New applications of concave operators to existence and uniqueness of solutions for fractional differential equations

Hojuat Afshari ${ }^{1, *}$, Hojjat Gholamyan ${ }^{1}$, Chengbo Zhai ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Basic Science, University of Bonab, Bonab 55517-61167, Iran
${ }^{2}$ School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, P. R. China

Received July 25, 2018; accepted November 28, 2019

Abstract

Recently, Feng and Zhai have studied some results of positive solutions to fractional differential equations. By using mixed monotone operators on cones and the concept of γ-concavity, we study an application for fractional differential equations. An example is also provided illustrating the obtained results. AMS subject classifications: 65D10, 92C45 Key words: fractional differential equation, normal cone, Green function, positive solution

1. Introduction

In 2017, Feng and Zhai investigated the following problem:

$$
\begin{align*}
& D_{t}^{\kappa} u(t)+f(t, u(t))+g(t, u(t))=0, \quad 0<t<1 \tag{1}\\
& u(0)=u^{\prime}(0)=0, \quad u(1)=\int_{0}^{1} \theta(\xi) u(\xi) d \xi
\end{align*}
$$

where $2<\kappa \leq 3, D_{t}^{\kappa}$ is the standard Riemann-Liouville fractional derivative of order κ. The authors obtained one positive solution to this problem (see [4, 14]).

The function θ satisfies the following conditions:

$$
\begin{aligned}
\theta & :[0,1] \rightarrow[0, \infty) \quad \text { with } \quad \theta \in L^{1}[0,1] \quad \text { and } \\
\sigma_{1} & =\int_{0}^{1} \xi^{\kappa-1}(1-\xi) \theta(\xi) d \xi>0, \quad \sigma_{2}=\int_{0}^{1} \xi^{\kappa-1} \theta(\xi) d \xi<1
\end{aligned}
$$

Motivated by [4], in this paper we establish the existence of a positive solution to the following problem:

$$
\begin{align*}
& D_{t}^{\kappa} u(s, t)+f\left(t, u(s, t), \frac{\partial}{\partial s} u(s, t)\right)+g\left(t, u(s, t), \frac{\partial}{\partial s} u(s, t)\right)=0 \tag{2}\\
& 0<s, t<1, \quad u(s, 0)=\frac{\partial}{\partial t} u(s, 0)=0, \quad u(s, 1)=\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi
\end{align*}
$$

[^0]where $2<\kappa \leq 3, f, g$ are continuous and increasing with respect to the second argument and decreasing with respect to the third argument. D_{t}^{κ} is the standard Riemann-Liouville fractional derivative of order κ. The function $\varphi(t)$ satisfies the following conditions:
\[

$$
\begin{aligned}
& (\Phi) \quad \varphi:[0,1] \times[0,1] \rightarrow[0, \infty) \quad \text { with } \quad \varphi \in L^{1}([0,1] \times[0,1]) \quad \text { and } \\
& \zeta_{1}=\int_{0}^{1} \xi^{\kappa-1}(1-\xi) \varphi(s, \xi) d \xi>0, \quad \zeta_{2}=\int_{0}^{1} \xi^{\kappa-1} \varphi(s, \xi) d \xi<1
\end{aligned}
$$
\]

Definition 1 (see [7, 8]). The Riemann-Liouville fractional derivative of order κ for a continuous function f is defined by:

$$
D_{t}^{\kappa} f(t)=\frac{1}{\Gamma(n-\kappa)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{f(\xi)}{(t-\xi)^{\kappa-n+1}} d \xi, \quad(n=[\kappa]+1)
$$

where the right-hand side is point-wise defined on $(0, \infty)$.
Definition 2 (see $[7,8]$). Let $[a, b]$ be an interval in \mathbb{R} and $\kappa>0$. The RiemannLiouville fractional order integral of a function $f \in L^{1}([a, b], \mathbb{R})$ is defined by:

$$
I_{t}^{\kappa} f(t)=\frac{1}{\Gamma(\kappa)} \int_{a}^{t} \frac{f(\xi)}{(t-\xi)^{1-\kappa}} d \xi
$$

whenever the integral exists.
It exists extensively in the research of nonlinear fractional differential and integral equations (see [1, 2, 3, 6, 13, 12]).

In this paper, we present some basic concepts in ordered Banach spaces and a fixed-point theorem which will be used later. For the convenience of readers, we suggest that one refers to [5] for details. Suppose that $(E,\|\|$.$) is a Banach space,$ which is partially ordered by a cone $P \subseteq E$, that is, $z \leq w$ if and only if $w-z \in P$. If $z \neq w$, then we denote $z<w$ or $z>w$. We denote the zero element of E by θ. Recall that a non-empty closed convex set $P \subset E$ is a cone if it satisfies (i) $z \in P, \lambda \geq 0 \Longrightarrow \lambda z \in P$, and (ii) $z \in P,-z \in P \Longrightarrow z=\theta$. A cone P is called normal if there exists a constant $N>0$ such that $\theta \leq z \leq w$ implies $\|z\| \leq N\|w\|$. We also define the ordered interval $\left[z_{1}, z_{2}\right]=\left\{z \in E \mid z_{1} \leq z \leq z_{2}\right\}$ for all $z_{1}, z_{2} \in E$.

Definition 3 (see [5]). $A: P \times P \rightarrow P$ is said to be a mixed monotone operator if $A(z, w)$ is increasing in z and decreasing in w, i.e., $u_{i}, v_{i}(i=1,2) \in P, u_{1} \leq u_{2}, v_{1} \geq$ v_{2} imply $A\left(u_{1}, v_{1}\right) \leq A\left(u_{2}, v_{2}\right), z \in P$ is called a fixed point of A if $A(z, z)=z$ and for $h>\theta, P_{h}=\{z \in P \mid \exists \lambda, \mu>0$ such that $\lambda h \leq z \leq \mu h\}$.

Definition 4. Let γ be a real number with $0<\gamma<1$. An operator $A: P \rightarrow P$ is said to be γ-concave if it satisfies $A(t z) \geq t^{\gamma} A(z)$ for all $t>0, z \in P$. An operator $A: P \rightarrow P$ is said to be homogeneous if it satisfies $A(t z)=t A(z)$ for all $t>0, z \in P$. An operator $A: P \rightarrow P$ is said to be sub-homogeneous if it satisfies $A(t z) \geq t A(z)$ for all $t>0, z \in P$.

We point out that $C[0,1]=\{z:[0,1] \rightarrow \mathbb{R}$ is continuous $\},\|z\|=\sup \{|z(t)|:$ $t \in[0,1]\}$ is a Banach space. Let $P=\{z \in C[0,1]: z(t) \geq 0, t \in[0,1]\}$, then it is a normal cone in $C[0,1]$ and the normality constant is 1 . We know that this space can be equipped with a partial order given by:

$$
z \leq w, \quad z, w \in C[0,1] \Leftrightarrow z(t) \leq w(t), t \in[0,1]
$$

Theorem 1 (see [10]). Let P be a normal cone in a real Banach space $E, \gamma \in(0,1)$ $A: P \rightarrow P$ an increasing sub-homogeneous operator, $B: P \rightarrow P$ a decreasing operator, $C: P \times P \rightarrow P$ a mixed monotone operator and let the following conditions:

$$
B\left(\frac{1}{t} z\right) \geq t B w, \quad C\left(t z, \frac{1}{t} w\right) \geq t^{\gamma} C(z, w), \quad t \in(0,1), z, w \in P
$$

be satisfied. Assume that
(i) there is $h_{0} \in P_{h}$ such that $A h_{0} \in P_{h}, B h_{0} \in P_{h}, C\left(h_{0}, h_{0}\right) \in P_{h}$;
(ii) there exists a constant $\delta_{0}>0$ such that $C(z, w) \geq \delta_{0}(A z+B z)$ for all $z, w \in P$.

Then
(1) $A: P_{h} \rightarrow P_{h}, B: P_{h} \rightarrow P_{h}$ and $C: P_{h} \times P_{h} \rightarrow P_{h}$;
(2) there are $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r u_{0} \leq u_{0}<v_{0}, u_{0} \leq A u_{0}+B v_{0}+C\left(u_{0}, v_{0}\right) \leq A v_{0}+B u_{0}+C\left(v_{0}, u_{0}\right) \leq v_{0}
$$

(3) the operator equation $A z+B z+C(z, z)=z$ has a unique solution z^{*} in P_{h};
(4) for $z_{0}, w_{0} \in P_{h}$, construct

$$
\begin{aligned}
& z_{n}=A z_{n-1}+B w_{n-1}+C\left(z_{n-1}, w_{n-1}\right), n=1,2, \ldots \\
& w_{n}=A w_{n-1}+B z_{n-1}+C\left(w_{n-1}, z_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

We have $z_{n} \rightarrow z^{*}$ and $w_{n} \rightarrow z^{*}$ as $n \rightarrow \infty$.
Lemma 1 (see [11]). If

$$
G_{1}(t, \xi)=\frac{1}{\Gamma(\kappa)} \begin{cases}t^{\kappa-1}(1-\xi)^{\kappa-1}-(t-\xi)^{\kappa-1}, & 0 \leq \xi \leq t \leq 1 \tag{3}\\ t^{\kappa-1}(1-\xi)^{\kappa-1}, & 0 \leq t \leq \xi \leq 1\end{cases}
$$

Then for $G_{1}(t, \xi)$ the following property holds:

$$
\frac{t^{\kappa-1}(1-t) \xi(1-\xi)^{\kappa-1}}{\Gamma(\kappa)} \leq G_{1}(t, \xi) \leq \frac{\xi(1-\xi)^{\kappa-1}}{\Gamma(\kappa-1)}, \quad t, \xi \in[0,1]
$$

From [9] and Lemma 1, we have

$$
\begin{equation*}
\frac{\zeta_{1} \xi(1-\xi)^{\kappa-1} t^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \leq G(t, \xi) \leq \frac{t^{\kappa-1}(1-\xi)^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)}, \quad t, \xi \in[0,1] \tag{4}
\end{equation*}
$$

where $G(t, \xi)$ is given as follow:

$$
\begin{equation*}
G(t, \xi)=G_{1}(t, \xi)+G_{2}(t, \xi), \quad(t, \xi) \in[0,1] \times[0,1] \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}(t, \xi)=\frac{t^{\kappa-1}}{1-\zeta_{2}} \int_{0}^{1} G_{1}(\tau, \xi) \varphi(\xi, \tau) d \tau \tag{6}
\end{equation*}
$$

In 2017, Feng and Zhai established the following theorem.
Theorem 2 (see [4]). Assume (Φ) and
$\left(H_{1}\right) f, g:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ are continuous and increasing with respect to the second argument, $g(t, 0) \not \equiv 0$;
$\left(H_{2}\right) g(t, \lambda z) \geq \lambda g(t, z)$ for $\lambda \in(0,1), t \in[0,1], z \in[0, \infty)$, and there exists a constant $\gamma \in(0,1)$ such that $f(t, \lambda z) \geq \lambda^{\gamma} f(t, z)$ for all $t \in[0,1], \lambda \in(0,1), z \in$ $[0, \infty)$;
$\left(H_{3}\right) \exists \delta_{0}>0$ such that $f(t, z) \geq \delta_{0} g(t, z), t \in[0,1], z \geq 0$.
Then problem (1) has a unique positive solution u^{*} in P_{h}, where $h(t)=t^{\kappa-1}, t \in[0,1]$ and for $u_{0} \in P_{h}$ construct

$$
u_{n+1}(t)=\int_{0}^{1} G(t, \xi)\left[f\left(\xi, u_{n}(\xi)\right)+g\left(\xi, u_{n}(\xi)\right)\right] d \xi, \quad n=0,1,2, \ldots
$$

We have $u_{n}(t) \rightarrow u^{*}(t)$ as $n \rightarrow \infty$, where $G(t, \xi)$ is given as (5).

2. Main result

As a prompt consequence of Theorem 1 we have the following result.
Proposition 1. Let P be a normal cone in a real Banach space $E, \gamma \in(0,1)$, $T, C: P \times P \rightarrow P$ mixed monotone operators and let the following conditions

$$
\begin{aligned}
& T\left(t z, \frac{1}{t} w\right) \geq t T(z, w), \quad t \in(0,1), z, w \in P \\
& C\left(t z, \frac{1}{t} w\right) \geq t^{\gamma} C(z, w), \quad t \in(0,1), z, w \in P
\end{aligned}
$$

be satisfied. Assume that
(i) there is $h_{0} \in P_{h}$ such that $T\left(h_{0}, h_{0}\right) \in P_{h}, C\left(h_{0}, h_{0}\right) \in P_{h}$;
(ii) there exists a constant $\delta_{0}>0$ such that $C(z, w) \geq \delta_{0} T(z, w)$ for all $z, w \in P$.

Then
(1) $T: P_{h} \times P_{h} \rightarrow P_{h}$ and $C: P_{h} \times P_{h} \rightarrow P_{h}$;
(2) there are $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r u_{0} \leq u_{0}<v_{0}, u_{0} \leq T\left(u_{0}, v_{0}\right)+C\left(u_{0}, v_{0}\right) \leq T\left(v_{0}, u_{0}\right)+C\left(v_{0}, u_{0}\right) \leq v_{0}
$$

(3) the operator equation $T(z, z)+C(z, z)=z$ has a unique solution z^{*} in P_{h};
(4) for $z_{0}, w_{0} \in P_{h}$, construct

$$
\begin{aligned}
& z_{n}=T\left(z_{n-1}, w_{n-1}\right)+C\left(z_{n-1}, w_{n-1}\right) \\
& w_{n}=T\left(w_{n-1}, z_{n-1}\right)+C\left(w_{n-1}, z_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

We have $z_{n} \rightarrow z^{*}$ and $w_{n} \rightarrow z^{*}$ as $n \rightarrow \infty$.
Definition 5. An operator $A: P \times P \rightarrow P$ is said to be γ-concave if

$$
A\left(t z, \frac{1}{t} w\right) \geq t^{\gamma} A(z, w), \quad t \in(0,1),(z, w) \in P \times P, \quad 0 \leq \gamma<1
$$

Definition 6. An operator $B: P \times P \rightarrow P$ is said to be sub-homogeneous if it satisfies the following:

$$
B\left(t z, \frac{1}{t} w\right) \geq t B(z, w), \quad t \in(0,1), \quad z, w \in P
$$

Definition 7. Let γ be a real number with $0<\gamma<1$. An operator $A: P \times P \rightarrow P$ is said to be γ-concave if it satisfies $A\left(t z, \frac{1}{t} w\right) \geq t^{\gamma} A(z, w)$ for all $t>0, z, w \in P$. An operator $B: P \times P \rightarrow P$ is said to be sub-homogeneous if $B\left(t z, \frac{1}{t} w\right) \geq t B(z, w)$ for all $t>0, z, w \in P$.
Lemma 2. Assume (Φ) holds and $y:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is continuous. Then the problem

$$
\begin{align*}
& D_{t}^{\kappa} u(s, t)+y(s, t)=0, \quad 2<\kappa \leq 3, \tag{7}\\
& s, t \in[0,1], u(s, 0)=\frac{\partial}{\partial t} u(s, 0)=0, \quad u(s, 1)=\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi,
\end{align*}
$$

has the solution

$$
u(s, t)=\int_{0}^{1} G(t, \xi) y(s, \xi) d \xi
$$

where $G(t, \xi)$ is given as (5).
Proof. By (7), the following inequality holds:

$$
u(s, t)=-I_{t}^{\kappa} y(s, t)+c_{1} t^{\kappa-1}+c_{2} t^{\kappa-2}+c_{3} t^{\kappa-3} \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}
$$

Hence

$$
u(s, t)=-\int_{0}^{t} \frac{(t-\xi)^{\kappa-1}}{\Gamma(\kappa)} y(t, \xi) d \xi+c_{1} t^{\kappa-1}+c_{2} t^{\kappa-2}+c_{3} t^{\kappa-3}
$$

From $u(s, 0)=\frac{\partial}{\partial t} u(s, 0)=0$ and $u(s, 1)=\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi$, we obtain

$$
c_{1}=\int_{0}^{1} \frac{(1-\xi)^{\kappa-1}}{\Gamma(\kappa)} y(s, \xi) d \xi+\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi, \quad c_{2}=c_{3}=0
$$

Therefore

$$
\begin{aligned}
u(s, t)= & -\int_{0}^{t} \frac{(t-\xi)^{\kappa-1}}{\Gamma(\kappa)} y(s, \xi) d \xi+\frac{t^{\kappa-1}}{\Gamma(\kappa)} \int_{0}^{1}(1-\xi)^{\kappa-1} y(s, \xi) d \xi \\
& +t^{\kappa-1} \int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi \\
= & \int_{0}^{1} G_{1}(t, \xi) y(s, \xi) d \xi+t^{\kappa-1} \int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\int_{0}^{1} \varphi(s, t) u(s, t) d t= & \int_{0}^{1} \varphi(s, t)\left(\int_{0}^{1} G_{1}(t, \xi) y(s, \xi) d \xi\right) d t \\
& +\int_{0}^{1}\left(\varphi(s, t) t^{\kappa-1} \int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi\right) d t \\
= & \int_{0}^{1}\left(\int_{0}^{1} \varphi(s, t) G_{1}(t, \xi) d t\right) y(s, \xi) d \xi \\
& +\left(\int_{0}^{1} t^{\kappa-1} \varphi(s, t) d t\right)\left(\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi\right) \\
\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi= & \frac{1}{1-\zeta_{2}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(t, \xi) \varphi(s, t) d t\right) y(s, \xi) d \xi \\
= & \frac{1}{1-\zeta_{2}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(\tau, \xi) \varphi(s, \tau) d \tau\right) y(s, \xi) d \xi
\end{aligned}
$$

Clearly we get

$$
\begin{aligned}
u(s, t) & =\int_{0}^{1} G_{1}(t, \xi) y(s, \xi) d \xi+\frac{t^{\kappa-1}}{1-\zeta_{2}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(\tau, \xi) \varphi(s, \tau) d \tau\right) y(s, \xi) d \xi \\
& =\int_{0}^{1} G_{1}(t, \xi) y(s, \xi) d \xi+\int_{0}^{1} G_{2}(t, \xi) y(s, \xi) d \xi \\
& =\int_{0}^{1} G(t, \xi) y(s, \xi) d \xi
\end{aligned}
$$

Now we consider the new Banach space E_{1} as follows:

$$
E_{1}=\left\{u(s, t) \in C([0,1] \times[0,1]) \left\lvert\, \frac{\partial}{\partial s} u(s, t) \in C([0,1] \times[0,1])\right.\right\}
$$

E_{1} is a Banach space with the norm

$$
\|u\|=\max \left\{\max _{s, t \in[0,1]}|u(s, t)|, \max _{s, t \in[0,1]}\left|\frac{\partial}{\partial s} u(s, t)\right|\right\}
$$

E_{1} is endowed with an order relation

$$
u(s, t) \preceq v(s, t) \text { if and only if } u(s, t) \leq v(s, t), \frac{\partial}{\partial s} u(s, t) \leq \frac{\partial}{\partial s} v(s, t)
$$

for all $u(s, t), v(s, t) \in E_{1}$.
Moreover, let $P_{1} \subseteq E_{1}$ be defined by:

$$
P_{1}=\left\{u \in E_{1}: u(s, t) \geq 0, \frac{\partial}{\partial s} u(s, t) \geq 0, s, t \in[0,1]\right\}
$$

We point out P_{1} is a normal cone. Indeed, for $u(s, t), v(s, t) \in P_{1}$, with $u(s, t) \preceq$ $v(s, t)$ we have

$$
u(s, t) \leq v(s, t) \text { and } \frac{\partial}{\partial s} u(s, t) \leq \frac{\partial}{\partial s} v(s, t)
$$

Then obviously for $M=1$ the following conditions hold:

$$
|u(s, t)| \leq M|v(s, t)| \text { and }\left|\frac{\partial}{\partial s} u(s, t)\right| \leq M\left|\frac{\partial}{\partial s} v(s, t)\right|
$$

So we have four items below:
(i) $\|u(s, t)\|=\max |u(s, t)|,\|v(s, t)\|=\max |v(s, t)|$ and $M=1$, then we have

$$
\max |u(s, t)| \leq M \max |v(s, t)|
$$

therefore

$$
\|u(s, t)\| \leq\|v(s, t)\|
$$

(ii) $\|u(s, t)\|=\max \left|\frac{\partial}{\partial s} u(s, t)\right|$ and $\|v(s, t)\|=\max \left|\frac{\partial}{\partial s} v(s, t)\right|$, then we have

$$
\|u(s, t)\|=\max \left|\frac{\partial}{\partial s} u(s, t)\right| \leq \max \left|\frac{\partial}{\partial s} v(s, t)\right|=\|v(s, t)\|
$$

(iii) $\|u(s, t)\|=\max \left|\frac{\partial}{\partial s} u(s, t)\right|$ and $\|v(s, t)\|=\max |v(s, t)|$, then we have

$$
\|u(s, t)\|=\max \left|\frac{\partial}{\partial s} u(s, t)\right| \leq \max \left|\frac{\partial}{\partial s} v(s, t)\right| \leq \max |v(s, t)|=\|v(s, t)\|
$$

(iv) $\|u(s, t)\|=\max |u(s, t)|$ and $\|v(s, t)\|=\max \left|\frac{\partial}{\partial s} v(s, t)\right|$, then we have

$$
\|u(s, t)\|=\max |u(s, t)| \leq \max |v(s, t)| \leq \max \left|\frac{\partial}{\partial s} v(s, t)\right|=\|v(s, t)\|
$$

therefore P_{1} is a normal cone.
Now here, continuing the work of Feng and Zhai, we establish the existence and uniqueness of solution to fractional differential equation (2).
Theorem 3. Assume (Φ) and
$\left(H_{1}\right) f, g:[0,1] \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ are continuous and increasing with respect to the second argument, but also decreasing with respect to third argument. $g(t, 0,1) \not \equiv 0 ;$
$\left(H_{2}\right) g\left(t, \lambda z, \frac{1}{\lambda} w\right) \geq \lambda g(t, z, w)$ for $\lambda \in(0,1), t \in[0,1], z, w \in[0, \infty)$, and there exists a constant $\gamma \in(0,1)$ such that $f\left(t, \lambda z, \frac{1}{\lambda} w\right) \geq \lambda^{\gamma} f(t, z, w)$ for all $t \in[0,1], \lambda \in$ $(0,1), z, w \in[0, \infty)$;
$\left(H_{3}\right)$ there exists a constant $\delta_{0}>0$ such that $f(t, z, w) \geq \delta_{0} g(t, z, w), t \in[0,1]$ and $z, w \geq 0$.
$\left(H_{4}\right) y(s, t) \leq y^{\prime}(s, t)$ implies that $\frac{\partial}{\partial s} y(s, t) \leq \frac{\partial}{\partial s} y^{\prime}(s, t)$.
Then problem (2) has a unique positive solution u^{*} in $P_{1_{h}}$, where $h(t)=t^{\kappa-1}, t \in$ $[0,1]$ and for $u_{0} \in P_{1_{h}}$, construct

$$
\begin{aligned}
u_{n+1}(s, t)= & \int_{0}^{1} G(t, \xi)\left[f\left(\xi, u_{n}(s, \xi), \frac{\partial}{\partial s} u_{n}(s, \xi)\right)\right. \\
& \left.+g\left(\xi, u_{n}(s, \xi), \frac{\partial}{\partial s} u_{n}(s, \xi)\right)\right] d \xi, \quad n=0,1,2, \ldots
\end{aligned}
$$

We have $u_{n}(s, t) \rightarrow u^{*}(s, t)$ as $n \rightarrow \infty$, where $G(t, \xi)$ is given as (5).
Proof. From Lemma 2, problem (2) has an integral formulation given by

$$
u(s, t)=\int_{0}^{1} G(t, \xi)\left[f\left(\xi, u(s, \xi), \frac{\partial}{\partial s} u(s, \xi)\right)+g\left(\xi, u(s, \xi), \frac{\partial}{\partial s} u(s, \xi)\right)\right] d \xi
$$

Define $A: P_{1} \times P_{1} \rightarrow P_{1}$ and $B: P_{1} \times P_{1} \rightarrow P_{1}$ by:

$$
\begin{aligned}
A(u(s, t), v(s, t)) & =\int_{0}^{1} G(t, \xi) f\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
B(u(s, t), v(s, t)) & =\int_{0}^{1} G(t, \xi) g\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi
\end{aligned}
$$

Then u is the solution to problem (2) if and only if

$$
u=A(u, u)+B(u, u)
$$

Firstly, we show that A, B are two increasing operators with respect to the second argument, but also decreasing with respect to third argument. For $(u, v),\left(u^{\prime}, v^{\prime}\right) \in$ $P_{1} \times P_{1}$ with $u \succeq u^{\prime}$ and $v \preceq v^{\prime}$, we have

$$
\begin{aligned}
A(u(s, t), v(s, t)) & =\int_{0}^{1} G(t, \xi) f\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& \geq \int_{0}^{1} G(t, \xi) f\left(\xi, u^{\prime}(s, \xi), \frac{\partial}{\partial s} v^{\prime}(s, \xi)\right) d \xi \\
& =A\left(u^{\prime}(s, t), v^{\prime}(s, t)\right)
\end{aligned}
$$

By $\left(H_{4}\right)$, it is easy to see that

$$
\frac{\partial}{\partial s} A(u(s, t), v(s, t)) \geq \frac{\partial}{\partial s} A\left(u^{\prime}(s, t), v^{\prime}(s, t)\right)
$$

So

$$
A(u(s, t), v(s, t)) \succeq A\left(u^{\prime}(s, t), v^{\prime}(s, t)\right)
$$

Similarly, $B(u, v) \succeq B\left(u^{\prime}, v^{\prime}\right)$. Secondly, we prove that A is a γ-concave operator and B is a sub-homogeneous operator. For any $\lambda \in(0,1)$ with $(u, v) \in P_{1} \times P_{1}$, from $\left(H_{2}\right)$ we obtain:

$$
\begin{aligned}
A\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) & =\int_{0}^{1} G(t, \xi) f\left(\xi, \lambda u(s, \xi), \frac{1}{\lambda} \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& \geq \lambda^{\gamma} \int_{0}^{1} G(t, \xi) f\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& =\lambda^{\gamma} A(u(s, t), v(s, t))
\end{aligned}
$$

By $\left(H_{4}\right)$, we have $\frac{\partial}{\partial s} A\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) \geq \lambda^{\gamma} \frac{\partial}{\partial s} A(u(s, t), v(s, t))$, therefore

$$
\begin{aligned}
A\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) & \succeq \lambda^{\gamma} A(u(s, t), v(s, t)) \\
B\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) & =\int_{0}^{1} G(t, \xi) g\left(\xi, \lambda u(s, \xi), \frac{1}{\lambda} \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& \geq \lambda \int_{0}^{1} G(t, \xi) g\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& =\lambda B(u(s, t), v(s, t))
\end{aligned}
$$

and also

$$
\frac{\partial}{\partial s} B\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) \geq \lambda \frac{\partial}{\partial s} B(u(s, t), v(s, t))
$$

hence

$$
B\left(\lambda u(s, t), \frac{1}{\lambda} v(s, t)\right) \succeq \lambda B(u(s, t), v(s, t))
$$

So A is γ-concave and B is sub-homogeneous.
Next, we prove that $A(h, h) \in P_{1_{h}}$ and $B(h, h) \in P_{1_{h}}$. From $\left(H_{1}\right),(3),(6)$ and (4), we have

$$
\begin{aligned}
A(h(t), h(t)) & =\int_{0}^{1} G(t, \xi) f\left(\xi, \xi^{\kappa-1}, 0\right) d \xi \\
& \leq \frac{t^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\xi)^{\kappa-1} f(\xi, 1,0) d \xi \\
A(h(t), h(t)) & =\int_{0}^{1} G(t, \xi) f\left(\xi, \xi^{\kappa-1}, 0\right) d \xi \\
& \geq \frac{\zeta_{1} t^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1} \xi(1-\xi)^{\kappa-1} f(\xi, 0,1) d \xi
\end{aligned}
$$

From $\left(H_{3}\right)$ and $\left(H_{1}\right)$ we have

$$
f(\xi, 1,0) \geq f(\xi, 0,1) \geq \delta_{0} g(\xi, 0,1)>0
$$

Because $\kappa-1>0$ and $g(\xi, 0,1) \not \equiv 0$, we can get

$$
\begin{aligned}
\int_{0}^{1}(1-\xi)^{\kappa-1} f(\xi, 1,0) d \xi & \geq \int_{0}^{1} \xi(1-\xi)^{\kappa-1} f(\xi, 0,1) d \xi \\
& \geq \delta_{0} \int_{0}^{1} \xi(1-\xi)^{\kappa-1} g(\xi, 0,1) d \xi>0
\end{aligned}
$$

Let

$$
\begin{aligned}
& l_{1}:=\frac{\zeta_{1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1} \xi(1-\xi)^{\kappa-1} f(\xi, 0,1) d \xi \\
& l_{2}:=\frac{1}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\xi)^{\kappa-1} f(\xi, 1,0) d \xi
\end{aligned}
$$

Then $l_{2} \geq l_{1}>0$ and thus $l_{1} h(t) \leq A(h(t), h(t)) \leq l_{2} h(t), t \in[0,1]$; similarly,

$$
l_{1} \frac{\partial}{\partial s} h(t) \leq \frac{\partial}{\partial s} A(h(t), h(t)) \leq l_{2} \frac{\partial}{\partial s} h(t)
$$

hence

$$
l_{1} h(t) \preceq A(h(t), h(t)) \preceq l_{2} h(t),
$$

Thus $A(h, h) \in P_{1_{h}}$.
Also

$$
\begin{aligned}
B(h(t), h(t))= & \int_{0}^{1} G(t, \xi) g\left(\xi, \xi^{\kappa-1}, 0\right) d \xi \\
& \leq \frac{t^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1}(1-\xi)^{\kappa-1} g(\xi, 1,0) d \xi \\
B(h(t), h(t))= & \int_{0}^{1} G(t, \xi) g\left(\xi, \xi^{\kappa-1}, 0\right) d \xi \\
& \geq \frac{\zeta_{1} t^{\kappa-1}}{\left(1-\zeta_{2}\right) \Gamma(\kappa)} \int_{0}^{1} \xi(1-\xi)^{\kappa-1} g(\xi, 0,1) d \xi
\end{aligned}
$$

We can easily get $B(h, h) \in P_{1_{h}}$, from $g(t, 0,1) \not \equiv 0$ and similarly to operator A. That is, condition (i) of Theorem 1 holds.

Further, we prove that condition (ii) of Theorem 1 is also satisfied.
For $(u, u) \in P_{1} \times P_{1}$, by $\left(H_{3}\right)$,

$$
\begin{aligned}
A(u(t), u(t)) & =\int_{0}^{1} G(t, \xi) f\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& \geq \delta_{0} \int_{0}^{1} G(t, \xi) g\left(\xi, u(s, \xi), \frac{\partial}{\partial s} v(s, \xi)\right) d \xi \\
& =\delta_{0} B(u(t), u(t))
\end{aligned}
$$

and

$$
\frac{\partial}{\partial s} A(u(t), u(t)) \geq \delta_{0} \frac{\partial}{\partial s} B(u(t), u(t))
$$

Hence we get $A(u, u) \succeq \delta_{0} B(u, u)$.
Finally, from Theorem 1 we know that $A(u, u)+B(u, u)=u$ has a unique solution $u^{*} \in P_{1}$; for $u_{0} \in P_{1_{h}}$, construct $u_{n}=A\left(u_{n-1}, u_{n-1}\right)+B\left(u_{n-1}, u_{n-1}\right), n=1,2, \ldots$. We have $u_{n} \rightarrow u^{*}$. That is, problem (2) has a unique positive solution $u^{*} \in P_{1_{h}}$ for the sequence

$$
\begin{aligned}
u_{n+1}(s, t)= & \int_{0}^{1} G(t, \xi)\left[f\left(\xi, u_{n}(s, \xi), \frac{\partial}{\partial s} u_{n}(s, \xi)\right)\right. \\
& \left.+g\left(\xi, u_{n}(s, \xi), \frac{\partial}{\partial s} u_{n}(s, \xi)\right)\right] d \xi, \quad n=0,1,2, \ldots
\end{aligned}
$$

We have $u_{n}(s, t) \rightarrow u^{*}(s, t)$.
Corollary 1. Assume (Φ) and
$\left(H_{1}\right)$ Let $f:[0,1] \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing with respect to the second argument, but also decreasing with respect to the third argument. $f(t, 0,1) \not \equiv 0$;
$\left(H_{2}\right)$ there exists a constant $\gamma \in(0,1)$ such that $f\left(t, \lambda z, \frac{1}{\lambda} w\right) \geq \lambda^{\gamma} f(t, z, w)$ for all $t \in[0,1], \lambda \in(0,1), z, w \in[0, \infty) ;$
$\left(H_{3}\right) y(s, t) \leq y^{\prime}(s, t)$ implies that $\frac{\partial}{\partial s} y(s, t) \leq \frac{\partial}{\partial s} y^{\prime}(s, t)$.
Then

$$
\begin{aligned}
& D_{t}^{\kappa} u(s, t)+f\left(t, u(s, t), \frac{\partial}{\partial s} u(s, t)\right)=0, \quad 2<\kappa \leq 3 \\
& 0<s, t<1, \quad u(s, 0)=\frac{\partial}{\partial t} u(s, 0)=0, \quad u(s, 1)=\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi
\end{aligned}
$$

has a unique positive solution u^{*} in $P_{1_{h}}$, where $h(t)=t^{\kappa-1}, t \in[0,1]$. For $u_{0} \in P_{1_{h}}$, construct

$$
u_{n+1}(s, t)=\int_{0}^{1} G(t, \xi) f\left(\xi, u_{n}(s, \xi), \frac{\partial}{\partial s} u_{n}(s, \xi)\right) d \xi \quad n=0,1,2, \ldots
$$

We have $u_{n}(s, t) \rightarrow u^{*}(s, t)$ as $n \rightarrow \infty$, where $G(t, \xi)$ is given as (5).
Example 1. Consider the problem

$$
\begin{align*}
& D_{t}^{2.3} u(s, t)+\left(\frac{u(s, t)}{\frac{\partial}{\partial s} u(s, t)}\right)^{\frac{1}{2}}+\frac{\sqrt{u(s, t)}}{\sqrt{u(s, t)}+\sqrt{\frac{\partial}{\partial s} u(s, t)}} e^{t}+a=0 \tag{8}\\
& 0<s<\frac{1}{2}, \quad 0<t<1 \\
& u(s, 0)=\frac{\partial}{\partial t} u(s, 0)=0, \quad u(s, 1)=\int_{0}^{1} \varphi(s, \xi) u(s, \xi) d \xi
\end{align*}
$$

where $a>0$ is a constant.

$$
\text { Here, } \varphi(s, t)=(t+s)^{2} . \text { Then } \varphi:[0,1] \times[0,1] \rightarrow[0, \infty) \text { with } \varphi \in L^{1}([0,1] \times[0,1])
$$

$$
\zeta_{1}=\int_{0}^{1} \xi^{1.3}(1-\xi)(\xi+s)^{2} d \xi>0 \text { and } \zeta_{2}=\int_{0}^{1} \xi^{\kappa-1}(\xi+s)^{2} d \xi<1
$$

Suppose also

$$
u(s, t) \leq u^{\prime}(s, t) \text { implies that } \frac{\partial}{\partial s} u(s, t) \leq \frac{\partial}{\partial s} u^{\prime}(s, t)
$$

Take $0<b<a$ and $f, g:[0,1] \times(0, \infty) \times(0, \infty) \rightarrow[0, \infty)$ defined by:

$$
f(t, z, w)=\left(\frac{z}{w}\right)^{\frac{1}{2}}+b, \quad g(t, z, w)=\frac{\sqrt{z}}{\sqrt{z}+\sqrt{w}} e^{t}+a-b, \quad \gamma=\frac{1}{2}
$$

f and g are increasing with respect to the second argument, but also decreasing with respect to the third argument, $g(t, 0,1)=a-b>0$ for $\lambda \in(0,1), t \in(0,1)$, $z, w \in(0, \infty)$ and

$$
\begin{aligned}
& g\left(t, \lambda z, \frac{1}{\lambda} w\right) \geq \lambda g(t, z, w) \\
& f\left(t, \lambda z, \frac{1}{\lambda} w\right) \geq \lambda f(t, z, w)
\end{aligned}
$$

Moreover, for $\delta_{0} \in\left(0, \frac{b}{e+a-b}\right)$,

$$
\begin{aligned}
f(t, z, w) & =\left(\frac{z}{w}\right)^{\frac{1}{2}}+b \geq b=\frac{b}{e+a-b} \cdot(e+a-b) \\
& \geq \delta_{0}\left(\frac{\sqrt{z}}{\sqrt{z}+\sqrt{w}} e^{t}+a-b\right)=\delta_{0} g(t, z, w)
\end{aligned}
$$

By Theorem 3, problem (8) has a unique positive solution in $P_{1_{h}}$, where

$$
h(s, t)=(t+s)^{1.3}, \quad 0<s<\frac{1}{2} \quad \text { and } \quad 0<t<1 .
$$

References

[1] H. Afshari, S. Kalantari, E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differential Equations 286(2015), 1-12.
[2] H. Afshari, A. Kheiryan, Tripled fixed point theorems and applications to a fractional differential equation boundary value problem, East Asian Math. J 3(2017), 11 pp., DOI: 10.1142/S1793557117500565.
[3] H. Afshari, L. Khoshvaghti, The unique solution of some operator equations with an application for fractional differential equations, Bol. Soc. Paran. Mat, in press, DOI:10.5269/bspm. 45296.
[4] H. Feng, C. Zhai, Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions, Nonlinear Anal. Model. Control. 22(2017), 160-172.
[5] D. Guo, Fixed points of mixed monotone operators with application, Appl. Anal. 34(1988), 215-224.
[6] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Difference Equ. (2019), 421.
[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractiona differential equations, North-Holland Math. Stud. 204(2006), 7-10.
[8] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[9] Y. Sun, M. Zhao, Positive solutions for a class of fractional differential equations with integral boundary conditions, Appl. Math. Lett. 34(2014), 17-21.
[10] H. Wang, L. Zhang, The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems, Bound. Value Probl., DOI 10.1186/s13661-015-0467-5(2015).
[11] C. Yuan, Two positive solutions for ($n-1,1$)-type semigroup integral boundary value problems for coupled systems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 18(2013), 858-866.
[12] C. Zhai, W. Yan, C. Yang, A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems Commun. Nonlinear Sci. Numer. Simul. 18(2013), 858-866.
[13] L. Zhang, H. Tian, Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations, Adv. Difference Equ. (2017), 14.
[14] X. Zhao, C. Chai, W. Ge, Existence and nonexistence results for a class of fractional boundary value problems, J. Appl. Math. Comput. 41(2013), 17-31.

[^0]: *Corresponding author. Email addresses: hojat.afshari@yahoo.com (H. Afshari), gholamyanhujjat@yahoo.com (H. Gholamyan), cbzhai@sxu.edu.cn (C. Zhai)
 http://www.mathos.hr/mc (C) 2020 Department of Mathematics, University of Osijek

