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Factorial-like values in the balancing sequence

NURETTIN IRMAK!"*, KALMAN L1PTAI? AND LASZLO SzALAY®*

L Art and Science Faculty, Mathematics Department, Omer Halisdemir University, Nigde
TR-51240, Turkey

2 Institute of Mathematics and Informatics, Facutly of Natural Sciences, University of
FEger, H-3300, Eger, Hungary

3 Department of Mathematics and Informatics, J. Selye University, SK-501 026
Komarno, Slovakia

4 Institute of Mathematics, University of West Hungary, H-9401 Sopron, Hungary

Received May 11,2017; accepted October 24, 2017

Abstract. In this paper, we solve a few Diophantine equations linked to balancing numbers
and factorials. The basic problem consists of solving the equation B, = z! in positive
integers x, y, which has only one nontrivial solution B2 = 6 = 3!, as a direct consequence
of the theorem of F. Luca [5]. A more difficult problem is to solve By = z2!/z1!, but we
were able to handle it under some conditions. Two related problems are also studied.
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1. Introduction

The balancing sequence {B,,} is given by By = 0 and B; = 1, and by the recursive
rule B,, = 6B,_1 — B,,_s for n > 2. The n*" element of the associate sequence of
{B,} is denoted by C,,, which satisfies the recurrence relation C,, = 6C,,—1 — Cy,—2
(n > 2), where the initial values are Cp = 2 and C; = 6. The elements of the
sequence {C,} are often called Lucas-balancing numbers. Note that

Boyp = BnCh, (1)

and
C? —32B% = 4. (2)

These two identities can be obtained similarly to those for Fibonacci and Lucas
numbers. Observe that

Bi=1=1, Cy=2=2!, By=C; =6=3l, (3)

so the question arises naturally whether there are other factorial values in {B,} or
in {C,}. More generally, one may claim the solutions to the Diophantine equations

By =x1! -zl -2, Cy =zl 2! -2, (4)
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in the positive integers z1,...,x,, and y. Today it is an easy question since Luca
([5], Theorem 4) proved the following theorem. A Lucas sequence {uy} is a non-
degenerate binary recurrence with the initial values ug = 0, u; = 1. Let PF be the
set of all positive integers which can be written as a product of factorials.

Theorem 1 (see [5], Theorem 4). Let (un),~, be a Lucas sequence. Let a and
B denote the two roots of the characteristic equations. Suppose that |a| > |B|. If
lun| € PF, then

y < max {12, 2¢e|a| + 1} . (5)

The same upper bound is true for the associate sequence of {u,}. Luca used
deep algebraic number theoretical considerations and the Baker method.

In the case of balancing a sequence and its associate sequence, the zeros of the
characteristic polynomial 2> — 6z + 1 are a = 3 4+ 2v/2 and 8 = 3 — 2v/2. Thus, by
(5) we obtain y < 32. Using a brute force algorithm, computer search provides only
(3) as all the solutions to (4). (All of them are single factorial terms.)

For the Fibonacci sequence given by Fy =0, I} = 1, and F,, = F,_1 + Fj_o,
Luca’s bound is only 53, and uy, = x1!- 22! - x,! is fulfilled in the cases

Fi=F=1!, F3=2!, F;=(2)3 Fp=(2)%3)%=3-4.

Consider now the Tribonacci sequence defined by Ty = 0, T3 = T = 1 and by
T, =Tn-1+Th—2+ Tn_3. The equation

T, = !

was solved by Marques and Lengyel [4], and it showed that the only solutions are
(y,z) = (1,1), (2,1), (3,2), (7,4). Their proof is based on the determination of
the 2-adic order of Tribonacci numbers. The p-adic order of the non-zero integer n
denoted by v, (n) is defined by the exponent of the highest power of prime p dividing
n.
The main purpose of this paper is to investigate the solvability of three Diophan-
tine equations linked to factorials and balancing numbers:
- .IQ! - .IQ! B — '
y—x_l!v y—x—17 y — T1x2:,
in positive integers x1, x2 and y, under some conditions on x; and xs.
One important argument, which will be used later, is the characterization of the
2-adic order of balancing numbers as it has been already obtained for Fibonacci
numbers by Lengyel [3].

Theorem 2. Forn > 1, we have
0, ifn=1 (mod2)

ve (By) =< 1, if n =2 (mod 4)
va(n), ifn=0 (mod4)
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Precise results are formulated in the next three theorems. We note that in
Theorem 3 the value § = 0.98 and in Theorem 5 the value K = 10° were choosen to
carry out precise calculations. Our method, at least in theory, works for arbitrary
0<d<land K > 1.

Theorem 3. Unless (x1,22,y) = (1,3,2), the Diophantine equation

.IQ!

'EU ’
‘ |
Iy

in positive integers y, x1, To with x1 + 2 < x9 has no solution in the folowing cases:
e 11 <0.98z9, or
e 11 =29 — 1, wheren € {2,3,4}.

Theorem 4. The only solutions of the Diophantine equation

1'2!
By =—

Z1
i positive integers x1, xo and y with r1 < xo are
(z1,22,y) = (1,1,1), (2,2,1), (1,3,2), (4,4,2).
Theorem 5. The only solutions of the Diophantine equation
By = x125!
in positive integers x1, T and y with the condition £, < 10%zy are

1,1,1), (6,1,2), (3,2,2), (1,3,2), (35,1,3),

(!Tlux?uy) = (
(204, 1,4), (102,2,4), (34,3,4), (1189, 1,5), (6930, 1,6),
(
(

3465,2,6), (1155,3,6), (40391,1,7), (235416,1,8),
117708, 2,8), (39236,3,8), (9809, 4,8), (1332869, 3, 10).

2. Preliminaries

In this section, we present several lemmas which help us to prove the theorems.

Lemma 1. Ifn > 2, then
a" < B,

where a is the larger zero in absolute value of the characteristic polynomial of the
sequence {By}.

Proof. See Lemma 4 in [1]. O

Theorem 2 is an immediate consequence of the following lemma; it states a bit
more when 4 does not divide n.
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Lemma 2. Let n be a positive integer.
1. B, =n(mod4).
2. Let n = 2°r for some integers s > 2 and odd r. Then Bgs, = 2°r (mod 25“).

Proof. (1) It is an easy consequence of considering the sequence of balancing num-
bers B,, modulo 4.

(2) We use induction on s. Assume s = 2. The balancing sequence modulo 8
begins with

0,1,6,3,4,5,2,7,0,1,....

Clearly, the length of the period is 8 and By, =4 = 4r (mod 8) (note that here r is
odd).

Suppose that the statement is true for some s > 2 and r odd, i.e. Bgsp =
257 4 25F1 holds for some positive integer k. It is easy to see that C,, = 2 (mod 4).

Thus C,, = 4u,, + 2 for some positive integer sequence {u, }. Applying identity (1),
we have

Byet1, = CaspBaeyp = (dugep + 2) (257 4 2°7'k)
= 25T 1 252 (b 4 oo + 2ugs, k)
= 2°F1y (mod 2°1?),

and the proof of the lemma is complete (and Theorem 2 follows). O

Let s, (k) denote the sum of the base-p digits of the positive integer k.

Lemma 3 (Legendre). For any integer k > 1 and p prime, we have

k —sp(k)

vp(kl) = p—1

Proof. See [2]. O

The result of Legendre has the following consequence.

Corollary 1. For any integer k > 2 and prime p the inequalities

k log k k—1
-1 < k) < ——
< )_p—l

p—1 logp

hold.

Proof. Consider the maximal and minimal values of s,(k), respectively. g
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3. General approach to the proofs

This approach does not affect the problem B, = wxa!/z1! with 3 — 21 = ¢, ¢ €

{1,2,3).
For a given positive integer r and the integer valued function f(x1,xo,...,x;)
we would like to solve the Diophantine equation
B, = f(z1,22,...,2,) (6)
in the positive integers y, x1,...,x,. Recall Theorem 2 to remind us that the value
v2(By,) is rather small. If we are able to give a “good” lower bound for the “suffi-
ciently large” vo(f (1, 2, ..., 2,)), meanwhile we can provide a “good” upper bound
for f(x1,x9,...,x,), then there is a chance to bound the variables. More precisely,

Lemma 1 leads to
log f(x1, @2, ..., x,)
log o

y<1l+
starting from (6). Theorem 2 implies

logy
log2”

vo(f(@1,@2,...,2,)) = v2(By) < 1a(y) <

Combining the last two formulas, we obtain

(7)

va(f(z1,22,...,2)) <

logf(xl,fﬂg,...,(ﬂr))

log (1 +
log «v

log 2

We succeed if the comparison of the two sides bounds the variables. This will happen
in the following cases:

1. f(x1,22) = x2!/x1!, with the condition 21 < dzo for some 0 < § < 1,

2. fx1,22) = @a!/x1 wWith 1 < o,

3. f(x1,22) = mixe! with the restriction 23 < Kao for some positive integer
1< K.

4. Proof of the theorems
4.1. Proof of Theorem 3

Case 1. 71 +2 < x5 and z1 < dxy with a fixed 0 < § < 1.

Assume that the positive integer solutions x1, x2 and y satisfy x1 +2 < z2 and
x1 < dxo with a fixed 0 < 6 < 1.

Corollary 1 provides

To! log x
V) (—2|) = va(z2!) —va(z1!) > @2 — 1Ogg22 —1-(z1-1)

X

\Y

—
|

(«%)

~—
=]
[ V)
I
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On the other hand,
IQ! < | < T2\ T2
oo (2)

follows where we applied the well-known identity k! < (k/2)*. The preparation till
now enables us to apply (7). It leads to

(1= g)zy — 0822 1, (1 + M) . (8)
) og log

For fixed ¢, it provides an upper bound for z5. Indeed, if x5 is large enough, the left-
hand side of (8) is positive, further the leading term is linear, while the right-hand
side is approximately logarithmic in 5. For instance, if 6 = 49/50, then zo < 1102.
Making a simple computer verification in the range 3 < o <1102, 1 <z < 29 — 2,
x1 < 49/50z4, according to (2), we find a balancing number if

is an integer. It occurs only in the case (z1,x2) = (1, 3), which gives B, = 6, and
then y = 2. Taking another example, say 6 = 1 — 1075, we obtain x5 < 5.5 - 107.
This bound is too large, even to check possible cases by a computer!

Case 2. 1 = 25 — 2.
We have to solve B, = x5 (z2 —1). Put z = C,,. Then 2% = 32z3(zs — 1)> +4
via z; = z/2 leads to the equation

22 = 8a5 — 1623 + 8x3 + 1.
To this equation, the Magma procedure
IntegralQuarticPoints([8,-16,8,0,1]);
determines the solutions
(x2,21) = (=2,£17), (0,£1), (1,£1), (3,£17).

Only the last one provides solution to B, = z2(z2 — 1), namely By = 6 = 3 - 2,
ie. (z2,y) = (3,2).

Case 3. 11 = x5 — 3.
Now, our task is to solve By = xa(z2 — 1)(z2 —2). Let 2 = C,, and t = x5 — 1.
Then we have

22 =32(t — 1)%2(t +1)? + 4 = 32(t> — 1)*t* + 4.

Applying z = 2z, and t; = t2, and multiplying the equation by 3%, together with
t1 = (T —4)/6, we arrive at the elliptic equation

(2721)% = T — 108T + 1161. (9)
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We used Magma (E:=EllipticCurve([-108,1161]);IntegralPoints(E);) to
solve (9), and we got

(T,272) = (—12,£27), (=2, £37), (6,£27), (15, £54), (60, £459).

None of them gives a solution to By, = za(x2 — 1)(z2 — 2) with the given conditions.

Case 4. 1 = 15 — 4.

The corresponding equation is B, = za(z2 — 1)(z2 — 2)(x2 — 3). Put z = C,,.
Then 22 = 3223(z2 — 1)%(z2 — 2)?(v2 — 3)? +4 via 21 = 2/2 and t = 23 — 3wg + 1
leads to

22 = 8t* — 16t* + 9.

IntegralQuarticPoints([8,0,-16,0,9]) ; returns with
(t,21) = (£6,£99), (£1,+1), (0,£3).

Clearly, none of them leads to a solution of B, = za(z2 — 1)(x2 — 2)(z2 — 3).

4.2. Proof of Theorem 4

Here f(x1,x2) = x2!/21 assuming 1 < xo. Thus

Further

5! T\ T2
—2§x2!§ (_2)
X 2

follows. Putting them together to apply (7), we obtain

21ogx2 1 : log <1 L 22 1og(a:2/2)) '

log2 < log log o

It provides 2 < x5 < 11. Lastly, we checked the possible values of x; and x5, and
found three solutions.

4.3. Proof of Theorem 5

Now we study the function f(z1,x2) = x1z2! with the restriction x; < Ko, where
K =109,

log xo

VQ(By) = V2($1I2!) = VQ(.Il) + I/Q(IQ!) Z Xro — 1— 10g2

follows by Corollary 1. Also,

o\ *2
:leg! S I (?)
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holds, so together with (7) we have

log - 1 log 1 log 1 + x2log(z2/2)
log 2 log 2 log

log (1 N log K + log zo + 2 log(x2/2)) '
log o

,Tz—l—

<
~ log2

The solution of the inequality above for K = 10° is 25 < 8. A computer verification
for B, = x1x2! returns 18 solutions described in the theorem.
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