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Abstract. By using some reorganized ideas combined with a successive approximation
technique we establish conditions for the existence of positive entire radially symmetric
solutions for a modified Schrödinger system{

∆u1 +∆(|u1|2γ1) |u1|2γ1−2 u1 = a1(|x|)Ψ1 (u1)F1(u2) in RN ,

∆u2 +∆(|u2|2γ2) |u2|2γ2−2 u2 = a2(|x|)Ψ2 (u2)F2(u1) in RN ,

where γ1, γ2 ∈
(
1
2
,∞

)
, N ≥ 3, and the functions a1, a2, Ψ1, Ψ2, F1, F2 are suitably chosen.

Our results improve and extend some previous works and have applications in several areas
of mathematics and various applied sciences including the study of nonreactive scattering
of atoms and molecules.

AMS subject classifications: 34B15, 34B18, 35B08, 35B09, 35B44, 35M30

Key words: partial differential equations, cooperative systems, linear systems, nonlinear
systems, approximation methods

1. Introduction

This paper deals with the study of positive ground state solutions of the following
coupled nonlinear system of differential equations:{

∆u1 +∆(|u1|2γ1) |u1|2γ1−2
u1 = a1(|x|)Ψ1 (u1)F1(u2) in RN (N ≥ 3),

∆u2 +∆(|u2|2γ2) |u2|2γ2−2
u2 = a2(|x|)Ψ2 (u2)F2(u1) in RN (N ≥ 3),

(1)

where γ1, γ2 ∈
(
1
2 ,∞

)
, Ψi (ui) =

√
1 + 2γi |ui|2(2γi−1)

(i = 1, 2), and the functions
a1, a2, F1, F2 are suitably chosen.

System (1) will be considered together with one of the following conditions:

• both components (u1, u2) are bounded, that is,

lim
|x|→∞

u1 (|x|) < ∞, lim
|x|→∞

u2 (|x|) < ∞, (2)
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• both components (u1, u2) are large, that is,

lim
|x|→∞

u1 (|x|) = ∞, lim
|x|→∞

u2 (|x|) = ∞, (3)

• one of the components is bounded, while the other is large, that is,

lim
|x|→∞

u1 (|x|) < ∞, lim
|x|→∞

u2 (|x|) = ∞, (4)

or

lim
|x|→∞

u1 (|x|) = ∞, lim
|x|→∞

u2 (|x|) < ∞. (5)

Definition 1. A function (u1, u2) ∈ C1([0,∞)) × C1([0,∞)) satisfying system (1)
is called an entire bounded solution if condition (2) holds; it is called an entire large
solution if condition (3) holds; it is called a semifinite entire large solution when (4)
or (5) holds.

As one knows, the issue regarding the existence of solutions to problem (1) is
very delicate and interesting to many mathematicians over the last few decades. We
refer to [14] for more details on the results. Usually, we still call problem (1) a
modified Schrödinger system.

The motivation for working on system (1) goes back to a recent paper [6], where
we give an affirmative answer for the following open problem proposed by Zhang,
Liu, Wu and Cui [14, p. 1105]:

Open problem. Can we establish existence results on system (1) with functions
F1, F2 whose growth rate is faster than power functions?

Surprisingly, we could not find any answer to the question of establishing neces-
sary and sufficient conditions on a1 and a2 such that system (1) has a nonnegative
entire large radial solution, by looking through the literature on this topic including
[6]. The purpose of this paper is to give a positive answer to this question.

Problems such as (1) can arise more naturally in mathematical physics such as
superfluid film equation, in the theory of Heisenberg ferromagnets and magnons, in
dissipative quantum mechanics, in condensed matter theory among other applica-
tions – for more details, see e.g. Colin [1, 2], Grosse and Martin [7], Luthey [9] and
Smooke [12].

The approach to prove our main results are, up to details, adaptations of the
original works of [3, 4, 5, 6] and most of them refer the reader for certain parts of the
reasoning to the original paper [4], where systems of the type (1) are studied, but that

does not contain the quasilinear and nonconvex diffusion term ∆(|ui|2γi) |ui|2γi−2
ui,

called in the literature non-square diffusion for γi ̸= 1 and square diffusion for γi = 1.
Finally, we would like to mention that the method presented here also yields

much more precise information on the behavior of solutions that other works.
The paper is structured as follows. In the forthcoming section reformulation of

system (1) is given. Next, Section 3 contains the settings and notations of this paper.
In Section 4, we formulate our main results regarding system (1). In the main body
of this section, we shall devote to proving our theorems.
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2. Reformulation of the system by the dual approach

To go into detail, let fi (i = 1, 2) be a solution to the following ordinary differential
equations; 

f ′
i (t) =

1√
1+2γi|fi(t)|2(2γi−1)

on t ∈ [0,∞) ,

fi (t) = −fi (−t) on t ∈ (−∞, 0) ,
fi (0) = 0.

(6)

Let us give some properties of fi that we need to prove our main results. The readers
can also find its proof in works of Santos and Zhou [11] and Vieira [13], however, for
the convenience of the reader we will write its proof.

Lemma 1. The function fi (i = 1, 2) and its derivative satisfy the following prop-
erties:

(i) fi is uniquely determined, of class C1 (R,R) and invertible on all R;

(ii) 0 < f ′
i (t) ≤ 1, ∀t ∈ R;

(iii) fi(t)
2γi

≤ tf ′
i (t) ≤ fi (t), ∀t ∈ R+;

(iv) |fi (t)| ≤ |t|, ∀t ∈ R;

(v) fi (st) ≤ sfi (t), ∀t ∈ R+ and s ≥ 1;

(vi) fi (t) /t → 1, when t → 0;

(vii) |fi (t)| / |t|1/2γi → (2γi)
1

4γi , when |t| → ∞;

(viii) setting σi = 1 if |t| ≤ 1 and σi =
1

2γi
if |t| ≥ 1, there exists a positive constant

θi > 0 such that |fi (t)| ≥ θi |t|σi ;

(ix) |fi (t)| ≤ (
√
2γi |t|)

1
2γi , ∀t ∈ R.

Proof. Hereafter, once that fi is an odd function, we can assume without loss of
generality, that t ≥ 0.

(i) It follows from theorem of the existence and uniqueness for the initial value
problem in ordinary differential equations that (6) has a unique solution, of class
C1 (R,R), namely, fi (t) ∈ C1 (R,R). Besides this, f ′

i (t) > 0 for all t ∈ R implies
that fi (t) is invertible.

(ii) From the fact that

1√
1 + 2γi |fi (t)|2(2γi−1)

∈ (0, 1] ,

there follows the conclusion f ′
i (t) ∈ (0, 1].

(iii) We claim that

L1
i (t) := fi (t)

√
1 + 2γi |fi (t)|2(2γi−1) − t ≥ 0, ∀t ∈ R+.
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Indeed,

L1
i (0) = 0 and

(
L1
i (t)

)′
=

2γi (2γi − 1) |fi (t)|2(2γi−1)

1 + 2γi |fi (t)|2(2γi−1)
≥ 0, ∀t ∈ R+.

Thus, Li (t) ≥ Li (0) = 0, ∀t ∈ R+, from where it follows that

t√
1 + 2γi |fi (t)|2(2γi−1)

= tf ′
i (t) ≤ fi (t) , ∀t ∈ R+.

The second inequality is also shown in a similar way.
(iv) This follows by observing that

L2
i (t) := fi (t)− t ≥ 0, ∀t ∈ R+.

Indeed,
fi (0) = 0 and f ′

i (t) ≤ 1 for all t ≥ 0,

from where there follows the inequality(
L2
i (t)

)′
:= f ′

i (t)− 1 ≥ 0, ∀t ∈ R+.

This L2
i (t) ≥ L2

i (0) = 0 ∀t ∈ R+, together with the fact that fi (t) is an odd function
leads to a conclusion.

(v) We notice that, since f ′′
i (t) ≤ 0 in [0,∞), we have that f ′

i (t) is non-increasing
in this interval. For any t ≥ 0 fixed we consider the function

L3
i (s) := fi (st)− sfi (t) defined for s ≥ 1.

As a consequence (
L3
i (s)

)′
= tf ′

i (st)− fi (t) ≤ tf ′
i (t)− fi (t) ≤ 0,

by iii). Since L3
i (1) = 0, we can consider that L3

i (s) ≤ 0 for any s ≥ 1, that is,
fi (st) ≤ sfi (t), ∀t ∈ R+ and s ≥ 1. Thus the proof is complete.

(vi) To deduce vi), we start observing that

f ′
i (t) =

1√
1 + 2γi |fi (t)|2(2γi−1)

,

can be written in the following way√
1 + 2γi |fi (t)|2(2γi−1)

dfi = dt. (7)

Integrating in (7) we obtain∫ t

0

ds =

∫ fi(t)

0

√
1 + 2γi |y|2(2γi−1)

dy.
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By L’Hospital’s rule, we obtain this information

lim
t→0+

fi (t)

t
= lim

t→0+

fi (t)∫ fi(t)

0

√
1 + 2γi |y|2(2γi−1)

dy

= lim
t→0+

f ′
i (t)√

1 + 2γi |fi (t)|2(2γi−1)
f ′
i (t)

= 1.

On the other hand, fi (t) = −fi (−t) on t ∈ (−∞, 0) implies that

lim
t→0

fi (t)

t
= 1.

(vii) Since (
fi (t)

t1/2γi

)′

=
2γif

′
i (t)− fi (t)

2γitt1/2γi
,

it follows from iii) that the map t ∈ (0,∞) → fi(t)

t1/2γi
, t > 0 is non-decreasing and

then limt→∞
fi(t)

t1/2γi
exists. Repeating the same type of arguments explored in the

proof of vi), we have

lim
t→∞

fi (t)

t1/2γi
= lim

t→∞
(
f2γi

i (t)

t
)1/2γi = ( lim

t→∞

f2γi

i (t)

t
)1/2γi

= ( lim
t→∞

2γif
2γi−1
i (t) f ′

i (t))
1/2γi

= ( lim
t→∞

2γif
2γi−1
i (t)√

1 + 2γi |fi (t)|2(2γi−1)
)1/2γi

= ( lim
t→∞

2γif
2γi−1
i (t)

|fi (t)|2γi−1
√

1

|fi(t)|2(2γi−1) + 2γi
)1/2γi

= ( lim
t→∞

2γi√
1

|fi(t)|2(2γi−1) + 2γi
)1/2γi = (

2γi√
2γi

)1/2γi

= [(2γi)
1
2 ]1/2γi = (2γi)

1
4γi ,

by L’Hospital’s rule.

(viii) This is a consequence of limits vi) and vii).

(ix) Integrating

f ′
i (t)

√
1 + 2γif

2(2γi−1)
i (t) = 1

we obtain ∫ t

0

f ′
i (s)

√
1 + 2γif

2(2γi−1)
i (s)ds = t.
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After changing variables y = fi (s), we find

t =

∫ fi(t)

0

√
1 + 2γiy2(2γi−1)dy ≥ (2γi)

1
2

∫ fi(t)

0

y2γi−1dy

=
(2γi)

1
2

2γi
f2γi

i (t) =
1√
2γi

f2γi

i (t) ,

which proves ix), and the proof of Lemma 1 is complete.

Next, we consider the following semilinear elliptic problem:{
∆u (|x|) = a1 (|x|)F1 (f2 (v (|x|))) in RN ,
∆v (|x|) = a2 (|x|)F2 (f1 (u (|x|))) in RN ,

(8)

we call it the dual problem of (1). From the monotonicity of fi, we know that fi
has an inverse f−1

i . Moreover, the inverse function of fi is given by

f−1
i (t) =

∫ t

0

√
1 + 2γiy2(2γi−1)dy for all t ≥ 0.

As to asymptotic behaviours on the unique solution fi (i = 1, 2) of (6), we have
the following:

Lemma 2. Fixing the change of variables

w1 = f−1
1 (u1) and w2 = f−1

2 (u2) ,

(u1, u2) is a positive solution of (1) if and only if (w1, w2) is a positive solution of
(8).

Proof. From wi = f−1
i (ui) (i = 1, 2) we have

∇wi =
(
f−1
i

)′
(ui)∇ui

and
∆wi = (f−1

i )′′ (ui) |∇ui|2 + (f−1
i )′ (ui)∆ui.

Moreover, direct calculations yield

(f−1
i )′ (t) =

1

f ′
i

(
f−1
i (t)

) =

√
1 + 2γi

∣∣fi (f−1
i (t)

)∣∣2(2γi−1)
=

√
1 + 2γi |t|2(2γi−1)

and

(f−1
i )′′ (t) =

γi (4γi − 2) |t|2(2γi−1)−2
t√

1 + 2γi |t|2(2γi−1)
.

Using these information, we have

∆wi =
γi(4γi−2)|ui|2(2γi−2)ui√

1+2γi|ui|2(2γi−1)
|∇ui|2 +

√
1 + 2γi |ui|2(2γi−1)

∆ui

= 1√
1+2γi|ui|2(2γi−1)

[γi (4γi − 2) |ui|2(2γi−2)
ui |∇ui|2+(1+2γi |ui|2(2γi−1)

)∆ui].
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On the other hand, it follows that

∆(|ui|2γi) = div 2γi |ui|2γi−2
ui∇ui)

= 2γi |ui|2γi−2
ui∆ui +∇ui · ∇(2γi |ui|2γi−2

ui)

= 2γi |ui|2γi−2
ui∆ui +∇ui · (2γi(2γi − 1) |ui|2γi−2 ∇ui)

= 2γi |ui|2γi−2
ui∆ui + 2γi(2γi − 1) |ui|2γi−2 |∇ui|2 ,

and as a consequence,

∆(|ui|2γi) |ui|2γi−2
ui = 2γi |ui|4γi−4

u2
i∆ui + 2γi(2γi − 1) |ui|4γi−4

ui |∇ui|2

= 2γi |ui|2(2γi−1)
∆ui + 2γi(2γi − 1) |ui|2(2γi−2)

ui |∇ui|2 .

Hence, we obtain

∆w1 =
1√

1 + 2γ1 |u1|2(2γ1−1)
[∆u1 +∆

(
|u1|2γ1

)
|u1|2γ1−2

u1]

= a1 (|x|)F1 (f2 (w2)) ,

and

∆w2 =
1√

1 + 2γ2 |u2|2(2γ2−1)
[∆u2 +∆

(
|u2|2γ2

)
|u2|2γ2−2

u2]

= a2 (|x|)F2 (f1 (w1)) ,

which shows that (w1, w2) is a solution to (8). Notice that the above process is in-
vertible, so the quasilinear Schrödinger elliptic system (1) and the semilinear elliptic
system (8) are equivalent, concluding the proof of the lemma.

3. Mathematical statement and notations

In order to establish the existence of solutions to system (8) it is helpful to keep in
mind the following mathematical settings of the paper:

α, β ∈ (0,∞) ,M1 ≥ max{1, β

F2 (α)
}, M2 ≥ max{1, α

F1 (β)
},

σ1 = 1 if α ∈ (0, 1] and σ1 =
1

2γ1
if α ∈ (1,∞),

σ2 = 1 if β ∈ (0, 1] and σ2 =
1

2γ2
if β ∈ (1,∞),

θ1 ≤ f1 (α)

ασ1
and θ2 ≤ f2 (β)

βσ2
,

m1 ∈ (0,min {β, F2 (θ1α
σ1)}) and m2 ∈ (0,min {α, F1 (θ2β

σ2)}) .
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In the statement of the theorems, it will be convenient to use the following
notations:

r : = |x| is the Euclidean norm in RN ,

Aai (r) : =

∫ r

0

s1−N

∫ s

0

zN−1ai(z)dzds, i = 1, 2,

Aai (∞) : = lim
r→∞

Aai (r) , C
+
i = Aai (∞) , (i = 1, 2),

A1,2 (r) : = C1

∫ r

0

y1−N

∫ y

0

tN−1a1(t)F1((1 +Aa2 (t))
1

2γ2 )dtdy,

A2,1 (r) : = C2

∫ r

0

y1−N

∫ y

0

tN−1a2(t)F2((1 +Aa1 (t))
1

2γ1 )dtdy,

A1,2 (r) : = C1

∫ r

0

y1−N

∫ y

0

tN−1a1(t)F1 ((1 +Aa2 (t))
σ2) dtdy,

A2,1 (r) : = C2

∫ r

0

y1−N

∫ y

0

tN−1a2(t)F2 ((1 +Aa1 (t))
σ1) dtdy,

A1,2 (∞) : = lim
r→∞

A1,2 (r) , A2,1 (∞) := lim
r→∞

A2,1 (r) , C1, C2 ∈ (0,∞) ,

A1,2 (∞) : = lim
r→∞

A1,2 (r) , A2,1 (∞) := lim
r→∞

A2,1 (r) , C1, C2 ∈ (0,∞) .

Next, we define the following functions and limits:

F1,2 (r) : =

∫ r

α

1

F1((M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (t))

dt, F1,2 (∞) := lim
s→∞

F1,2 (s) ,

F2,1 (r) : =

∫ r

β

1

F2((M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (t))

dt, F2,1 (∞) := lim
s→∞

F2,1 (s) ,

F̃1,2 (r) : =

∫ r

α

1

F1([
√
2γ2

(
β + F2 (t)C

+
2

)
]

1
2γ2 )

dt, F̃1,2 (∞) := lim
s→∞

F̃1,2 (s) ,

F̃2,1 (r) : =

∫ r

β

1

F2([
√
2γ1

(
α+ F1 (t)C

+
1

)
]

1
2γ1 )

dt, F̃2,1 (∞) := lim
s→∞

F̃2,1 (s) .

Note that

F ′
1,2(r) =

1

F1((M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (r))

> 0 for r > α,

and

F ′
2,1(r) =

1

F2((M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (r))

> 0 for r > β.

Then F1,2 has the inverse function F−1
1,2 on [0, F1,2(∞)) and F2,1 has the inverse

function F−1
2,1 on [0, F2,1(∞)). The same can be done for F̃1,2 and F̃2,1.

To begin, we first state some assumptions on a1, a2, F1 and F2 that will be used
throughout the remainder of this paper:

(A) a1, a2 : [0,∞) → [0,∞) are continuous functions;
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(C1) F1, F2 : [0,∞) → [0,∞) are continuous, non-decreasing and F1 (s) · F2 (s) > 0
whenever s > 0;

(C2) there are parameters C1, C2 ∈ (0,∞) such that

F1 (t1w1) ≤ C1F1 (t1)F1 (w1) , ∀t1 ≥ (M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (α) ,∀w1 ≥ 1, (9)

F2 (t2w2) ≤ C2F2 (t2)F2 (w2) , ∀t2 ≥ (M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (β) ,∀w2 ≥ 1,(10)

(C3) there are parameters C1, C2 ∈ (0,∞) such that

F1 (θ2m
σ2
1 w1) ≥ C1F1 (w1) , ∀ w1 ≥ 1, (11)

F2 (θ1m
σ1
2 w2) ≥ C2F2 (w2) , ∀ w2 ≥ 1. (12)

It is easily seen that the following functions satisfy hypotheses (C1)-(C3):

F1(u2) = uϑ1
2 and F2(u1) = uϑ2

1 with ϑ1, ϑ2 ∈ (0,∞) .

It is important to note that:

Remark 1. Assumptions (C2) and (C3) are further discussed in Krasnosel’skĭı and
Rutickĭı [8] (see also Rao and Ren [10]).

4. The main results

Our first substantial result is now the following.

Theorem 1. Assume that (A) and F1,2 (∞) = F2,1 (∞) = ∞ hold. Furthermore,
suppose that F1 and F2 satisfy the hypotheses (C1) and (C2). Then system (8) has
one positive radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β.

If in addition, F1 and F2 satisfy the hypothesis (C3), A1,2 (∞) = ∞ and A2,1 (∞) =
∞, then limr→∞ u (r) = ∞ and limr→∞ v (r) = ∞. Conversely, if (C1), (C2),
(C3) hold true, and (u, v) is a nonnegative entire large solution to (8) such that
u (0) = α and v (0) = β, then a1 and a2 satisfy A1,2 (∞) = A1,2 (∞) = ∞ and

A2,1 (∞) = A2,1 (∞) = ∞.

Our Theorem 1 significantly improves the well-known results about the large
solutions to (8) and therefore gives an answer to our main goal.

Proof. It is the purpose of the present theorem to demonstrate that radially sym-
metric settings (8) always admit a radially symmetric solution. On the other hand,
if we look for a radially symmetric solution, system (8) becomes ordinary differential
equations system{(

rN−1u′ (r)
)′

= rN−1a1(r)F1 (f2 (v (r))) on [0,∞) ,(
rN−1v′ (r)

)′
= rN−1a2(r)F2 (f1 (u (r))) on [0,∞) ,

(13)
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subject to the initial conditions u (0) = α, v (0) = β, u′ (0) = 0 and v′ (0) = 0. The
approach that we will use for solving this problem (13) is the following. Integrating
(13) from 0 to r, we obtain

{
u′(r) = 1

rN−1

∫ r

0
sN−1a1 (s)F1 (f2 (v (s))) ds, on [0,∞) ,

v′(r) = 1
rN−1

∫ r

0
sN−1a2 (s)F2 (f1 (u (s))) ds, on [0,∞) .

(14)

From integral equations (14), it is easy to see that u (r) is an increasing function
on [0,∞) of the radial variable r, and the same conclusion holds for v (r). Thus,
for radial solutions of system (13) we seek for solutions of the system of integral
equations {

u(r) = α+
∫ r

0
t1−N

∫ t

0
sN−1a1(s)F1 (f2 (v (s))) dsdt, r ≥ 0,

v(r) = β +
∫ r

0
t1−N

∫ t

0
sN−1a2(s)F2 (f1 (u (s))) dsdt, r ≥ 0.

(15)

To solve (15), we inductively define a sequence of collections of functions {um}m≥0

and {vm}m≥0 on [0,∞) as follows:


u0(r) = α, v0(r) = β,

um(r) = α+
∫ r

0
t1−N

∫ t

0
sN−1a1(s)F1 (f2 (vm−1 (s))) dsdt, r ≥ 0,

vm(r) = β +
∫ r

0
t1−N

∫ t

0
sN−1a2(s)F2 (f1 (um−1 (s))) dsdt, r ≥ 0.

In the first stage, for all r ≥ 0 and m ∈ N it holds that

um(r) ≥ α, vm(r) ≥ β and v0 ≤ v1.

In the second stage, our assumptions yield

u1(r) ≤ u2(r), for all r ≥ 0,

so

v1(r) ≤ v2(r), for all r ≥ 0.

Then a simple induction completes the proof of

{um}m and {vm}m are increasing on [0,∞).

Next, we shall show that the monotonically increasing sequences

{um}m and {vm}m

are bounded above whenever r is bounded, and hence converge on RN .
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Thanks to item iv) of Lemma 1, for any m ∈ N, one has

vm(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (um−1 (s))) dsdt

≤ β +

∫ r

0

F2 (f1 (um (t))) t1−N

∫ t

0

zN−1a2(z)dzdt

≤ β +

∫ r

0

F2 (um(t)) t1−N

∫ t

0

zN−1a2(z)dzdt

≤ β + F2 (um(r))

∫ r

0

t1−N

∫ t

0

zN−1a2(z)dzdt (16)

≤ F2 (um(r)) (
β

F2 (um(r))
+Aa2 (r))

≤ F2 (um(r)) (
β

F2(α)
+Aa2 (r))

≤ M1F2 (um(r)) (1 +Aa2
(r)),

where M1 ≥ max{1, β
F2(α)

}.
One shows, like in the proof of (16), that

um(r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (vm−1 (s))) dsdt

≤ α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (vm (s)) dsdt (17)

≤ M2F1 (vm(r)) (1 +Aa1 (r)),

where M2 ≥ max{1, α
F1(β)

}.
Moreover, using (9), (16) and item ix) of Lemma 1, by an elementary computation

it follows that

u′
m(r) ≤ r1−N

∫ r

0

sN−1a1(s)F1 (f2 (vm (s))) ds

≤ r1−N

∫ r

0

sN−1a1(s)F1((
√

2γ2vm (s))
1

2γ2 )ds

≤ r1−N

∫ r

0

sN−1a1(s)F1((
√

2γ2M1F2 (um(r)) (1 +Aa2 (r)))
1

2γ2 )ds (18)

≤ C1F1((M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (um(r)))r1−N

∫ r

0

sN−1a1(s)F1((1 +Aa2 (s))
1

2γ2 )ds

≤ F1((M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (um(r)))A

′
1,2 (r) .

Proceeding as above, but now with the second inequality (17), one can show that

v′m(r) = r1−N

∫ r

0

sN−1a2(s)F2 (f1 (um−1 (s))) ds (19)

≤ F2((M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (vm(r)))A

′
2,1 (r) .
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Consequently, dividing inequality (18) by F1((M1

√
2γ2)

1
2γ2 (F

1
2γ2
2 (um(r))), we de-

duce that
(um (r))

′

F1((M1

√
2γ2)

1
2γ2 (F

1
2γ2
2 (um(r)))

≤ A
′
1,2 (r) . (20)

One shows similarly that

(vm (r))
′

F2((M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (vm(r)))

≤ A
′
2,1 (r) . (21)

Integrating inequalities (20) and (21) from 0 to r yields that∫ um(r)

α

1

F1((M1

√
2γ2)

1
2γ2 F

1
2γ2
2 (t))

dt ≤ A1,2 (r) , (22)

∫ vm(r)

β

1

F2((M2

√
2γ1)

1
2γ1 F

1
2γ1
1 (t))

dt ≤ A2,1 (r) . (23)

Also, going back to the setting of F1,2 and F2,1 we rewrite (22) and (23) as

F1,2 (um(r)) ≤ A1,2 (r) and F2,1 (vm(r)) ≤ A2,1 (r) . (24)

Since F1,2 (resp. F2,1) is a bijection with the inverse function F−1
1,2 (resp. F−1

2,1 )
strictly increasing on [0,∞), inequalities (24) can be reformulated as

um(r) ≤ F−1
1,2

(
A1,2 (r)

)
and vm(r) ≤ F−1

2,1

(
A2,1 (r)

)
. (25)

Inequalities in (25) imply that

{um(r)}m≥0 and {vm(r)}m≥0

are bounded whenever r is bounded. Indeed, we prove that the sequences

{um(r)}m≥0 and {vm(r)}m≥0 ,

are bounded on [0, c0] for arbitrary c0 > 0. To do this, we take

K1 = F−1
1,2

(
A1,2 (c0)

)
and K2 = F−1

2,1

(
A2,1 (c0)

)
,

and since
(um(r))

′
≥ 0 and (vm (r))

′
≥ 0,

it follows that

um(r) ≤ um (c0) ≤ K1 and vm (r) ≤ vm (c0) ≤ K2, (26)

from which, since c0 > 0 was arbitrary, we conclude that {um(r)}m≥0 and
{vm(r)}m≥0 are bounded from above on bounded sets. That is the conclusion we are
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looking for. Consequently, because of (26) and taking into account the monotonicity
of the sequences, we can define

u (r) = lim
m→∞

um (r) and v (r) = lim
m→∞

vm (r)

as a radially symmetric solution to problem (13). Moreover, Dini’s theorem shows
that the sequence {(um(r), vm(r))}m≥0 converges uniformly to (u, v) on any compact
subinterval of [0,∞).

It is clear that (u (r) , v (r)) is continuous. By standard elliptic regularity theory
it can be shown that (u, v) ∈ C1 [0,∞) × C1 [0,∞). Going back to system (8), the
radial solutions of (13) are solutions of the ordinary differential equations system
(8).

We conclude that radial solutions of (8) with u (0) = α, v (0) = β satisfy

u(r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (v (s))) dsdt, r ≥ 0, (27)

v(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (u (s))) dsdt, r ≥ 0. (28)

From (27)-(28) and item viii) of Lemma 1 we obtain

v(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (u (s))) dsdt

≥ β +

∫ r

0

z1−N

∫ z

0

sN−1a2(s)F2 (f1 (α)) dsdz

≥ β + F2 (θ1α
σ1)Aa2 (r)

≥ m1(1 +Aa2 (r)).

With the previous argument, one also shows that

u(r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (v (s))) dsdt

≥ m2(1 +Aa1 (r)).

Using item viii) of Lemma 1, we observe that

u (r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (v (s))) dsdt

≥ α+

∫ r

0

y1−N

∫ y

0

tN−1a1(t)F1 (f2 (m1(1 +Aa2 (r)))) dtdy

≥ α+

∫ r

0

y1−N

∫ y

0

tN−1a1(t)F1 (θ2m
σ2
1 (1 +Aa2 (r))

σ2) dtdy (29)

≥ α+

∫ r

0

y1−N

∫ y

0

tN−1a1(t)C1F1 ((1 +Aa2 (t))
σ2) dtdy

= α+A1,2 (r) .
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By the same proof, we can also obtain

v(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (u (s))) dsdt

≥ β +A2,1 (r) .

Hence, we can pass to the limit as r → ∞ in (29) and in the above inequality to
conclude that

lim
r→∞

u (r) = lim
r→∞

v (r) = ∞,

which yields the result for A1,2 (∞) = A2,1 (∞) = ∞. In order to prove the converse,
let (u, v) be an entire large radial solution to (8) such that (u, v) = (α, β). Then, u
and v satisfy

u(r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (v (s))) dsdt, r ≥ 0,

v(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (u (s))) dsdt, r ≥ 0.

Before ending the proof, let us point that

F1,2 (u (r)) ≤ A1,2 (r) and F2,1 (v (r)) ≤ A2,1 (r) . (30)

By passing to the limit as r → ∞ in (30) we find that a1 and a2 satisfy A1,2 (∞) =
A2,1 (∞) = ∞, since (u, v) is large and F1,2 (∞) = F2,1 (∞) = ∞. Hence, the
theorem holds true.

Our second substantial result is related to the entire bounded radial solutions to
system (1).

Theorem 2. Suppose that (A), (C1) and F1,2 (∞) = F2,1 (∞) = ∞, C+
1 , C+

2 ∈
(0,∞) hold. Then, the system (8) has one positive radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that limr→∞ u (r) < ∞ and limr→∞ v (r) < ∞.

Proof. Following the approach in Theorem 1 we write (8) in the following form:{
u(r) = α+

∫ r

0
t1−N

∫ t

0
sN−1a1(s)F1 (f2 (v (s))) dsdt, r ≥ 0,

v(r) = β +
∫ r

0
t1−N

∫ t

0
sN−1a2(s)F2 (f1 (u (s))) dsdt, r ≥ 0,

with boundary conditions u(0) = α, v(0) = β, u′(0) = 0 and v′(0) = 0.
At this point, we are going to start the iteration procedure by considering the

sequence {um}m≥0 and {vm}m≥0 on [0,∞) as follows:
u0(r) = α, v0(r) = β,

um(r) = α+
∫ r

0
t1−N

∫ t

0
sN−1a1(s)F1 (f2 (vm−1 (s))) dsdt, r ≥ 0,

v(r) = β +
∫ r

0
t1−N

∫ t

0
sN−1a2(s)F2 (f1 (um (s))) dsdt, r ≥ 0.
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Obviously, for all r ≥ 0 and m ∈ N it holds that {um}m≥0 and {vm}m≥0 are
increasing on [0,∞).

Next, we establish bounds for the increasing sequences {um}m and {vm}m. We
can now use the same strategy of the previous theorem to obtain the following
inequalities:

vm(r) = β +

∫ r

0

t1−N

∫ t

0

sN−1a2(s)F2 (f1 (um−1 (s))) dsdt

≤ β +

∫ r

0

F2 (f1 (um (t))) t1−N

∫ t

0

zN−1a2(z)dzdt

≤ β +

∫ r

0

F2 (um(t)) t1−N

∫ t

0

zN−1a2(z)dzdt

≤ β + F2 (um(r))C+
2

and

um(r) = α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (f2 (vm−1 (s))) dsdt

≤ α+

∫ r

0

t1−N

∫ t

0

sN−1a1(s)F1 (vm (s)) dsdt (31)

≤ α+ F1 (vm(r))C+
1 .

Moreover, using (16) and item ix) of Lemma 1, by an elementary computation it
follows that

u′
m(r) ≤ r1−N

∫ r

0

sN−1a1(s)F1 (f2 (vm (s))) ds

≤ r1−N

∫ r

0

sN−1a1(s)F1((
√
2γ2vm (s))

1
2γ2 )ds

≤ r1−N

∫ r

0

sN−1a1(s)F1((
√
2γ2

(
β + F2 (um(s))C+

2

)
)

1
2γ2 )ds (32)

≤ F1((
√
2γ2

(
β + F2 (um(r))C+

2

)
)

1
2γ2 )r1−N

∫ r

0

sN−1a1(s)ds.

Arguing as above, but now with the second inequality (31), one can show that

v′m(r) = r1−N

∫ r

0

sN−1a2(s)F2 (f1 (um−1 (s))) ds (33)

≤ F2((
√
2γ1

(
α+ F1 (vm(r))C+

1

)
)

1
2γ1 )r1−N

∫ r

0

sN−1a2(s)ds.

In the proof that follows, it will be convenient to write previous relations (32) and
(33) as follows

(um (r))
′

F1((
√
2γ2

(
β + F2 (um(r))C+

2

)
)

1
2γ2 )

≤ A′
a1

(r) , (34)

(vm (r))
′

F2((
√
2γ1

(
α+ F1 (vm(r))C+

1

)
)

1
2γ1 )

≤ A′
a2

(r) . (35)
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After integration of (34)-(35) from 0 to r, we find the estimates∫ um(r)

α
1

F1((
√
2γ2(β+F2(t)C

+
2 ))

1
2γ2 )

dt ≤ Aa1 (r) ,∫ vm(r)

β
1

F2((
√
2γ1(α+F1(t)C

+
1 ))

1
2γ1 )

dt ≤ Aa2
(r) ,

which are equivalent to

F̃1,2 (um(r)) ≤ Aa1
(r) and F̃2,1 (vm(r)) ≤ Aa2

(r) . (36)

With the above inequalities in hand, the proof is now an obvious modification of
the proof of Theorem 1. Indeed, since F̃1,2 (resp. F̃2,1) is a bijection with the

inverse function F̃−1
1,2 (resp. F̃−1

2,1 ) strictly increasing on [0,∞), inequalities (36) can
be reformulated as

um(r) ≤ F̃−1
1,2 (Aa1 (r)) and vm(r) ≤ F̃−1

2,1 (Aa2 (r)) . (37)

So, we have found upper bounds for {um(r)}m≥0 and {vm(r)}m≥0 depending only

on r. Finally, if C+
1 < ∞ and C+

2 < ∞, then using the same arguments as in (27)
and (28), we can see from (37) that

u (r) ≤ F̃−1
1,2

(
C+

1

)
< ∞ and v (r) ≤ F̃−1

2,1

(
C+

2

)
< ∞ for all r ≥ 0.

Hence (u, v) is bounded. This concludes the proof.

Our next task is to give an existence result for (8) such that one of the components
is bounded, while the other is large.

Theorem 3. Assume that (A), (C1), F̃1,2 (∞) = F2,1 (∞) = ∞, C+
1 ∈ (0,∞) and

A2,1 (∞) = ∞ hold. Furthermore, if f2 satisfies hypotheses (10), then the system
(8) has one positive radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that limr→∞ u (r) < ∞ and limr→∞ v (r) = ∞.

Proof. Since the proof of Theorem 4 borrows the ideas from the proofs of Theorem 1
and Theorem 2, we have included just the estimates

u (r) ≤ F̃−1
1,2

(
C+

1

)
< ∞ and v (r) ≥ b+A2,1 (r) .

Assuming that
C+

1 < ∞ and A2,1 (∞) = ∞

holds, we have
lim
r→∞

u (r) < ∞ and lim
r→∞

v (r) = ∞.

This completes the proof.

It remains to proceed to
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Theorem 4. Assume that (A), (C1), F̃2,1 (∞) = F1,2 (∞) = ∞, A1,2 (∞) = ∞ and
C+

2 ∈ (0,∞) hold. Furthermore, if f1 satisfies hypotheses (9), then the system (8)
has one positive radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that limr→∞ u (r) = ∞ and limr→∞ v (r) < ∞.

Proof. Since the proof is an obvious modification of the proof of the preceding
theorems 1 and 2, we only mention one detail. We first establish the existence and
later we have that

u (r) ≥ α+A1,2 (r) and v (r) ≤ F̃−1
2,1

(
C+

2

)
. (38)

Passing to the limit as r goes to infinity in (38), we obtain the desired conclusion.

The following theorems are an immediate consequence of the above results.

Theorem 5. Assume that conditions (A) and (C1) hold. If C+
1 < F̃1,2 (∞) < ∞

and C+
2 < F̃2,1 (∞) < ∞ are satisfied, then system (8) has one positive bounded

radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that {
α+A1,2 (r) ≤ u (r) ≤ F̃−1

1,2

(
C+

1

)
,

β +A2,1 (r) ≤ v (r) ≤ F̃−1
2,1

(
C+

2

)
.

Theorem 6. Assume that conditions (A) and (C1) hold. If (9), (11), F1,2 (∞) =

A1,2 (∞) = ∞ and C+
2 < F̃2,1 (∞) < ∞ are satisfied, then system (8) has one

positive radial solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that limr→∞ u (r) = ∞ and limr→∞ v (r) < ∞.

Theorem 7. Assume that condition (A) holds. If (10), (12), C+
1 < F̃1,2 (∞) < ∞

and A2,1 (∞) = F2,1 (∞) = ∞ are satisfied, then system (8) has one positive radial
solution

(u, v) ∈ C1 ([0,∞))× C1 ([0,∞)) with u (0) = α and v (0) = β,

such that limr→∞ u (r) < ∞ and limr→∞ v (r) = ∞.

4.1. Proof of theorems 5 – 7

Proof of Theorem 5. Using the idea in the proof of (36) and the conditions of the
theorem it follows that

F̃1,2 (um (r)) ≤ Aa1 (r) ≤ C+
1 < F̃1,2 (∞) < ∞,

F̃2,1 (vm (r)) ≤ Aa2 (r) ≤ C+
1 < F̃2,1 (∞) < ∞.
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On the other hand, since F̃−1
1,2 and F̃−1

2,1 are strictly increasing on [0,∞), we find out
that

um (r) ≤ F̃−1
1,2

(
C+

1

)
< ∞ and vm (r) ≤ F̃−1

2,1

(
C+

2

)
< ∞,

and then the non-decreasing sequences {um (r)}m≥0 and {vm (r)}m≥0 are bounded
from above for all r ≥ 0 and all m. Putting these two facts together yields

(um (r) , vm (r)) → (u (r) , v (r)) as m → ∞

and the limit functions u and v are positive entire bounded radial solutions to system
(8). The proof is complete.

We are then lead to the proof of theorems 6 and 7, which are not difficult to
establish, and so, we omit their proofs.
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