Local convergence analysis of two competing two-step iterative methods free of derivatives for solving equations and systems of equations

Ioannis K. Argyros ${ }^{1, *}$ and Santhosh George ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Cameron University, Lawton, OK 73 505, USA
${ }^{2}$ Department of Mathematical and Computational Sciences, National Institute of Technology, Karnataka, Surathkal 575 025, India

Received April 14, 2018; accepted May 2, 2019

Abstract

We present the local convergence analysis of two-step iterative methods free of derivatives for solving equations and systems of equations under similar hypotheses based on Lipschitz-type conditions. The methods are in particular useful for solving equations or systems involving non-differentiable terms. A comparison is also provided using suitable numerical examples. AMS subject classifications: $47 \mathrm{H} 09,47 \mathrm{H} 10,65 \mathrm{G} 99,65 \mathrm{H} 10,49 \mathrm{M} 15$ Key words: two-step secant method, two-step Kurchatov method, local convergence, divided differences, Fréchet-derivative, radius of convergence, Lipschitz conditions

1. Introduction

Numerous problems in mathematics, computational sciences, engineering and related sciences using mathematical modeling $[1,2,3,4,5,6,7,8,9,10,14,11,12,13,16$, $15,17]$ can be reduced to locating a solution x^{*} of the nonlinear equation in the form

$$
F(x)=0,
$$

where X, Y are Banach spaces, D is nonempty, open, convex, and $F: D \subseteq X \longrightarrow Y$ is Fréchet-differentiable.

Analytic solutions or closed form solutions are hard or impossible to find in general. That explains why researchers utilize iterative methods to generate a sequence approximating x^{*}.

In this study, we present the local convergence of two-step secant method (TSSM) and the two-step Kurchatov-type method (TSKM) defined, respectively, for each $n=0,1,2, \ldots$ by

$$
\begin{align*}
x_{n+1} & =x_{n}-\left[x_{n}, y_{n} ; F\right]^{-1} F\left(x_{n}\right) \tag{1}\\
y_{n+1} & =x_{n+1}-\left[x_{n+1}, y_{n} ; F\right]^{-1} F\left(x_{n+1}\right) \\
x_{n+1} & =x_{n}-\left[2 y_{n}-x_{n}, y_{n} ; F\right]^{-1} F\left(x_{n}\right) \tag{2}\\
y_{n+1} & =x_{n+1}-\left[2 y_{n}-x_{n}, x_{n} ; F\right] F\left(x_{n+1}\right),
\end{align*}
$$

[^0]where $x_{0}, y_{0} \in D$ are initial points and $[., . ; F]: D \times D \longrightarrow \mathcal{L}(X, Y)$ is a divided difference of order one $[16,15]$ for F on D satisfying
$$
[x, y ; F](x-y)=F(x)-F(y) \text { for each } x, y \text { with } x \neq y
$$
and $F^{\prime}(x)=[x, x ; F]$, if F is Fréchet-differentiable. TSSM uses two inverses and three function evaluations per complete step, whereas TSKM uses one inverse and four function evaluations.

The rest of the paper is structured as follows: Section 2 and Section 3 contain the local convergence of TSSM and TSKM, respectively, under similar Lipschitz-type hypotheses. The numerical examples in Section 4 conclude this paper.

2. Local convergence I

We present the local convergence analysis of TSSM based on scalar parameters and functions. Let $\alpha \geq 0, \beta \geq 0$ and $b>0$ with $\alpha+\beta \neq 0$. Define parameters ρ_{0}, ρ_{1} and functions f and h_{f} on the interval [$0, \rho_{0}$) by

$$
\begin{aligned}
\rho_{0} & =\frac{1}{\alpha+\beta}, \quad \rho_{1}=\frac{1}{\alpha+\beta+b} \\
f(t) & =\left(b+\frac{\alpha b t}{1-(\alpha+b) t}+\beta\right) t
\end{aligned}
$$

and

$$
h_{f}(t)=f(t)-1
$$

We have that $h_{f}(0)=-1$ and $h_{f}(t) \longrightarrow+\infty$ as $t \longrightarrow \rho_{0}^{-}$. The intermediate value theorem assures that equation $h_{f}(t)=0$ has solutions on the interval $\left(0, \rho_{0}\right)$. Denote by ρ^{*} the smallest such solution. Notice that $h_{f}\left(\rho_{1}\right)=0$, so $\rho^{*} \leq \rho_{1}$. Then, we have that for each $t \in\left[0, \rho^{*}\right)$

$$
0 \leq \frac{b t}{1-(\alpha+\beta) t}<1
$$

and

$$
0 \leq f(t)<1
$$

Let $U(z, \lambda)$ and $\bar{U}(z, \lambda)$ denote the open and closed balls in X, respectively, where $z \in X$ is the center and $\lambda>0$ is the radius. The local convergence analysis of TSSM is also based on the hypotheses (H) :
$\left(h_{1}\right) F: D \subset X \longrightarrow Y$ is a continuously Fréchet differentiable operator and $[., ., F]$: $D \times D \longrightarrow L(X, Y)$ is a divided difference of order one.
(h_{2}) There exist parameters $\alpha \geq 0, \beta \geq 0$ with $\alpha+\beta \neq 0, x^{*} \in D$ such that

$$
F\left(x^{*}\right)=0, F^{\prime}\left(x^{*}\right)^{-1} \in L(Y, X)
$$

and for each $x, y \in D$

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([x, y ; F]-F^{\prime}\left(x^{*}\right)\right)\right\| \leq \alpha\left\|x-x^{*}\right\|+\beta\left\|y-x^{*}\right\| .
$$

Set $D_{0}=D \cap U\left(x^{*}, \rho_{0}\right)$, where ρ_{0} was defined previously.
$\left(h_{3}\right)$ There exists $b>0$ such that for each $x, y \in D_{0}$

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([x, y ; F]-\left[x, x^{*} ; F\right]\right)\right\| \leq b\left\|y-x^{*}\right\| .
$$

$\left(h_{4}\right) \bar{U}\left(x^{*}, \rho^{*}\right) \subset D$, where ρ^{*} was defined previously.
(h_{5}) There exists $R^{*} \geq \rho^{*}$ such that

$$
R^{*}<\frac{1}{\beta}, \beta \neq 0
$$

Set $D_{1}=D \cap \bar{U}\left(x^{*}, R^{*}\right)$.
Theorem 1. Suppose that the hypotheses (H) hold. Then, sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ starting from $x_{0}, y_{0} \in U\left(x^{*}, \rho^{*}\right)-\left\{x^{*}\right\}$ and generated by TSSM are well defined in $U\left(x^{*}, \rho^{*}\right)$ for each $n=0,1,2 \ldots$, remain in $U\left(x^{*}, \rho^{*}\right)$ and converge to x^{*}. Moreover, the following estimates hold for each $n=0,1,2, \ldots$

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq \frac{b\left\|y_{n}-x^{*}\right\|}{1-\left(\alpha\left\|x_{n}-x^{*}\right\|+\beta\left\|y_{n}-x^{*}\right\|\right)}\left\|x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|<\rho^{*} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{n+1}-x^{*}\right\| \leq \frac{b\left\|y_{n}-x^{*}\right\|}{1-\left(\alpha\left\|x_{n+1}-x^{*}\right\|+\beta\left\|y_{n}-x^{*}\right\|\right)}\left\|x_{n+1}-x^{*}\right\| \tag{4}
\end{equation*}
$$

Furthermore, the limit point x^{*} is the only solution to equation $F(x)=0$ in D_{1}, where D_{1} is defined in $\left(h_{5}\right)$.

Proof. Let $x, y \in U\left(x^{*}, \rho^{*}\right)$. Using $\left(h_{2}\right)$, we have in turn that

$$
\begin{align*}
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([x, y ; F]-F^{\prime}\left(x^{*}\right)\right)\right\| & \leq \alpha\left\|x-x^{*}\right\|+\beta\left\|y-x^{*}\right\| \\
& <(\alpha+\beta) \rho^{*}<1 \tag{5}
\end{align*}
$$

In view of (5) and the Banach lemma on invertible operators $[5,6,7,13],[x, y ; F]^{-1} \in$ $L(Y, X)$ and

$$
\begin{equation*}
\left\|[x, y ; F]^{-1} F^{\prime}\left(x^{*}\right)\right\| \leq \frac{1}{1-\left(\alpha\left\|x-x^{*}\right\|+\beta\left\|y-x^{*}\right\|\right)} \tag{6}
\end{equation*}
$$

In particular, $\left[x_{0}, y_{0} ; F\right]^{-1} \in L(Y, X)$, since $x_{0}, y_{0} \in U\left(x^{*}, \rho^{*}\right)$. By the first substep of TSSM, we can write

$$
\begin{align*}
x_{1}-x^{*} & =x_{0}-x^{*}-\left[x_{0}, y_{0} ; F\right]^{-1} F\left(x_{0}\right) \\
& =\left[x_{0}, y_{0} ; F\right]^{-1}\left(\left[x_{0}, y_{0} ; F\right]-\left[x_{0}, x^{*} ; F\right]\right)\left(x_{0}-x^{*}\right) . \tag{7}
\end{align*}
$$

By $\left(h_{3}\right),(6)$ for $x=x_{0}, y=y_{0}$ and (7), we get in turn

$$
\begin{aligned}
\left\|x_{1}-x^{*}\right\| & \leq\left\|\left[x_{0}, y_{0} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right\|\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(\left[x_{0}, y_{0} ; F\right]-\left[x_{0}, x^{*} ; F\right]\right)\left(x_{0}-x^{*}\right)\right\| \\
& \leq \frac{b\left\|y_{0}-x^{*}\right\|}{1-\left(\alpha\left\|x_{0}-x^{*}\right\|+\beta\left\|y_{0}-x^{*}\right\|\right)}\left\|x_{0}-x^{*}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|<\rho^{*},
\end{aligned}
$$

so (3) holds for $n=0$ and $x_{1} \in U\left(x^{*}, \rho^{*}\right)$ and $\left[x_{1}, y_{0} ; F\right]^{-1} \in L(Y, X)$. We also have by (6) that

$$
\left\|\left[x_{1}, y_{0} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right\| \leq \frac{1}{1-\left(\alpha\left\|x_{1}-x^{*}\right\|+\beta\left\|y_{0}-x^{*}\right\|\right)}
$$

Moreover, by the second substep of TSSM, we can write that

$$
\begin{aligned}
y_{1}-x^{*} & =x_{1}-x^{*}-\left[x_{1}, y_{0} ; F\right]^{-1} F\left(x_{1}\right) \\
& =\left[x_{1}, y_{0} ; F\right]^{-1}\left(\left[x_{1}, y_{0} ; F\right]-\left[x_{1}, x^{*} ; F\right]\right)\left(x_{1}-x^{*}\right),
\end{aligned}
$$

so

$$
\begin{aligned}
\left\|y_{1}-x^{*}\right\| & \leq \frac{b\left\|y_{0}-x^{*}\right\|\left\|x_{1}-x^{*}\right\|}{1-\left(\alpha\left\|x_{1}-x^{*}\right\|+\beta\left\|y_{0}-x^{*}\right\|\right)} \\
& \leq \frac{b \rho^{*}}{1-(\alpha+\beta) \rho^{*}}\left\|x_{1}-x^{*}\right\|<\rho^{*}
\end{aligned}
$$

which shows (4) for $n=0$ and $y_{1} \in U\left(x^{*}, \rho^{*}\right)$. The induction for (3) and (4) is completed analogously if $x_{0}, y_{0}, x_{1}, y_{1}$ are replaced by $x_{m}, y_{m}, x_{m+1}, y_{m+1}$ in the preceding estimates, respectively. Then, from the estimates

$$
\left\|x_{m+1}-x^{*}\right\| \leq \mu_{1}\left\|x_{m}-x^{*}\right\|<\rho^{*}
$$

and

$$
\left\|y_{m+1}-x^{*}\right\| \leq \mu_{2}\left\|x_{m+1}-x^{*}\right\|<\rho^{*}
$$

where $\mu_{1}=\frac{b \rho^{*}}{1-(\alpha+\beta) \rho^{*}} \in[0,1)$ and $\mu_{2}=f\left(\rho^{*}\right) \in[0,1)$, we deduce that $\lim _{m \longrightarrow+\infty} x_{m}$ $=\lim _{m \longrightarrow+\infty} y_{m}=x^{*}, x_{m+1} \in U\left(x^{*}, \rho^{*}\right)$ and $y_{m+1} \in U\left(x^{*}, \rho^{*}\right)$. The uniqueness part is shown by letting $T=\left[x^{*}, y^{*} ; F\right]$ for some $y^{*} \in D_{1}$ with $F\left(y^{*}\right)=0$. Using $\left(h_{2}\right)$ and $\left(h_{5}\right)$, we obtain in turn that

$$
\| F^{\prime}\left(x^{-1}\left(\left[x^{*}, y^{*} ; F\right]-F^{\prime}\left(x^{*}\right)\right)\|\leq \beta\| y^{*}-x^{*} \| \leq \beta R<1\right.
$$

so $T^{-1} \in L(Y, X)$. Finally, from the identity

$$
0=F\left(x^{*}\right)-F\left(y^{*}\right)=\left[x^{*}, y^{*} ; F\right]\left(x^{*}-y^{*}\right),
$$

we conclude that $x^{*}=y^{*}$.

3. Local convergence II

In this section, the local convergence of TSKM is presented in the way analogous to that shown in Section 2 for TSSM. Let $a \geq 0, b_{1} \geq 0, p \geq 0, q \geq 0, a+b_{1} \neq 0$ and $c>0$ be given parameters. Define parameters r_{0}, r_{1}, functions g_{1} and $h_{g_{1}}$ on interval $\left[0, r_{0}\right)$ by

$$
\begin{aligned}
r_{0} & =\frac{2}{a+\sqrt{a^{2}+16 c}}, r_{1}=\frac{2}{a+b_{)} 1+\sqrt{\left(x+b_{1}\right)^{2}+32 c}} \\
g_{1}(t) & =\frac{b_{1}+4 c t}{1-(a+4 c t) t} t
\end{aligned}
$$

and

$$
h_{g_{1}}(t)=g_{1}(t)-1 .
$$

Notice that $h_{g_{1}}\left(r_{1}\right)=0$ and r_{1} is the only solution to equation $h_{g_{1}}(t)=0$ in $\left(0, r_{0}\right)$. Moreover, define functions g_{2} and $h_{g_{2}}$ of the interval $\left[0, r_{0}\right)$ by

$$
g_{2}(t)=\frac{p\left[\frac{\left(b_{1}+4 c t\right) t}{1-(a+4 c t) t}+1\right]+q+4 c t}{1-(a+4 c t) t} t
$$

and

$$
h_{g_{2}}(t)=g_{2}(t)-1 .
$$

We get $h_{g_{2}}(0)=-1<0$ and $h_{g_{2}}(t) \longrightarrow+\infty$ as $t \longrightarrow r_{0}^{-}$. Denote by r_{2} the smallest solution to equation $h_{g_{2}}(t)=0$ in $\left(0, r_{1}\right)$.

Define the radius of convergence r^{*} by

$$
\begin{equation*}
r^{*}=\min \left\{r_{1}, r_{2}\right\} . \tag{8}
\end{equation*}
$$

Then, we have that for each $t \in\left[0, r^{*}\right)$,

$$
0 \leq g_{i}(t)<1, i=1,2
$$

The local convergence analysis of TSKM is based on hypotheses (A):

1. $\left(a_{1}\right)=\left(h_{1}\right)$
$\left(a_{2}\right)$ There exist $a \geq 0, c \geq 0, x^{*} \in D$ such that $F\left(x^{*}\right)=0, F^{\prime}\left(x^{*}\right)^{-1} \in L(Y, X)$ for each $x, y \in D$

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}\left(x^{*}\right)\right)\right\| \leq a\left\|x-x^{*}\right\|
$$

and

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([2 y-x, x ; F]-F^{\prime}(y)\right)\right\| \leq c\|y-x\|^{2}
$$

Set $D_{2}=D \cap \bar{U}\left(x^{*}, r_{0}\right)$, where r_{0} was defined previously.
(a_{3}) There exists $b \geq 0, p \geq 0, q \geq 0$ such that for each $x, y \in D_{2}$

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([x, y ; F]-\left[x, x^{*} ; F\right]\right)\right\| \leq b\left\|y-x^{*}\right\|
$$

and

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(\left[x, x^{*} ; F\right]-F^{\prime}(y)\right)\right\| \leq p\|x-y\|+q\left\|y-x^{*}\right\| .
$$

$\left(a_{4}\right) \bar{U}\left(x^{*}, 3 r^{*}\right) \subseteq D$, where r^{*} was defined previously.
(a_{5}) There exists $R_{1}^{*} \geq R^{*}$ such that

$$
R_{1}^{*}<\frac{2}{a}, a \neq 0 .
$$

Set $D_{3}=D \cap \bar{U}\left(x^{*}, R_{1}^{*}\right)$.

Theorem 2. Suppose that the hypotheses (A) hold. Then, sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ starting from $x_{0}, y_{0} \in U\left(x^{*}, r^{*}\right)-\left\{x^{*}\right\}$ and generated by TSKM are well defined in $U\left(x^{*}, r^{*}\right)$ for each $n=0,1,2, \ldots$, remain in $U\left(x^{*}, r^{*}\right)$, and converges to x^{*}. Moreover, the following estimates hold for each $n=0,1,2 \ldots$

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq \frac{b\left\|y_{n}-x^{*}\right\|+c\left\|y_{n}-x_{n}\right\|^{2}}{1-\left(a\left\|x_{n}-x^{*}\right\|+c\left\|y_{n}-x_{n}\right\|^{2}\right)}\left\|x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|<r^{*} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{n+1}-x^{*}\right\| \leq \frac{p\left\|x_{n+1}-y_{n}\right\|+q\left\|y_{n}-x^{*}\right\|+c\left\|y_{n}-x_{n}\right\|^{2}}{1-\left(a\left\|x_{n}-x^{*}\right\|+c\left\|y_{n}-x_{n}\right\|^{2}\right)}\left\|x_{n+1}-x^{*}\right\| \tag{10}
\end{equation*}
$$

Furthermore, the limit point x^{*} is the only solution to equation $F(x)=0$ in D_{3}.
Proof. Let $x, y \in U\left(x^{*}, r^{*}\right)$ and set $Q=[2 y-x, x ; F]$. Using (a_{2}) and (8), we have in turn that

$$
\begin{aligned}
\| F^{\prime}\left(x^{*}\right)^{-1} & \left(F^{\prime}\left(x^{*}\right)-Q\right) \| \\
& =\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(F^{\prime}\left(x^{*}\right)-F^{\prime}(y)\right)+\left(F^{\prime}(y)-[2 y-x, x ; F]\right)\right\| \\
& \leq\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(F^{\prime}(y)-F^{\prime}\left(x^{*}\right)\right)\right\|+\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([2 y-x, x ; F]-F^{\prime}(y)\right)\right\| \\
& \leq a\left\|y-x^{*}\right\|+c\|y-x\|^{2} \\
& \leq a r^{*}+c\left(\left\|y-x^{*}\right\|+\left\|x^{*}-x\right\|\right)^{2} \\
& \leq a r^{*}+4 c\left(r^{*}\right)^{2}<1,
\end{aligned}
$$

so $Q^{-1} \in L(Y, X)$,

$$
\begin{equation*}
\left\|Q^{-1} F^{\prime}\left(x^{*}\right)\right\| \leq \frac{1}{1-\left(a\left\|y-x^{*}\right\|+c\|x-y\|^{2}\right)} \tag{11}
\end{equation*}
$$

and $\left[2 y_{0}-x_{0}, x_{0} ; F\right]^{-1} \in L(Y, X)$ for $x=x_{0}$ and $y=y_{0}$. Hence, x_{1} and y_{1} are well defined by the first and the second substep of TSKM. Notice that condition $\left(a_{4}\right)$ guarantees that for $x, y \in U\left(x^{*}, r^{*}\right)$ we have $2 y-x \in U\left(x^{*}, r^{*}\right) \subseteq D$. By (a_{2}) and $\left(a_{3}\right)$, we get in turn the estimate

$$
\begin{align*}
& \left\|F^{\prime}\left(x^{*}\right)^{-1}\left(Q-\left[x_{0}, x^{*} ; F\right]\right)\right\| \\
& \quad \leq\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(\left(\left[y_{0}, x^{*} ; F\right]-F^{\prime}\left(y_{0}\right)\right)+\left(F^{\prime}\left(y_{0}\right)-\left[2 y_{0}-x_{0}, x_{0} ; F\right]\right)\right)\right\| \\
& \quad \leq\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(\left[y_{0}, x^{*} ; F\right]-F,\left(y_{0}\right)\right)\right\|+\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(F^{\prime}\left(y_{0}\right)-\left[2 y_{0}-x_{0}, x_{0} ; F\right]\right)\right\| \\
& \quad \leq b\left\|y_{0}-x^{*}\right\|+c\left\|y_{0}-x_{0}\right\|^{2} . \tag{12}
\end{align*}
$$

In view of the first substep of TSKM, (8), (11) and (12), we obtain in turn from

$$
\begin{aligned}
x_{1}-x_{0} & =x_{0}-x^{*}-Q^{-1} F\left(x_{0}\right) \\
& =Q^{-1}\left(Q-\left[x_{0}, x^{*} ; F\right]\right)\left(x_{0}-x^{*}\right),
\end{aligned}
$$

so

$$
\begin{aligned}
\left\|x_{1}-x_{0}\right\| & \leq \mu_{3}\left\|x_{0}-x^{*}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|<r^{*}
\end{aligned}
$$

where $\mu_{3}=\frac{b\left\|y_{0}-x^{*}\right\|+c\left\|x_{0}-y_{0}\right\|^{2}}{1-\left(a\left\|y_{0}-x^{*}\right\|+c\left\|x_{0}-y_{0}\right\|^{2}\right)} \in[0,1)$, which shows (9) for $n=0$ and $x_{1} \in$ $U\left(x^{*}, r^{*}\right)$. Similarly, from the second substep of TSKM, we can also write

$$
\begin{aligned}
y_{1}-x^{*} & =x_{1}-x^{*}-Q^{-1} F\left(x_{1}\right) \\
& =Q^{-1}\left(\left(\left[2 y_{0}-x_{0}, x_{0} ; F\right]-F^{\prime}\left(y_{0}\right)\right)+\left(F^{\prime}\left(y_{0}\right)-\left[x_{1}, x^{*} ; F\right]\right)\right)\left(x_{1}-x^{*}\right),
\end{aligned}
$$

so

$$
\begin{aligned}
& \| y_{1}- x^{*} \| \\
& \leq \frac{\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(\left[2 y_{0}-x_{0}, x_{0} ; F\right]-F^{\prime}\left(y_{0}\right)\right)\right\|+\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(F^{\prime}\left(y_{0}\right)-\left[x_{1}, x^{*} ; F\right]\right)\right\|}{1-\left(a\left\|x_{0}-x^{*}\right\|+c\left\|y_{0}-x_{0}\right\|^{2}\right)} \\
& \quad \times\left\|x_{1}-x^{*}\right\| \\
& \leq \frac{p\left\|x_{1}-y_{0}\right\|+q\left\|y_{0}-x^{*}\right\|+c\left\|y_{0}-x_{0}\right\|^{2}}{1-\left(a\left\|x_{0}-x^{*}\right\|+c\left\|y_{0}-x_{0}\right\|^{2}\right)}\left\|x_{1}-x^{*}\right\| \\
& \leq g_{2}\left(\left\|x_{0}-x^{*}\right\|\right)\left\|x_{1}-x^{*}\right\| \leq\left\|x_{1}-x^{*}\right\|<r^{*},
\end{aligned}
$$

which shows (10) for $n=0$ and $y_{1} \in U\left(x^{*}, r^{*}\right)$. Then, from the estimates

$$
\left\|x_{m+1}-x^{*}\right\| \leq \mu_{3}\left\|x_{n}-x^{*}\right\|<r^{*}
$$

and

$$
\left\|y_{n+1}-x^{*}\right\| \leq \mu_{4}\left\|x_{m+1}-x^{*}\right\|<r^{*}
$$

where $\mu_{4}=g_{2}\left(\left\|x_{0}-x^{*}\right\|\right) \in[0,1)$, we obtain $\lim _{m \longrightarrow+\infty} x_{m}=\lim _{m \longrightarrow+\infty} y_{m}=x^{*}$ and $x_{m+1}, y_{m+1} \in U\left(x^{*}, r^{*}\right)$. As in Theorem 1, but using $\left(a_{2}\right)$ and $\left(a_{5}\right)$ for $P=$ $\int_{0}^{1} F^{\prime}\left(x^{*}+\theta\left(y^{*}-x^{*}\right)\right) d \theta$, we obtain

$$
\begin{aligned}
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left(P-F^{\prime}\left(x^{*}\right)\right)\right\| & \leq \int_{0}^{1} \theta\left\|y^{*}-x^{*}\right\| d \theta \\
& \leq \frac{a}{2}\left\|y^{*}-x^{*}\right\| \leq \frac{a}{2} R_{1}^{*}<1
\end{aligned}
$$

so $P^{-1} \in L(Y, X)$. Then, from the identity

$$
0=F\left(y^{*}\right)-F\left(x^{*}\right)=P\left(y^{*}-x^{*}\right)
$$

we derive that $x^{*}=y^{*}$.

Remark 1. Condition (a_{4}) can be weakened if replaced by
$\left(a_{4}\right)^{\prime} \bar{U}\left(x^{*}, r^{*}\right) \subseteq D$ and for each $x, y \in D$

$$
\begin{equation*}
2 y-x \in D \tag{13}
\end{equation*}
$$

Condition (13) certainly holds if $D=X$ (see also [1, 2, 3, 4, 5, 6, 7]).

4. Numerical examples

Let $X=Y=\mathbb{R}^{k}, k$ be a positive integer equipped with the standard difference [13], and for

$$
\begin{aligned}
x_{m} & =\left(x_{m}^{(1)}, x_{m}^{(2)}, \ldots, x_{m}^{(k)}\right) \\
y_{m} & =\left(y_{m}^{(1)}, y_{m}^{(2)}, \ldots, y_{m}^{(k)}\right),
\end{aligned}
$$

there exists $i=1,2, \ldots, k$ such that $x_{m}^{(i)}=y_{m}^{(i)}$. Then, we cannot use TSSM or TSKM in the form (1) and (2). Assuming that $x_{0}^{(i)} \neq y_{0}^{(i)}, y_{0}^{(i)} \neq x_{1}^{(i)}$ for each $i=1,2, \ldots, k,\left[x_{0}, y_{0} ; F\right]^{-1}$ and $\left[x_{1}, y_{0} ; F\right]^{-1} \in L(Y, X)$, we can use a mehod similar to the TSSM method defined for each $n=0,1,2, \ldots$, by

$$
\begin{align*}
x_{n+1} & =x_{n}-\left[v_{j}, w_{j} ; F\right]^{-1} F\left(x_{n}\right) \\
y_{n+1} & =x_{n+1}-\left[z_{j+1}, w_{j} ; F\right]^{-1} F\left(x_{n+1}\right), \tag{14}
\end{align*}
$$

where $j=0,1,2, \ldots, n$ is the smallest index for which $v_{j}^{(i)} \neq w_{j}^{(i)}$ and $z_{j+1}^{(i)} \neq$ $w_{j}^{(i)}$. Then, method (14) is always well defined and can be used to solve equations containing non-differentiable terms. Similarly, assume that $\left[2 y_{0}-x_{0}, x_{0} ; F\right]^{-1}$ and $\left[2 x_{1}-y_{0}, y_{0} ; F\right]^{-1} \in L(Y, X), x_{0}^{(i)} \neq y_{0}^{(i)}$ and $y_{0}^{(i)} \neq x_{1}^{(i)}$ for each $i=1,2, \ldots, k$. Then, the method corresponding to TSKM is defined by

$$
\begin{align*}
x_{n+1} & =x_{n}-\left[2 w_{j}-v_{j}, v_{j} ; F\right]^{-1} F\left(x_{n}\right) \\
y_{n+1} & =x_{n+1}-\left[2 w_{j}-v_{j}, v_{j} ; F\right]^{-1} F\left(x_{n+1}\right) . \tag{15}
\end{align*}
$$

Clearly, methods (14) and (15) generalize methods (1) and (2) since they coincide with those for $j=n$, respectively.

Next, we shall show the convergence of method (14) under similar conditions. Let us consider hypotheses (H^{\prime}):

1. $\left(h_{1}^{\prime}\right)=\left(h_{1}\right)$
2. $\left(h_{2}^{\prime}\right)=\left(h_{2}\right)$
$\left(h_{3}^{\prime}\right)$ There exists $\gamma \geq 0, \delta \geq 0$ such that for each $x, y, z \in D_{0}$

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\left([x, y ; F]-\left[z, x^{*} ; F\right]\right)\right\| \leq \gamma\|x-z\|+\delta\left\|y-x^{*}\right\| .
$$

$\left(h_{4}^{\prime}\right) \bar{U}\left(x^{*}, \bar{\rho}^{*}\right) \subset D$, where $\bar{\rho}^{*}=\frac{1}{\alpha+\beta+2 \gamma+\delta}$.
(h_{5}^{\prime}) There exists $\bar{R}^{*} \geq \bar{\rho}^{*}$ such that

$$
\bar{R}^{*}<\frac{1}{\beta}, \beta \neq 0
$$

Let $D_{5}=D \cap \bar{U}\left(x^{*}, \bar{R}^{*}\right)$.

Theorem 3. Suppose that the hypotheses (H^{\prime}) hold. Then, sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ starting from $x_{0}, y_{0} \in U\left(x^{*}, \bar{\rho}^{*}\right)-\left\{x^{*}\right\}$ and generated by method (14) are well defined in $U\left(x^{*}, \bar{\rho}^{*}\right)$, remain in $U\left(x^{*}, \bar{\rho}^{*}\right)$ for each $n=0,1,2, \ldots$, and converge to x^{*}. Moreover, the following estimates hold:

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & \leq \frac{\gamma\left\|v_{j}-x_{n}\right\|+\delta\left\|w_{j}-x^{*}\right\|}{1-\left(\alpha\left\|v_{j}-x^{*}\right\|+\beta\left\|w_{j}-x^{*}\right\|\right)}\left\|x_{n}-x^{*}\right\| \\
& \leq \frac{\gamma\left(\left\|v_{j}-x^{*}\right\|+\left\|x_{n}-x^{*}\right\|\right)+\delta\left\|w_{j}-x^{*}\right\|}{1-\left(\alpha\left\|v_{j}-x^{*}\right\|+\beta\left\|w_{j}-x^{*}\right\|\right)}\left\|x_{n}-x^{*}\right\| \\
& \leq \frac{(2 \gamma+\delta) \bar{\rho}^{*}}{1-(\alpha+\beta) \bar{\rho}^{*}}\left\|x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|<\bar{\rho}^{*} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n+1}-x^{*}\right\| & \leq \frac{\gamma\left\|z_{j+1}-x_{n+1}\right\|+\delta\left\|w_{j}-x^{*}\right\|}{1-\left(\alpha\left\|z_{j+1}-x^{*}\right\|+\beta\left\|w_{j}-x^{*}\right\|\right)}\left\|x_{n+1}-x^{*}\right\| \\
& \leq \frac{\gamma\left(\left\|z_{j+1}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)+\delta\left\|w_{j}-x^{*}\right\|}{1-\left(\alpha\left\|z_{j+1}-x^{*}\right\|+\beta\left\|w_{j}-x^{*}\right\|\right)}\left\|x_{n+1}-x^{*}\right\| \\
& \leq \frac{(2 \gamma+\delta) \bar{\rho}^{*}}{1-(\alpha+\beta) \bar{\rho}^{*}}\left\|x_{n+1}-x^{*}\right\| \leq\left\|x_{n+1}-x^{*}\right\|<\bar{\rho}^{*} \tag{17}
\end{align*}
$$

Furthermore, the limit point x^{*} is the only solution to equation $F(x)=0$ in D_{5}.
Proof. Use the proof of Theorem 1, the identities

$$
\begin{aligned}
x_{n+1}-x^{*}= & \left(\left[v_{j}, w_{j} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right) \\
& \times\left(F^{\prime}\left(x^{*}\right)^{-1}\left(\left[v_{j}, w_{j} ; F\right]-\left[x_{n}, x^{*} ; F\right]\right)\right)\left(x_{n}-x^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{n+1}-x^{*}= & \left(\left[z_{j+1}, v_{j} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right) \\
& \times\left(F^{\prime}\left(x^{*}\right)^{-1}\left(\left[z_{j+1}, w_{j} ; F\right]-\left[x_{n+1}, x^{*} ; F\right]\right)\right)\left(x_{n+1}-x^{*}\right)
\end{aligned}
$$

to arrive at estimates (16) and (17), respectively.
The hypotheses (A^{\prime}) are:

1. $\left(a_{1}^{\prime}\right)=\left(a_{1}\right)$
2. $\left(a_{2}^{\prime}\right)=\left(h_{2}\right)$
3. $\left(a_{3}^{\prime}\right)=\left(h_{3}\right)$
($\left.a_{4}^{\prime}\right) \bar{U}\left(x^{*}, \bar{r}^{*}\right) \subset D$, where $\bar{r}^{*}=\frac{1}{3 \alpha+\beta+4 \gamma+\delta}$.
(a_{5}^{\prime}) There exists $\bar{R}_{1}^{*} \geq \bar{r}^{*}$ such that

$$
\bar{R}_{1}^{*}<\frac{1}{\beta}, \beta \neq 0 .
$$

Let $D_{6}=D \cap \bar{U}\left(x^{*}, \bar{R}_{1}^{*}\right)$.

Theorem 4. Suppose that the hypotheses (A^{\prime}) hold. Then, sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ starting from $x_{0}, y_{0} \in U\left(x^{*}, \bar{r}^{*}\right)-\left\{x^{*}\right\}$ and generated by method (15) are well defined in $U\left(x^{*}, \bar{r}^{*}\right)$, remain in $U\left(x^{*}, \bar{r}^{*}\right)$ for each $n=0,1,2, \ldots$, and converge to x^{*}. Moreover, the following estimates hold:

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & \leq \frac{\gamma\left\|2 w_{j}-v_{j}-x_{n}\right\|+\delta\left\|v_{j}-x^{*}\right\|}{1-\left(\alpha\left\|2 w_{j}-v_{j}-x^{*}\right\|+\beta\left\|v_{j}-x^{*}\right\|\right)}\left\|x_{n}-x^{*}\right\| \\
& \leq \frac{\gamma\left(2\left\|w_{j}-x^{*}\right\|+\left\|v_{j}-x^{*}\right\|+\left\|x_{n}-x^{*}\right\|\right)+\delta\left\|v_{j}-x^{*}\right\|}{1-\left(\alpha\left(2\left\|w_{j}-x^{*}\right\|+\left\|v_{j}-x^{*}\right\|\right)+\beta\left\|v_{j}-x^{*}\right\|\right)}\left\|x_{n}-x^{*}\right\| \\
& \leq \frac{(4 \gamma+\delta) \bar{r}^{*}}{1-(3 \alpha+\beta) \bar{r}^{*}}\left\|x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|<\bar{r}^{*} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n+1}-x^{*}\right\| & \leq \frac{\gamma\left\|2 w_{j}-v_{j}-x_{n+1}\right\|+\delta\left\|v_{j}-x^{*}\right\|}{1-\left(\alpha\left\|2 w_{j}-v_{j}-x^{*}\right\|+\beta\left\|v_{j}-x^{*}\right\|\right)}\left\|x_{n+1}-x^{*}\right\| \\
& \leq \frac{\gamma\left(2\left\|w_{j}-x^{*}\right\|+\left\|v_{j}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)+\delta\left\|v_{j}-x^{*}\right\|}{1-\left(\alpha\left(2\left\|w_{j}-x^{*}\right\|+\left\|v_{j}-x^{*}\right\|\right)+\beta\left\|v_{j}-x^{*}\right\|\right)}\left\|x_{n+1}-x^{*}\right\| \\
& \leq \frac{(4 \gamma+\delta) \bar{r}^{*}}{1-(3 \alpha+\beta) \bar{r}^{*}}\left\|x_{n+1}-x^{*}\right\| \leq\left\|x_{n+1}-x^{*}\right\|<\bar{r}^{*} \tag{19}
\end{align*}
$$

Furthermore, the limit point x^{*} is the only solution to equation $F(x)=0$ in D_{6}.
Proof. Use the proof of Theorem 2, the identities

$$
\begin{aligned}
x_{n+1}-x^{*}= & \left(\left[2 w_{j}-v_{j}, w_{j} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right) \\
& \times\left(F^{\prime}\left(x^{*}\right)^{-1}\left(\left[2 w_{j}-v_{j}, v_{j} ; F\right]-\left[x_{n}, x^{*} ; F\right]\right)\right)\left(x_{n}-x^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{n+1}-x^{*}= & \left(\left[2 w_{j}-v_{j}, v_{j} ; F\right]^{-1} F^{\prime}\left(x^{*}\right)\right) \\
& \times\left(F^{\prime}\left(x^{*}\right)^{-1}\left(\left[2 w_{j}-v_{j}, v_{j} ; F\right]-\left[x_{n+1}, x^{*} ; F\right]\right)\right)\left(x_{n+1}-x^{*}\right)
\end{aligned}
$$

to arrive at estimates (18) and (19), respectively.
Example 1. Let us consider the system for $h=\left(h_{1}, h_{2}\right)^{T}$

$$
\begin{aligned}
& f_{1}(h)=3 h_{1}^{2} h_{2}+h_{2}^{2}-1+\left|h_{1}-1\right|=0 \\
& f_{2}(h)=h_{1}^{4}+h_{1} h_{2}^{3}-1+\left|h_{2}\right|=0
\end{aligned}
$$

which can be written as $F(h)=0$, where $F=\left(f_{1}, f_{2}\right)^{T}$. Using the divided difference, $\left([a, b ; F]_{i j}\right)_{i, j=1}^{2} \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ [13], for $x_{-1}=(1,0)^{T}, x_{0}=(5,5)^{T}$, we obtain by (2) Hence, the solution p is given by $p=(0.894655373334687,0.3278626421746298)^{T}$. Notice that mapping F is not differentiable, so the earlier results mentioned in the introduction of this study cannot be used.

n	$x_{n}^{(1)}$	$x_{n}^{(2)}$	$\left\\|x_{n}-x_{n-1}\right\\|$
0	5	5	5
1	1	0	5
2	0.909090909090909	0.363636363636364	$3.0636 \mathrm{E}-01$
3	0.894886945874111	0.329098638203090	$3.453 \mathrm{E}-02$
4	0.894655531991499	0.327827544745569	$1.271 \mathrm{E}-03$
5	0.894655373334793	0.327826521746906	$1.022 \mathrm{E}-06$
6	0.8946655373334687	0.327826521746298	$6.089 \mathrm{E}-13$
7	0.8946655373334687	0.327826421746298	$2.710 \mathrm{E}-20$

Table 1:

Example 2. We consider the boundary problem appearing in many studies of applied sciences [6] given by

$$
\begin{align*}
\varphi^{\prime \prime}+\varphi^{1+\lambda}+\varphi^{2} & =0, \quad \lambda \in[0,1] \tag{20}\\
\varphi(0)=\varphi(1) & =0 .
\end{align*}
$$

Let $h=\frac{1}{l}$, where l is a positive integer and set $s_{i}=i h, i=1,2, \ldots, l-1$. The boundary conditions are then given by $\varphi_{0}=\varphi_{n}=0$. We shall replace the second derivative $\varphi^{\prime \prime}$ by the popular divided difference

$$
\begin{align*}
\varphi^{\prime \prime}(t) & \approx \frac{[\varphi(t+h)-2 \varphi(t)+\varphi(t-h)]}{h^{2}} \tag{21}\\
\varphi^{\prime \prime}\left(s_{i}\right) & =\frac{\varphi_{i+1}-2 \varphi_{i}+\varphi_{i-1}}{h^{2}}, i=1,2, \ldots l-1
\end{align*}
$$

Using (20) and (21), we obtain the system of equations defined by

$$
\begin{array}{r}
2 \varphi_{1}-h^{2} \varphi_{1}^{1+\lambda}-h^{2} \varphi_{1}^{2}-\varphi_{2}=0 \\
-\varphi_{i-1}+2 \varphi_{i}-h^{2} \varphi_{i}^{1+\lambda}-h^{2} \varphi_{i}^{2}-\varphi_{i+1}=0 \\
-\varphi_{l-2}+2 \varphi_{l-1}-h^{2} \varphi_{l-1}^{1+\lambda}-h^{2} \varphi_{l-1}^{2}=0
\end{array}
$$

Define operator $F: \mathbb{R}^{l-1} \longrightarrow \mathbb{R}^{l-1}$ by

$$
F(\varphi)=M(x)-h^{2} f(\varphi),
$$

where

$$
M=\left[\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2
\end{array}\right]
$$

and

$$
f(\varphi)=\left[\varphi_{1}^{1+\lambda}+\varphi_{1}^{2}, \varphi_{2}^{1+\lambda}+\varphi_{2}, \ldots, \varphi_{l-1}^{1+\lambda}+\varphi_{l-1}^{2}\right]^{T} .
$$

Then, the Fréchet-derivative F^{\prime} of operator F is given by

$$
F^{\prime}(\varphi)=M-(1+\lambda) h^{2}\left[\begin{array}{ccccc}
\varphi_{1}^{\lambda} & 0 & 0 & \ldots & 0 \tag{22}\\
0 & \varphi_{2}^{\lambda} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \varphi_{l-1}^{\lambda}
\end{array}\right]-2 h^{2}\left[\begin{array}{ccccc}
\varphi_{1} & 0 & 0 & \ldots & 0 \\
0 & \varphi_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \varphi_{l-1}
\end{array}\right]
$$

We shall use a special case of method (2) given by

$$
\begin{align*}
\psi_{n}^{(1)} & =\psi_{n}-F^{\prime}\left(\psi_{n}\right)^{-1} F\left(\psi_{n}\right) \\
\psi_{n}^{(2)} & =\psi_{n}^{(1)}-F^{\prime}\left(\psi_{n}\right)^{-1} F\left(\psi_{n}^{(1)}\right) \\
& \vdots \\
\psi_{n}^{(k)} & =\psi_{n}^{(k-1)}-F^{\prime}\left(\psi_{n}\right)^{-1} F\left(\psi_{n}^{(k-1)}\right) \tag{23}\\
\psi_{n+1} & =\psi_{n}^{(k)} .
\end{align*}
$$

Let $\lambda=\frac{1}{2}, k=3$ and $l=10$. In this way, we obtain a 9×9 system. A good initial approximation is $10 \sin \pi t$ since a solution to (20) vanishes at the end points and is positive at the interior. This approximation gives the vector

$$
\xi=\left[\begin{array}{c}
3.0901699423 \\
5.877852523 \\
8.090169944 \\
9.510565163 \\
10 \\
9.510565163 \\
8.090169944 \\
5.877852523 \\
3.090169923
\end{array}\right]
$$

which by using (23) leads to

$$
\psi_{0}=\left[\begin{array}{c}
2.396257294 \\
4.698040582 \\
6.677432200 \\
8.038726637 \\
8.526409945 \\
8.038726637 \\
6.6774432200 \\
4.698040582 \\
2.396257294
\end{array}\right] .
$$

Using vector ψ_{0} as the initial vector in (23), we get the solution ψ^{*} given by

$$
\psi^{*}=\psi_{6}=\left[\begin{array}{c}
2.394640795 \\
4.694882371 \\
6.672977547 \\
8.033409359 \\
8.520791424 \\
8.033409359 \\
6.672977547 \\
4.694882371 \\
2.394640795
\end{array}\right]
$$

Notice that the operator F^{\prime} given in (22) is not Lipschitz.

References

[1] I. K. Argyros, On the solution of equations with non differentiable and Ptak error estimates, BIT 30(1990), 752-754.
[2] I. K. Argyros, On a two point Newton like method of convergence order two, International J. Comput. Math. 82(2005), 210-213.
[3] I. K. Argyros, A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations, J. Math. Anal. and Appl. 332(2007), 97-108.
[4] I. K. Argyros, Computational theory of iterative methods, Series Studies in Computational Mathematics 15, Elsevier Publ. Co., New York, 2007.
[5] I. K. Argyros, A. A. Magreñán, Iterative methods and their dynamics with applications, CRC Press, New York, 2017.
[6] I. K. Argyros, S. George, N. Thapa, Mathematical modeling for the solution of equations and systems of equations with applications, Volume-I, Nova Publishes, New York, 2018.
[7] I. K. Argyros, S. George, N. Thapa, Mathematical modeling for the solution of equations and systems of equations with applications, Volume-II, Nova Publishes, New York, 2018.
[8] D. F. Han, The majorant method and convergence for solving non differentiable equations in Banach spcae, Appl. Math. Comput. 118(2001), 73-82.
[9] M. A. HernÁndez, M. J. Rubio, The secant method for non differentiable operators, Appl. Math. Lett. 15(2002), 395-399.
[10] M. A. Hernández and M. J. Rubio, Semilocal convergence of the secant method under mild convergence conditions of differentiability, Comput. Math. Appl. 44(2002), 277-285.
[11] A. A. Magreñán, I. K. Argyros, Iterative algorithms I, Nova Publishes, New York, 2017.
[12] A. A. Magreñán, I. K. Argyros, Iterative algorithms II, Nova Publishes, New York, 2017.
[13] J. M. Ortega, R. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.
[14] H. M. Ren, New sufficient convergence conditions of the secant method for non differentiable operators, Appl. Math. Comput. 182(2006), 1255-1259.
[15] J. W. Schmidt, Regula-falsi Verfahren mit konsistenter Steigung and Majorantenpinzip, Period. Math. Hungar. 5(1974), 187-193.
[16] A. Sergeev, On the method of choice, Sibirsk. Math. Z. 2(1961), 282-289.
[17] P. P. Zabrejko, D. F. Nguen, The majorant method in the theorey of Newton Kantorovich approximations and the Ptăk error estimates, Numer. Func. Anal. Optimiz. 9(1987), 671-684.

[^0]: *Corresponding author. Email addresses: iargyros@cameron.edu (I. K. Argyros), sgeorge@nitk.edu.in (S. George)

