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Abstract. In this paper we consider the ruin probabilities of a multidimensional insurance
risk model perturbed by Brownian motion. A Lundberg-type upper bound is derived for
the infinite-time ruin probability when claims are light-tailed. The proof is based on the
theory of martingales. An explicit asymptotic estimate is obtained for the finite-time ruin
probability in the heavy-tailed claims case.
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1. The model

Multidimensional models with a common arrival process describe situations where
each claim event usually produces more than one type of claim. One common ex-
ample is natural catastrophe insurance where an accident could cause claims for
different types of bodily injuries and property damages. The same situations exist
in motor insurance.

We consider a multidimensional insurance risk process−→
R (t) = (R1(t), . . . , Rn(t))T perturbed by a multidimensional Brownian motion R1(t)

· · ·
Rn(t)

 =

 u1

· · ·
un

+ t

 c1
· · ·
cn

− N(t)∑
i=1

 X1i

· · ·
Xni

+

 σ1B1(t)
· · ·

σnBn(t)

 , t ≥ 0. (1)

Here −→u = (u1, . . . , un)T stands for the initial surplus vector, −→c = (c1, . . . , cn)T for

the premium rate vector, while
−→
X i = (X1i, . . . , Xni)

T , i = 1, 2, . . . denote n-tuples of
claims whose common arrival times constitute a counting process {N(t), t ≥ 0}. The

process {N(t), t ≥ 0} is a Poisson process with intensity λ > 0 and {
−→
X i, i = 1, 2, . . . }

is a sequence of independent copies of the random n-tuple
−→
X = (X1, . . . , Xn)T

with a joint distribution function F (x1, . . . , xn) and marginal distribution func-

tions F1(x1), . . . , Fn(xn). The vector
−→
B (t) = (B1(t), . . . , Bn(t))T denotes a stan-

dard multidimensional Brownian motion with constant correlation coefficients rij ∈
[−1, 1], i = 1, . . . , n − 1, j = i + 1, . . . , n, while σi ≥ 0, i = 1, . . . , n denote the
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marginal volatility coefficients of
−→
B (t). All vectors

−→
X i for i = 1, 2, . . . , −→u and −→c

consist of only nonnegative components. The random processes {
−→
X i, i = 1, 2, . . . },

{N(t), t ≥ 0} and {
−→
B (t), t ≥ 0} are all mutually independent.

Let −→x = (x1, . . . , xn)T and −→y = (y1, . . . , yn)T be two n-dimensional vectors.
Then we write −→x < −→y if xi < yi, i = 1, . . . , n and in the same way we define other
inequalities.

The ruin time of the model (1) can be defined in two different ways:

Tmin = inf{t > 0|min{R1(t), . . . , Rn(t)} < 0}

or

Tmax = inf{t > 0|
−→
R (t) <

−→
0 } = inf{t > 0|max{R1(t), . . . , Rn(t)} < 0}.

Here we assume that inf ∅ =∞. Tmax is the first time when all Ri(t), i = 1, . . . , n go
below zero. At time Tmin the insurance company may be able to survive more easily
because probably only one of its subsidiary companies gets ruined. That means that
Tmax represents a more critical time than Tmin. We also define the infinite-time ruin
probability of the model (1) in two ways:

ψ(−→u ) = P (Tmin <∞|
−→
R (0) = −→u ) (2)

or
ψ(−→u ) = P (Tmax <∞|

−→
R (0) = −→u ),

respectively.
Finally, we define the finite-time ruin probability

ψ(−→u ;T ) = P (Tmax ≤ T |
−→
R (0) = −→u ), T > 0. (3)

In Section 2, we derive a Lundberg-type upper bound for the case of light-tailed
claims and for the infinite-time ruin probability ψ(−→u ). We use the techniques from
martingale theory with no restrictions on the dependence structure of the process−→
X . In Section 3, we derive an explicit asymptotic estimate for the finite-time ruin
probability ψ(−→u ;T ) for the case of heavy-tailed claims, where we do assume that
X1, . . . , Xn are independent.

2. A Lundberg-type upper bound for the ruin probability of
light-tailed claims

Throughout this section we consider only the claims with light tails. We also assume

that the claim vector
−→
X has a finite mean vector −→µ = (µ1, . . . , µn)T and that the

safety loading condition −→c > λ−→µ holds.
Our main result - an upper bound for the infinite-time ruin probability is given

by the following theorem:

Theorem 1. Let
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(i) m̂(s1, . . . , sn) = E[exp{s1X1 + · · ·+ snXn}];

(ii) f(s1, . . . , sn) = λm̂(s1, . . . , sn)− λ−
∑n
i=1 cisi

+ 1
2 [
∑n
i=1 σ

2
i s

2
i + 2

∑n−1
i=1

∑n
j=i+1 rijσiσjsisj ];

(iii) s0
1 = sup{s1|m̂(s1, 0, . . . , 0) <∞}, . . . , s0

n = sup{sn|m̂(0, . . . , 0, sn) <∞};

(iv) G0 = {(s1, . . . , sn)|s1 ≥ 0, . . . , sn ≥ 0, m̂(s1, . . . , sn) <∞} \ (0, . . . , 0);

(v) ∆0 = {(s1, . . . , sn) ∈ G0|f(s1, . . . , sn) = 0}.

If s0
1 > 0,. . . ,s0

n > 0 and sup(s1,...,sn)∈G0 f(s1, . . . , sn) > 0, then

ψ(−→u ) ≤ inf
(s1,...,sn)∈∆0

exp

{
−

n∑
i=1

siui

}
. (4)

Hölder inequality gives that the set G0 is non-empty provided that s0
1 > 0, . . . ,

s0
n > 0. First we will prove a proposition:

Proposition 1. Let s0
1 > 0, . . . , s0

n > 0 and sup(s1,...,sn)∈G0 f(s1, . . . , sn) > 0. Then
the following statements hold:

(a) The set ∆0 is non-empty.

(b) If v > 0 solves the equation f(s1, . . . , ls1, . . . ) = 0 for given l ≥ 0, then
f(s1, . . . , ls1, . . . ) > 0 for every s1 > v and f(s1, . . . , ls1, . . . ) < 0 for ev-
ery 0 < s1 < v. Here ls1 comes in the i-th position and sj = s1 for j 6= i,
i = 1, . . . , n.

Proof. (a): For some given l ≥ 0 and si = ls1, i = 1, . . . , n, we calculate

df(s1, . . . , ls1, . . . )

ds1
=λ

[ n∑
j=1,j 6=i

∂m̂(s1, . . . , sn)

∂sj
+ l

∂m̂(s1, . . . , si, . . . )

∂si

]
si=ls1,sj=s1,j 6=i

−
n∑

j=1,j 6=i

cj − lci +

n∑
j=1,j 6=i

σ2
j s1 + 2l

i−1∑
j=1

rjiσiσjs1

+2l

n∑
j=i+1

rijσiσjs1 + 2

n−1∑
j=1,j 6=i

n∑
k=j+1,k 6=i

rjkσjσks1 + l2σ2
i s1,

so that

df(s1, . . . , ls1, . . . )

ds1

∣∣∣∣
s1=0

= −
n∑

j=1,j 6=i

(cj − λµj)− l(ci − λµi) < 0,

because of the safety loading conditions. This means that the function s1 →
f(s1, . . . , ls1, . . . ) decreases when s1 > 0 is sufficiently close to the point s1 = 0.
For l =∞, the equation si = ls1 represents the line s1 = 0 and in this case we can
easily show that the function f(0, . . . , si, . . . ) takes smaller values than f(0, . . . , 0)
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when si > 0. Now we conclude that f(s1, . . . , si, . . . ) < 0 holds for all (s1, . . . , sn)
sufficiently close to the origin, because f(0, . . . , 0) = 0 and 0 ≤ l ≤ ∞ can be ar-
bitrary. By this and the condition sup(s1,...,sn)∈G0 f(s1, . . . , sn) > 0 we see that (a)
holds.

(b): Let s1 > 0 and l ≥ 0. We have

d2f(s1, . . . , ls1, . . . )

ds2
1

= λ

[ n∑
j=1,j 6=i

∂2m̂(s1, . . . , sn)

∂s2
j

+2l

n∑
j=1,j 6=i

∂2m̂(s1, . . . , sn)

∂si∂sj
+l2

∂2m̂(s1, . . . , sn)

∂s2
i

]
si=ls1,sj=s1,j 6=i

+

n∑
j=1,j 6=i

σ2
j + 2l

i−1∑
j=1

rjiσiσj + 2l

n∑
j=i+1

rijσiσj

+2
n−1∑

j=1,j 6=i

n∑
k=j+1,k 6=i

rjkσjσk + l2σ2
i

≥ λ

n∑
j=1,j 6=i

E[(Xj + lXi)
2] +

n∑
j=1,j 6=i

[σj − lσi]2 > 0,

where si = ls1, i = 1, . . . , n. We conclude that the function s1 → f(s1, . . . , ls1, . . . )
is convex on (0, s0

1), so the equation f(s1, . . . , ls1, . . . ) = 0 can have only one root in
(0, s0

1) and the result (b) obviously follows.

Now we will prove the theorem using Proposition 1.

Proof of the theorem. First we are going to construct a martingale based on the

surplus process {
−→
R (t), t ≥ 0}. This martingale is needed for establishing a Lundberg-

type upper bound for the ruin probability. Let s1, . . . , sn be real numbers such that
m̂(s1, . . . , sn) <∞. We will show that the process

M(
−→
R (t)) = exp

{
−

n∑
i=1

siRi(t)− f(s1, . . . , sn)t

}
, t ≥ 0,

is an F-martingale, where F = {Ft, t ≥ 0} represents the natural filtration of

{
−→
R (t), t ≥ 0}.

For every t, h ≥ 0 we have

E

[
exp

{
−

n∑
i=1

si(Ri(t+ h)−Ri(t))
}]

= exp

{
− h

n∑
i=1

sici

}
exp{λm̂(s1, . . . , sn)h− λh}

× exp

{
1

2

[ n∑
i=1

σ2
i s

2
i + 2

n−1∑
i=1

n∑
j=i+1

rijσiσjsisj

]
h

}
= exp{f(s1, . . . , sn)h},
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since the Poisson process {N(t), t ≥ 0} has stationary independent increments. This
gives that

E[M(
−→
R (t+ h))|Ft] = E

[
exp

{
−

n∑
i=1

siRi(t+ h)− f(s1, . . . , sn)(t+ h)

}∣∣∣∣Ft]

= exp

{
−

n∑
i=1

siRi(t)− f(s1, . . . , sn)t

}
= M(

−→
R (t))

and we conclude that M(
−→
R (t)) is a martingale with respect to F . Now the equation

E[M(
−→
R (t))] = exp

{
−

n∑
i=1

siui

}
, t ≥ 0 (5)

follows from M(
−→
R (0)) = exp

{
−
∑n
i=1 siui

}
and the definition of a martingale.

Next we will show that Tmin and M(
−→
R (t)) are a stopping time and a martingale,

respectively, with respect to a common filtration F ′ = {F ′t, t ≥ 0}.
Let {F t, t ≥ 0} be a complete σ-algebra of {Ft, t ≥ 0} with respect to P and

let F t+ = ∩s>tFs. M(
−→
R (t)) is an right-continuous F-martingale, so it is also a

martingale with respect to {F t+, t ≥ 0} (see [1, Theorem VI.1.3]). The definition

of Tmin and the fact that {
−→
R (t), t ≥ 0} is a cádlág process, gives that Tmin is an

{Ft+, t ≥ 0}-stopping time, hence an {F t+, t ≥ 0}-stopping time since Ft+ ⊂ F t+
(see [3, I.1.28 Proposition]). So, if we select F ′ = {F t+, t ≥ 0}, we get that Tmin is

an F ′-stopping time and M(
−→
R (t)) is an F ′-martingale, respectively.

Let 1A be the indicator function of an event A. By equality (5) and by the fact

that Tmin and M(
−→
R (t)) are a stopping time and a martingale, for every (s1, . . . , sn)

such that m̂(s1, . . . , sn) <∞ we have

exp

{
−

n∑
i=1

siui

}
= E[M(

−→
R (t))] ≥ E[M(

−→
R (t))1(Tmin≤t)]

= E{E[M(
−→
R (t))|FTmin+]1(Tmin≤t)}

= E{M(
−→
R (Tmin))|Tmin ≤ t}P (Tmin ≤ t).

(6)

Since there is at least one i ∈ {1, . . . , n} such that Ri(Tmin) < 0, we can find
(s1, . . . , sn) ∈ G0 for which

exp

{
−

n∑
i=1

siRi(Tmin)

}
≥ 1.

By rearranging inequality (6) using the definition of M(
−→
R (t)) and the above in-

equality we get

P (Tmin ≤ t) ≤ exp

{
−

n∑
i=1

siui

}
sup

0<h<t
exp{f(s1, . . . , sn)h}.
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We define ∆− = {(s1, . . . , sn) ∈ G0|f(s1, . . . , sn) < 0} and
∆+ = {(s1, . . . , sn) ∈ G0|f(s1, . . . , sn) > 0}. For (s1, . . . , sn) ∈ ∆+, the right-hand
side of the above relation tends to ∞ as t → ∞ so this case makes no sense. We
conclude that

P (Tmin ≤ t) ≤ inf
(s1,...,sn)∈∆−∪∆0

exp

{
−

n∑
i=1

siui

}
.

By Proposition 1(a) we know that the equation f(s1, . . . , sn) = 0 has at least one
root in G0. Applying Proposition 1(b) it is easy to see that the infimum in the above
inequality can be attained on ∆0. It follows that

P (Tmin ≤ t) ≤ inf
(s1,...,sn)∈∆0

exp

{
−

n∑
i=1

siui

}
and for t → ∞ we get a Lundberg-type upper bound for the infinite-time ruin
probability (4) when the ruin time equals Tmin. In view of the obvious inequality

P (Tmax < t) ≤ P (Tmin < t)

we can see that the relation (4) also holds when we take Tmax to be the ruin time
of the process.

3. Asymptotics for the finite-time ruin probability

In this section we consider the risk process (1) with heavy-tailed claims. We fur-

ther assume that the claim vector
−→
X and the multidimensional Brownian motion−→

B (t) consist of independent components. Here we do not assume the safety loading
condition.

A well-known class of heavy-tailed distribution functions is the subexponential
class. A distribution function F on [0,∞) is said to be subexponential if for some
(or, equivalently, for all) n = 2, 3, . . . the relation

F ∗n(x) ∼ nF (x), x→∞ (7)

holds, where F ∗n denotes the n-fold convolution of F and if F (x) > 0 for all x ≥ 0.
Here ∼ means that the quotient of the left-hand and the right-hand side tends to 1
according to the indicated limit procedure. We write F ∈ S. More on subexponential
distributions can be found in [6, 2.5].

In the following theorem we derive an asymptotic estimate for the finite-time
ruin probability ψ(−→u ;T ) defined in (3). The limit procedure used in this theorem
is always (u1, . . . , un)→ (∞, . . . ,∞).

Theorem 2. Let F1, . . . , Fn be in S. Then

ψ(−→u ;T ) ∼ f(n)F 1(u1) . . . Fn(un), (8)

for every fixed time T > 0 and for each positive integer n, where f(0) = 1, f(1) = λT

and f(n) = λT

(∑n−1
i=0

(
n−1
i

)
f(i)

)
.
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Proof. First we define

Bj(T ) = inf
0≤t≤T

Bj(t), Bj(T ) = sup
0≤t≤T

Bj(t), j = 1, . . . , n.

By the reflection principle (see [4, 2.6]) there is

P (Bj(T ) < −x) = P (Bj(T ) > x) = 2P (Bj(T ) > x),

so because Fj ∈ S

P (Bj(T ) < −x) = P (Bj(T ) > x) = o(F j(x))

for every x > 0 and j = 1, . . . , n. Obviously,

ψ(−→u ;T ) = P (
−→
R (t) <

−→
0 for some 0 < t ≤ T |

−→
R (0) = −→u )

=P

(N(t)∑
i=1

−→
X i−t−→c −(σ1B1(t), . . . , σnBn(t))T >−→u for some 0<t≤T

)
.

(9)

First we will find an asymptotic upper bound for ψ(−→u ;T ). From the assumed
independence of random vector components we get

ψ(−→u ;T ) ≤ P
(N(T )∑

i=1

−→
X i − (σ1B1(T ), . . . , σnBn(T ))T > −→u

)

=

∞∑
k=0

P (N(T ) = k)

n∏
j=1

P

( k∑
i=1

Xji − σjBj(T ) > uj

)
.

(10)

Now we need the result from [2, Lemma 1.3.5]:

• If F is a subexponential distribution, then for every ε > 0 there exists a
constant Cε > 0 such that

F ∗n(x) ≤ Cε(1 + ε)nF (x) (11)

holds for all n = 1, 2, . . . and all x ≥ 0.

By inequality (11) for every ε > 0 there exist constants C
(1)
ε , C

(2)
ε > 0 such that

for all k = 1, 2, . . . ,

P

( k∑
i=1

X1i − σ1B1(T ) > u1

)

=

∫ 0

−u1

P

( k∑
i=1

X1i − x > u1

)
P (σ1B1(T ) = dx) + P (σ1B1(T ) < −u1)

≤ C(1)
ε (1 + ε)k

∫ 0

−u1

P (X1 − x > u1)P (σ1B1(T ) = dx) + P (σ1B1(T ) < −u1)

≤ C(1)
ε (1 + ε)kP (X1 − σ1B1(T ) > u1) + P (σ1B1(T ) < −u1)

≤ C(1)
ε C(2)

ε (1 + ε)kF 1(u1).
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In the last step we used P (X1−σ1B1(T ) > u1) ∼ F 1(u1) which follows from the fact
that for nonnegative independent random variables X and Y with X distributed by
F ∈ S it holds that

P (X − Y > x) ∼ F (x), x→∞ (12)

[7, Lemma 4.2]. We also used P (σ1B1(T ) < −u1) = o(1)F 1(u1). For every fixed
k = 1, 2, . . . , by (7) and from the fact that for distribution functions F,G ∈ S on
[0,∞) satisfying G(x) = o(F (x)) it holds that

F ∗G(x) ∼ F (x); (13)

[6, Lemma 2.5.2], we have

P

( k∑
i=1

X1i − σ1B1(T ) > u1

)
∼ kF 1(u1).

The same relations also hold for P

(∑k
i=1Xji − σjBj(T ) > uj

)
, where

k = 1, 2 . . . and j = 1, . . . , n. Now using the dominated convergence theorem,
we can see that the right-hand side of (10) is asymptotic to

∞∑
k=0

P (N(T ) = k)knF 1(u1) . . . Fn(un) = f(n)F 1(u1) . . . Fn(un),

where f(0) = 1, f(1) = λT and f(n) = λT

(∑n−1
i=0

(
n−1
i

)
f(i)

)
.

This proves that

ψ(−→u ;T ) ≤ (1 + o(1))f(n)F 1(u1) . . . Fn(un). (14)

Next, we derive asymptotic lower bound for the ruin probability ψ(−→u ;T ). From
relation (9) we have

ψ(−→u ;T ) ≥ P
(N(T )∑

i=1

−→
X i − T−→c − (σ1B1(T ), . . . , σnBn(t))T > −→u

)

=

∞∑
k=0

P (N(T ) = k)

n∏
j=1

P

( k∑
i=1

Xji − σjBj(T ) > uj + cjT

)
.

(15)

As in the first part of the proof we can see that

P

( k∑
i=1

Xji − σjBj(T ) > uj + cjT

)
∼ kF j(uj)

for every j = 1, . . . , n and for each fixed k = 1, 2 . . . .. Therefore, using the dominated
convergence theorem, the right-hand side of (16) is also asymptotic to

∞∑
k=0

P (N(T ) = k)knF 1(u1) . . . Fn(un) = f(n)F 1(u1) . . . Fn(un),
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where f(0) = 1, f(1) = λT i f(n) = λT

(∑n−1
i=0

(
n−1
i

)
f(i)

)
. This proves that

ψ(−→u ;T ) ≥ (1 + o(1))f(n)F 1(u1) . . . Fn(un). (16)

Finaly, using inequalities (14) and (16) we obtain the required relation (8).
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