamental form of the surface is defined by

I = (ds)2 (12)

= (gidv
i)2 + ϵhijdv

idvj ,

where
hij =< φ,i, φ,j >1 (13)

and ϵ is

ϵ =

 0, dv1 : dv2 non-isotropic

1, dv1 : dv2 isotropic
.

The coefficients Lij of the second fundamental form are given by

Lij =<
φ,ijx,1 − x,ijφ,1

x,1
, N >1 . (14)

Corollary 1. Let M be a surface in Galilean space. The Gauss curvature K and
mean curvature H of the surface are defined as

K =
detLij

w2
(15)

and
2H = gijLij . (16)
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2. Tubular surfaces in Galilean space

The aim of this paper is to introduce a simple method for parametrization of tubular
surfaces in Galilean space. Let us denote by ρ the vector connecting the point from
the arc-length parametrized curve r(u) with the point from the surface. Then,
clearly, we have the position vector R of a point on the surface in the following form

R = r(u) + ρ. (17)

On the other hand, since ρ lies in the Euclidean normal plane of the curve r(u)
shown in Figure 3, the points at a distance a = const from a point of r(u) form a
Euclidean circle in Galilean space.

Figure 3:

We may define the Euclidean angle v between the isotropic vectors n and ρ.
Then, as one can see immediately, we have

ρ = a(cos vn+ sin vb). (18)

Combining equations (17) and (18), the tubular surface at a distance a from r(u)
is described by means of parametrization as

Xa(u, v) = r(u) + a(cos vn+ sin vb). (19)

Using equations (19) and (5) implies that

Xa(u, v)=(u, y(u), z(u))+
a

κ
[ cos v(0, y

′′
(u), z

′′
(u))+ sin v(0,-z′′(u), y

′′
(u)]. (20)

We denote partial derivatives of Xa(u, v) with respect to u and v by Xa
u(u, v)

and Xa
v (u, v). Then, from equations (19) and (6), we have

Xa
u(u, v) = t+ aτ(cos vb− sin vn) (21)

and
Xa

v (u, v) = a(cos vb− sin vn) (22)
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so that the vector cross product of these two vectors is given by

Xa
u(u, v) ∧Xa

v (u, v) = −a(sin vb+ cos vn). (23)

Hence for small a > 0, we have

∥Xa
u(u, v) ∧Xa

v (u, v)∥1 = a. (24)

Using equations (23) and (24), we obtain the isotropic normal vector of tubular
surfaces as

N = − cos vn− sin vb. (25)

On the other hand, from equations (25) and (8), it is easy to see that

δ = − sin vn+ cos vb. (26)

By means of equations (10), (20) and (22), we obtain

g1 = 1, g2 = 0 . (27)

Using the projection of Xa
u(u, v) and Xa

v (u, v) vectors onto the Euclidean yz-
plane, we have

h22 = a2 (28)

Substituting equations (27) and (28) into equation (12) consequently, we obtain
the first fundamental form of tubular surfaces in Galilean space as

I = du2 + ϵa2dv2, (29)

where ϵ is

ϵ =

{
0, du ̸= 0
1, du = 0

. (30)

From equations (21) and (22), we have

Xa
uu(u, v) = (κ− aτ ′ sin v − aτ2 cos v)n+ (aτ ′ cos v − aτ2 sin v)b

Xa
uv(u, v) = −aτ(sin vb+ cos vn)

Xa
vv(u, v) = −a(cos vn+ sin vb).

(31)

Equations (31) and (25) lead to the coefficients of the second fundamental form
obtained by,

L11 = −κ cos v + aτ2

L12 = aτ

L22 = a,

(32)

respectively.
Substituting equations (32) into equation (15) implies that

K =
−κ cos v

a
. (33)
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From equations (11) and (27), we get

g11 = 0, g12 = 0, g22 =
1

a2
. (34)

Then, substituting equations (32) and (34) into equation (16), finally, we obtain
the mean curvature of tubular surface as

2H =
1

a
. (35)

Corollary 2. Tubular surfaces are constant mean curvature surfaces in Galilean
space.

Consequently, we have the following theorem:

Theorem 1. Tubular surfaces are Weingarten surfaces in Galilean space.

Proof. Differentiating K and H with respect to u and v gives

Kv =
κ sin v

a
,Ku =

−κ′ cos v

a
(36)

and
Hv = Hu = 0. (37)

By using (36) and (37), Xa(u, v) satisfies identically the Jacobi equation

Φ(H,K) = KvHu −HvKu = 0.

Therefore, Xa(u, v) is a Weingarten surface.

HvKu −HuKv = 0.

Example 1. Let α be a parametrized by

r(u) = (u, cosu, sinu)

It is easy to see that the Frenet frame is

t = (1,− sinu, cosu),

n = (0,− cosu,− sinu),

b = (0, sinu,− cosu),

where κ = 1 is the curvature and τ = 1 is the torsion of the curve.
Hence for a = 1, we have a tubular surface shown in Figure 4, parametrized by

X(u, v) = (u, cosu− cos v cosu+ sin v sinu, sinu− cos v sinu− sin v cosu).
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Figure 4:
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[5] I. Kamenarović, Existence theorems for ruled surfaces in the Galilean space G3, Rad
HAZU Math. 456(1991), 183–196.

[6] M.K.Karacan, Y.Yayli, On the geodesics of tubular surfaces in Minkowski 3-Space,
Bull. Malays. Math. Sci. Soc. 31(2008), 1–10.
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