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Abstract. An exact expression is established for the characteristic function of the order
statistics of the Student’s t distribution. The expression is a single infinite sum of terms
involving the modified Bessel function of the second kind. It is simpler and yet more general
than previously known expressions.
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1. Introduction

The Student’s t distribution is one of the most popular distributions in statistics.
It has been used to model various phenomena, especially in finance. It has been a
popular model in particular for stock returns. In stock modeling, the primary interest
is in the order statistics of stock returns (for example, largest stock return, smallest
stock return, etc). Moments and the characteristic function of order statistics are of
interest for various reasons:

1. Suppose stock returns are recorded daily. Then the average of the largest stock
returns observed over say periods of 1000 days will need the first moment of
the largest order statistic; the variability of the largest stock returns observed
over say periods of 1000 days will need the second moment of the largest order
statistic; the skewness of the largest stock returns observed over say periods of
1000 days will need the third moment of the largest order statistic; the kurtosis
of the largest stock returns observed over say periods of 1000 days will need
the fourth moment of the largest order statistic; and so on.

2. Estimation of models for financial data are often based on the empirical char-
acteristic function. Some examples include estimation of affine asset pricing
models ([20]); estimation of stochastic conditional duration models ([15]); es-
timation of Markov models ([12]); estimation of value at risk ([24]); semi-

∗Corresponding author. Email addresses: poganj@pfri.hr (T.K.Pogány),
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nonparametric estimation of independently and identically repeated first-price
auctions ([3]).

3. Hypothesis testing involving financial data is also often based on the empirical
characteristic function. Some examples include goodness of fit tests based on
kernel density estimators ([7]); a test of the martingale difference hypothesis
([16]); generalized spectral tests for conditional mean models in time series
([10]); nonparametric tests for conditional symmetry in dynamic models ([6]);
a simulation-based specification test for diffusion processes ([2]); a martingale
approach to testing diffusion models ([21]); tests of short memory ([1]); tests
for conditional distributions in count data ([3]); integrated conditional moment
tests for conditional distributions ([4]); testing for the Markov property in time
series ([5]); tests for conditional ellipticity in multivariate GARCHmodels ([9]);
testing stationarity of time series ([11]).

4. Various financial risk measures are based on the order statistics and their
moments (for example, expected shortfall).

The first motivation directly involves moments of order statistics. If data are
available on the order statistics of stock returns, then the remaining motivations
will need moments and characteristic functions of the order statistics. Note that
the moments of order statistics can be easily derived if their characteristic functions
were known.

There has not been much work on moments of order statistics from the Student’s
t distribution: Fisher and Healy (1956) tabulated numerical values of the expected
order statistics; Kabir and Rahman (1974) derived bounds for the expected order
statistics; Vaughan (1992) gave expressions for expected values, variances and co-
variances of order statistics for the Student’s t distribution with two degrees of
freedom.

Most recently, Nadarajah (2007, 2008) derived expressions for moments of the
Student’s t order statistics. But the expressions involved the generalized Kampé de
Fériet function, which is defined as a multiple infinite sum of elementary functions.
The number of infinite sums increases as the sample size increases. Hence, the
computation becomes formidable for large sample sizes. Besides, we are aware of
no packages containing in-built routines for computing the generalized Kampé de
Fériet function.

The aim of this note is to derive a simple expression for the characteristic function
of the Student’s t order statistics. The expression derived is a single infinite sum of
terms which are elementary, except for the modified Bessel function of the second
kind. In-built routines for the modified Bessel function of the second kind are widely
available, even in the freely downloadable R software ([19]).

Let T denote a Student’s t random variable with ν degrees of freedom. Its
probability density function is

f(x) =
1√

ν B
(

ν
2 ,

1
2

)

(

1 +
x2

ν

)− ν+1
2
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for x ∈ R, where B denotes the beta function defined by

B(p, q) =

∫ 1

0

xp−1 (1 − x)q−1 dx

for min [ℜ(p),ℜ(q)] > 0. We write T ∼ t(ν) throughout. The corresponding cumu-
lative distribution function is ([13], page 364, equation (28.4a))

F (x) = 1− 1

2
Iσ(x)

(

ν

2
,
1

2

)

(2)

for σ(x) = ν
ν+x2 and x ≥ 0; other values can be obtained by symmetry. Also I

denotes the regularized incomplete beta function defined by

Iz(p, q) =
Bz(p, q)

B(p, q)
,

where

Bz(p, q) =

∫ z

0

xp−1 (1− x)q−1 dx.

Hence, the probability density function is an even function, the corresponding
characteristic function, φT (t) = EeitT = 2E cos(tT ), is in fact the Fourier cosine
transform of f(x). It is well known that (see [13])

φT (t) =
2

Γ
(

ν
2

)

(

t
√
ν

2

)

ν
2

K ν
2

(
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√
ν
)

for ν > 0 and t ∈ R, where Kµ denotes the modified Bessel function of the second
kind of order µ and Γ denotes the gamma function defined by

Γ(s) =

∫ ∞

0

xs−1 e−x dx

for ℜ(s) > 0. Note that B(p, q) Γ(p+ q) = Γ(p) Γ(q).
Suppose T1, . . . , Tn are independent copies of T ∼ t(ν). Let T(1) < · · · < T(n)

denote the corresponding order statistics. Theorem 1 derives an explicit expression
for the characteristic function of T(r). The expression is a Neumann series of the
modified Bessel function of the second kind Kµ, where µ contains all summation
indices.

If T1, . . . , Tn are independent t(ν) random variables with location parameter µ

and scale parameter σ, then the characteristic function of T(r) is φr(σt) exp (itµ),
where φr(·) is given by Theorem 1.

2. Main results

The main result is Theorem 1.
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Theorem 1. For all t ∈ R, ν > 0 and for all r = 1, . . . , n, the characteristic

function of T(r) is
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Proof. By (1) and (2), the probability density function of T(r) is
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for x ≥ 0. Since we will use the cosine Fourier transform, it is sufficient to consider
the probability density and cumulative distribution functions for non-negative values.
That is,

φr(t) = 2 E cos
(
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= 2
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Substituting x
√
ν 7→ x and writing the shorthand
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(3) can be rewritten as
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where m = n − r + k. Expanding the binomial term into a Maclaurin series in
the inner u integral and expressing the result in terms of Pochhammer symbols, we
obtain

φr(t) =

r−1
∑

k=1

Ck

(

2
ν

)m
∑

j1,...,jm≥0

m
∏

s=1

(

1
2

)

js

(

ν
2

)

js
(

ν
2 + 1

)

js
· js!

∫ ∞

0

cos (t
√
ν x)

(1 + x2)
µ+ 1

2

dx, (4)



Characteristic function of the order statistics 299

where

µ = ν
2 (m+ 1) + j1 + · · ·+ jm.

By [23], page 172, Section 6.16, equation (1),
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holds for all ℜ(a) > 0 and 2ℜ(µ) + 1 > 0. Hence,
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Further reduction gives the expression
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which is equivalent to the asserted result.

Corollary 1 is the special case of Theorem 1 for n = r = 3. Corollary 2 is the
special case for n = 3 and r = 1.

Corollary 1. For all t ∈ R and ν > 0, the characteristic function of T(3) for n = 3
is

φ3(t) =
12

√
π

(

t
√
ν

2

)

ν
2

B
(

ν
2 ,

1
2

)

{

K ν
2
(t
√
ν)

2Γ
(

ν
2

) −

(

t
√
ν

2

)

ν
2

νB
(

ν
2 ,

1
2

)

Γ(ν)

×
∑

n≥0

(

1
2

)

n

(

ν
2

)

n
Kν+n (t

√
ν)

(

ν
2 + 1

)

n
(ν)n n!

(

t
√
ν

2

)n

+

(

t
√
ν

2

)ν

ν2
[

B
(

ν
2 ,

1
2

)]2
Γ
(

3ν
2

)

×
∑

j≥0

j
∑

n=0

(

1
2

)

j−n

(

ν
2

)

j−n

(

1
2

)

n

(

ν
2

)

n
K 3ν

2 +j
(t
√
ν)

(

ν
2 + 1

)

j−n

(

ν
2 + 1

)

n

(

3ν
2

)

j
(j − n)! n!

(

t
√
ν

2

)j
}

.
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Proof. The probability density function of T(3) is
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Next, by transforming the binomial term in the integrand of Bσ(x), changing legiti-
mately the order of summation and integration, and using (5),
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The sum of (6), (7) and (8) gives the asserted expression.
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Corollary 2. For all t ∈ R and ν > 0, the characteristic function of T(1) for n = 3 is
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Proof. The probability density function of T(1) is
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for x ∈ R. The corresponding characteristic function is actually equal to I3.
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