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Abstract. Let Nn+p
p (c) be an (n+p)-dimensional connected Lorentzian space form of con-

stant sectional curvature c and φ : M → Nn+p
p (c) an n-dimensional spacelike submanifold

in Nn+p
p (c). The immersion φ : M → Nn+p

p (c) is called a Willmore spacelike submanifold
in Nn+p

p (c) if it is a critical submanifold to the Willmore functional

W (φ) =

∫
M

ρndv =

∫
M

(S − nH2)
n
2 dv,

where S, H and ρ2 denote the norm square of the second fundamental form, the mean
curvature and the non-negative function ρ2 = S−nH2 of M . In this article, by calculating
the first variation of W (φ), we obtain the Euler-Lagrange equation of W (φ) and prove
some rigidity theorems for n-dimensional Willmore spacelike submanifolds in Nn+p

p (c).

AMS subject classifications: 53C42, 53C40

Key words: Willmore spacelike submanifold, Lorentzian space form, Euler-Lagrange equa-
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1. Introduction

Let Nn+p
p (c) be an (n+p)-dimensional connected Lorentzian space form of constant

sectional curvature c. If c > 0, c = 0 or c < 0, we call Nn+p
p (c) a Minkowski space

Rn+p
p , a de Sitter space Sn+p

p (c) or an anti-de Sitter space Hn+p
p (c). A submanifold

in Nn+p
p (c) is said to be spacelike if the induced metric on the submanifold is positive

definite. Let
φ : M → Nn+p

p (c)

be an n-dimensional spacelike submanifold in Nn+p
p (c). Denote by hα

ij , S, H⃗ and H
the second fundamental form, the norm square of the second fundamental form, the
mean curvature vector and the mean curvature of M and denote by ρ2 the non-
negative function ρ2 = S − nH2. We define the Willmore functional (see [4, 9, 16]):

W (φ) =

∫
M

ρndv =

∫
M

(S − nH2)
n
2 dv, (1)
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which vanishes if and only if M is a totally umbilical submanifold, so the functional
W (φ) measures how far φ(M) is from being a totally umbilical submanifold. If the
critical points of the Willmore functional W (φ) are submanifolds in Nn+p

p (c), we
call them Willmore spacelike submanifolds.

Due to their backgrounds in mathematics, we know that Willmore submanifolds
in a unit sphere were extensively studied by many mathematicians. For example, the
well-known Willmore conjecture, which says thatW (φ) ≥ 4π2 holds for all immersed
tori φ : M → S3, was investigated by Willmore [20, 21], Li and Yau [10] and many
others; it was recently proved by Marques and Neves [12]. We should notice that the
topic of Willmore submanifolds and their rigidity problem was also studied by Wang
[19] (using conformal invariance), Li [8, 9] and the first author [18] (using metric
invariants) and by Mondino-Riviere [13] (who established a divergence form of the
Willmore equation in manifolds and exploited it to get rigidity results). On the other
hand, we should see that the parallel problem in Lorentzian conformal geometry is
also an important and interesting topic. As far as the authors know, the earliest
work in this direction is L. Alias and B. Palmer’s paper [2], in which they essentially
used the conformal invariance. We notice that one of Alias and Palmer’s main
contributions is the generalization of Willmore surfaces to Lorentz geometry and a
Bernstein type theorem for them, which implies that compact Willmore surfaces in 3-
dimensional Lorentz space forms must be totally umbilic spheres. This research was
motivated by Barros et al. [3], Li and Nie [11], Nie et al. [14, 15] and others. In this
article, we consider the Willmore functional on spacelike submanifolds in Lorentzian
space forms. By using the metric invariants, we compute the first variation of the
Willmore functionalW (φ) and obtain the Euler-Lagrange equation and some rigidity
results of n-dimensional Willmore spacelike submanifolds in Nn+p

p (c).

Theorem 1. Let φ : M → Nn+p
p (c) be an n-dimensional spacelike submanifold in

Nn+p
p (c). Then M is an n-dimensional Willmore spacelike submanifold if and only

if for n+ 1 ≤ α, β ≤ n+ p

ρn−2
{
SHα +

∑
i,j,β

Hβhβ
ijh

α
ij −

∑
i,j,k,β

hα
ijh

β
ikh

β
kj − nH2Hα

}
+ (n− 1)ρn−2∆⊥Hα + 2(n− 1)

∑
i

(ρn−2)iH
α
,i (2)

+ (n− 1)Hα∆(ρn−2)−2α(ρn−2) = 0,

where

∆(ρn−2) =
∑
i

(ρn−2),ii,

∆⊥Hα =
∑
i

Hα
,ii,

2α(ρn−2) =
∑
i,j

(ρn−2),ij(nH
αδij − hα

ij),

and (ρn−2),ij is the Hessian of ρn−2 with respect to the induced metric, Hα
,i and Hα

,ij

are defined by (20) and (21).
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Remark 1. We should notice that in Theorem 1 (also in Proposition 3 - 5 and
Corollary 2), when n = 3 and n = 5, we need to assume that M has no umbilical
points to guarantee (ρn−2),ij is continuous on M . In fact, if we denote x := S−nH2,

then ρn−2 = x
n−2
2 . Thus, we have (ρn−2),i =

n−2
2 x

n−4
2 x,i and

(ρn−2),ij =
n− 2

2

(n− 4

2
x

n−6
2 x,jx,i + x

n−4
2 x,ij

)
.

From the above equation, we see that when n = 2, 4 or n ≥ 6, (ρn−2),ij is continuous
on M and when n = 3 or 5, (ρn−2),ij is not continuous on the umbilical points of
M . Therefore, the assumption n ̸= 3, 5 is needed in Theorem 2 -Theorem 4 .

Remark 2. We also notice that in conformal geometry of conformal spacelike sub-
manifolds Nie and Wu [15] obtain the Willmore equation (Euler-Lagrange equation)
in terms of conformal invariants.

When n = 2, since Rij =
R
2 δij and S = R− 2c+ 4H2, from the Gauss equation

(12) we see that

−
∑

i,j,k,β

hα
ijh

β
ikh

β
kj = −

∑
i,j

hα
ij

(
Rij − cδij + 2

∑
β

Hβhβ
ij

)
= −SHα + 4H2Hα − 2

∑
i,j,β

Hβhβ
ijh

α
ij .

Thus, (2) reduces to

∆⊥Hα + 2H2Hα −
∑
i,j,β

Hβhβ
ijh

α
ij = 0, (3)

where 3 ≤ α, β ≤ 2 + p. From (3), we easily see

Proposition 1. Every maximal spacelike surface φ : M → N2+p
p (c) in a Lorentzian

space form N2+p
p (c) is a Willmore spacelike surface.

Proposition 2. Every n(n ≥ 3)-dimensional maximal and Einstein spacelike sub-
manifold φ : M → Nn+p

p (c) in a Lorentzian space form Nn+p
p (c) is a Willmore

spacelike submanifold.

In fact, since M is maximal and Einstein, we have Hα = 0 for all α and Rij =
R
n δij = constant. Thus, from (13), we see that ρ2 = S = R− n(n− 1)c = constant.

From (2), we only need to prove
∑

i,j,k,β

hα
ijh

β
ikh

β
kj = 0. From the Gauss equation (12),

we have∑
i,j,k,β

hα
ijh

β
ikh

β
kj =

∑
i,j

hα
ij

(∑
k,β

hβ
ikh

β
kj

)
=

∑
i,j

[
Rij − (n− 1)cδij

]
hα
ij

=
∑
i,j

[R
n
δij − (n− 1)cδij

]
hα
ij =

[R
n

− c(n− 1)
]
nHα = 0.

We also have the example of Willmore spacelike hypersurfaces of Hn+1
1 (−1).
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Example 1. The hyperbolic cylinders

Hk
(√n− k

n

)
×Hn−k

(√k

n

)
⊂ Hn+1

1 (−1), 1 ≤ k ≤ n− 1,

have two distinct principal curvatures
√
k/(n− k) and −

√
(n− k)/(k) with mul-

tiplicities k and n − k, respectively. We may easily check that they are Willmore
spacelike hypersurfaces in Hn+1

1 (−1) (see [14]) and ρ2 = S − nH2 = n.

Remark 3. It is unknown whether there exist non-trivial examples of closed Will-
more spacelike submanifolds whose normal bundle is timelike.

Denote by K and Q the functions which assign to each point of M the infimum
of the sectional curvature and the Ricci curvature at the point. We obtain the
following integral inequalities of Simons’ type and rigidity theorems in terms of ρ2,
K, Q and H.

Theorem 2. Let φ : M → Nn+p
p (c) be an n(n ≥ 2)-dimensional compact Willmore

spacelike submanifold in a Lorentzian space form Nn+p
p (c)(c = 1, 0,−1). If n ̸= 3, 5,

then

(1) for p = 1, we have

(i) if c = 1, 0, then M is totally umbilical;

(ii) if c = −1 and ρ2 ≥ n, then M is totally umbilical;

(2) for p ≥ 2, we have ∫
M

ρn
{
1

p
ρ2 + nc− nH2

}
dv ≤ 0. (4)

In particular, if

ρ2 ≥ np(H2 − c),

then M is totally umbilical.

Theorem 3. Let φ : M → Nn+p
p (c) be an n(n ≥ 2)-dimensional compact Willmore

spacelike submanifold in a Lorentzian space form Nn+p
p (c)(c = 1, 0,−1). If n ̸= 3, 5,

then the following integral inequality holds∫
M

ρn

{
K − n− 2√

n(n− 1)
Hρ

}
dv ≤ 0. (5)

In particular, if

K ≥ n− 2√
n(n− 1)

Hρ,

then M is totally umbilical.
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Theorem 4. Let φ : M → Nn+p
p (c) be an n(n ≥ 2)-dimensional compact Willmore

spacelike submanifold in a Lorentzian space form Nn+p
p (c)(c = 1, 0,−1). If n ̸= 3, 5,

then the following integral inequality holds∫
M

ρn
{
Q− (n− p− 1)(c−H2)

}
dv ≤ 0. (6)

In particular, if

Q ≥ (n− p− 1)
(
c−H2

)
,

then M is totally umbilical.

Remark 4. If p = 1 and c = 1, 0, from Theorem 2 we know that M is totally
umbilical. Thus, the conditions

K ≥ n− 2√
n(n− 1)

Hρ and Q ≥ (n− p− 1)
(
c−H2

)
can be omitted from Theorem 3 and Theorem 4 if p = 1 and c = 1, 0.

Remark 5. For the Willmore spacelike surfaces, L. Alias and B. Palmer [2] proved
that compact Willmore spacelike surfaces in 3-dimensional Lorentz space forms must
be totally umbilical spheres. Thus, we notice that our results above generalize Alias
and Palmer’s uniqueness result to high dimension and high co-dimension Willmore
spacelike submanifolds.

If φ : M → N2+p
p (c) is a maximal spacelike surface in a Lorentzian space form

N2+p
p (c), from Proposition 1 and Theorem 2 - Theorem 4, we easily have the follow-

ing result:

Corollary 1. Let φ : M → N2+p
p (c) be a compact maximal spacelike surface in a

Lorentzian space form N2+p
p (c)(c = 1, 0,−1). Then

(1) if c = 1, 0, M is totally geodesic;

(2) if c = −1, S ≥ 2p or K ≥ 0 or Q ≥ p− 1, M is totally geodesic.

Remark 6. We notice that the result (1) of Corollary 1 was obtained by [7].

2. Preliminaries

Let Nn+p
p (c) be an (n + p)-dimensional Lorentzian space form with index p. Let

M be an n-dimensional connected spacelike submanifold immersed in Nn+p
p (c). We

choose a local field of semi-Riemannian orthonormal frames e1, . . . , en+p in Nn+p
p (c)

so that at each point of M , e1, . . . , en span the tangent space of M and form an
orthonormal frame there. We use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ α, β, γ, . . . ≤ n+ p.
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Let ω1, . . . , ωn+p be its dual frame field so that the semi-Riemannian metric of
Nn+p

p (c) is given by

ds2 =
∑
i

ω2
i −

∑
α

ω2
α =

∑
A

εAω
2
A,

where εi = 1 and εα = −1. Then the structure equations of Nn+p
p (c) are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0, (7)

dωAB =
∑
C

εCωAC ∧ ωCB − 1

2

∑
C,D

εCεDKABCDωC ∧ ωD, (8)

KABCD = cεAεB(δACδBD − δADδBC). (9)

If we restrict these forms to M , then ωα = 0, n+ 1 ≤ α ≤ n+ p and

ωαi =
∑
j

hα
ijωj , hα

ij = hα
ji. (10)

The Gauss equations are

Rijkl = c(δikδjl − δilδjk)−
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk), (11)

Rik = (n− 1)cδik −
∑
α

(
∑
l

hα
ll)h

α
ik +

∑
α,j

hα
ijh

α
jk, (12)

R = n(n− 1)c+ S − n2H2, (13)

where

S =
∑
i,j,α

(hα
ij)

2, H⃗ =
∑
α

Hαeα, Hα =
1

n

∑
k

hα
kk, H = |H⃗|

and R is the scalar curvature of M .
Define the first and the second covariant derivatives of hα

ij , say hα
ijk and hα

ijkl, by∑
k

hα
ijkωk = dhα

ij +
∑
k

hα
ikωkj +

∑
k

hα
jkωki −

∑
β

hβ
ijωβα, (14)

∑
l

hα
ijklωl = dhα

ijk+
∑
m

hα
mjkωmi+

∑
m

hα
imkωmj+

∑
m

hα
ijmωmk−

∑
β

hβ
ijkωβα. (15)

The Codazzi equations and the Ricci identities are

hα
ijk = hα

ikj , (16)

hα
ijkl − hα

ijlk =
∑
m

hα
imRmjkl +

∑
m

hα
jmRmikl +

∑
β

hβ
ijRαβkl. (17)

The Ricci equations are

Rαβkl =
∑
m

(hα
kmhβ

ml − hα
lmhβ

mk). (18)



Willmore spacelike submanifolds in a Lorentzian space form Nn+p
p (c) 307

The Laplacian of hα
ij is defined by ∆hα

ij =
∑
k

hα
ijkk. From (17), for any α, n + 1 ≤

α ≤ n+ p, we obtain

∆hα
ij =

∑
k

hα
kkij +

∑
k,m

hα
kmRmijk +

∑
k,m

hα
imRmkjk +

∑
k,β

hβ
ikRαβjk. (19)

Define the first, second covariant derivatives and Laplacian of the mean curvature
vector field H⃗ =

∑
α
Hαeα in the normal bundle N(M) as follows

∑
i

Hα
,iθi = dHα +

∑
β

Hβθβα, (20)

∑
j

Hα
,ijθj = dHα

,i +
∑
j

Hα
,jθji +

∑
β

Hβ
,iθβα, (21)

∆⊥Hα =
∑
i

Hα
,ii, Hα =

1

n

∑
k

hα
kk. (22)

Let f be a smooth function on M . The first, second covariant derivatives fi, f,ij and
Laplacian of f are defined by

df =
∑
i

fiθi,
∑
j

f,ijθj = dfi +
∑
j

fjθji, ∆f =
∑
i

f,ii. (23)

For the fix index α(n + 1 ≤ α ≤ n + p), we introduce an operator 2α due to
Cheng-Yau [5] by

2αf =
∑
i,j

(nHαδij − hα
ij)f,ij . (24)

Since M is compact, the operator 2α is self-adjoint (see [5]) if and only if∫
M

(2αf)gdv =

∫
M

f(2αg)dv, (25)

where f and g are smooth functions on M . We need the following:

Lemma 1 (See [17]). Let A,B be symmetric n × n matrices satisfying AB = BA
and trA = trB = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

(trA2)(trB2)1/2, (26)

and the equality holds if and only if (n − 1) of the eigenvalues xi of B and the
corresponding eigenvalues yi of A satisfy

|xi| = (trB2)1/2/
√
n(n− 1), xixj ≥ 0,

yi = (trA2)1/2/
√

n(n− 1).
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By the same method as in the proof of Lemma 4.2 in [9], we also have the
following:

Lemma 2. Let φ : M → Nn+p
p (c) be an n-dimensional (n ≥ 2) spacelike submani-

fold in Nn+p
p (c). Then we have

|∇h|2 ≥ 3n2

n+ 2
|∇⊥H⃗|2, (27)

where |∇h|2 =
∑

i,j,k,α

(hα
ijk)

2, |∇⊥H⃗|2 =
∑
i,α

(Hα
,i )

2.

3. First variation and Euler-Lagrange equation

In this section, we shall calculate the first variation of the Willmore functionalW (φ0)
and obtain the Euler-Lagrange equation (2).

Let φ0 : M → Nn+p
p (c) be an n-dimensional compact spacelike submanifold in

Nn+p
p (c) with (possibly empty) boundary ∂M . If otherwise, we will consider the

variation with compact support. Let φ : M × R → Nn+p
p (c) be a smooth variation

of φ0 such that φ(·, t) = φ0 on the boundary. Along φ : M × R → Nn+p
p (c),

we choose a local orthonormal basis {eA} for TNn+p
p (c) with dual basis {ωA}, so

that {ei(·, t)} forms a local orthonormal basis for φt : M × {t} → Nn+p
p (c). Since

T ∗(M × R) = T ∗M ⊕ T ∗R, the pullback of {ωA} and {ωAB} on Nn+p
p (c) through

φ : M ×R → Nn+p
p (c) have the decomposition

φ∗ωα = Vαdt, φ∗ωi = θi + Vidt, (28)

φ∗ωij = θij + Lijdt, φ∗ωiα = θiα +Miαdt, φ∗ωαβ = θαβ +Nαβdt, (29)

where {Vi, Vα, Lij ,Miα, Nαβ} are local functions on M ×R with Lij = −Lji, Nαβ =
−Nβα and

V =
d

dt
|t=0φt =

∑
i

Vidφ0(ei) +
∑
α

Vαeα, (30)

is the variation vector field of φt : M → Nn+p
p (c). We note that forms {θi, θij , θiα,

θαβ} are defined on M × {t}, for t = 0, they reduce to the forms with the same
notation on M . We denote by dM the differential operator on T ∗M ; then d =
dM + dt ∂

∂t on T ∗(M ×R).

Let KABCD be the components of the Riemannian curvature tensor of Nn+p
p (c).

On M ×{t}, if we assume that hα
ij and the covariant derivatives Vi,j , Vα,i and Miα,j

are defined similarly to [6] (see (3.7) - (3.10) in [6]), by the proof similar to Lemma 3.1
and Lemma 3.2 in [6], we have the following lemmas:
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Lemma 3. Under the above notations, we have

∂θi
∂t

=
∑
j

(Vi,j + Lij)θj +
∑
j,α

hα
ijVαθj , (31)

Miα = Vα,i +
∑
j

hα
ijVj , (32)

∂θiα
∂t

=
∑
j

(
Miα,j +

∑
k

Likh
α
jk −

∑
β

Nβαh
β
ij

−
∑
k

KiαkjVk −
∑
β

KiαjβVβ

)
θj .

(33)

Lemma 4.

∂hα
ij

∂t
= Vα,ij +

∑
k

(Likh
α
kj + Ljkh

α
ki + hα

ijkVk)

+
∑
β

(Nαβh
β
ij −KαiβjVβ)−

∑
k,β

hα
ikh

β
kjVβ .

(34)

Proof of Theorem 1. By reasoning as in [6], setting i = j in (34) and summing
over i by using

∑
i,k

Likh
α
ki = 0, we have

∂Hα

∂t
=

1

n
∆⊥Vα +

∑
k

Hα
,kVk +

∑
β

NαβH
β

− 1

n

∑
i,k,β

hα
ikh

β
kiVβ − 1

n

∑
i,β

KαiβiVβ .
(35)

Since
∑

i,j,α,β

Nαβh
α
ijh

β
ij = 0 and

∑
i,j,k,α

Ljkh
α
kih

α
ij = 0, from (34) we have

1

2

∂S

∂t
=

∑
i,j,α

hα
ijVα,ij +

1

2

∑
k

S,kVk

−
∑

i,j,α,β

Kαiβjh
α
ijVβ −

∑
i,j,k,α,β

hα
ijh

α
ikh

β
kjVβ .

(36)

From (35) and
∑
α,β

NαβH
αHβ = 0, we have

1

2

∂(nH2)

∂t
=

∑
α

Hα∆⊥Vα +
n

2

∑
k

(H2),kVk

−
∑

i,j,α,β

Hαhα
ijh

β
ijVβ −

∑
i,α,β

HαKαiβiVβ .
(37)

For φt : M → Nn+p
p (c), we consider the non-negative functional

W (φt) =

∫
M

ρndv =

∫
M

(S − nH2)
n
2 θ1 ∧ · · · ∧ θn. (38)



310 Shichang Shu and Junfeng Chen

From (31), we have

∂
∂t (θ1 ∧ · · · ∧ θn) =

∑
i

θ1 ∧ · · · ∧ ∂θi
∂t ∧ · · · ∧ θn

=
(∑

i

Vi,i + n
∑
α
HαVα

)
θ1 ∧ · · · ∧ θn.

(39)

From (36) and (37), we see that

∂ρn

∂t
= nρn−2

{∑
i,j,α

hα
ijVα,ij +

1

2

∑
k

(ρ2),kVk −
∑

i,j,α,β

Kαiβjh
α
ijVβ

−
∑
α

Hα∆⊥Vα −
∑

i,j,k,α,β

hα
ijh

α
ikh

β
kjVβ (40)

+
∑

i,j,α,β

Hαhα
ijh

β
ijVβ +

∑
i,α,β

HαKαiβiVβ

}
.

From (38) - (40), we have

∂w(φt)

∂t
=

∫
M

ρn−2
{[

n
∑
i,j,α

hα
ijVα,ij − n

∑
α

Hα∆⊥Vα +
n

2

∑
k

(ρ2),kVk

+ρ2
∑
k

Vk,k

]
+ n

∑
α

[
−

∑
i,j,β

Kβiαjh
β
ij −

∑
i,j,k,β

hβ
ijh

β
ikh

α
kj (41)

+
∑
i,j,β

Hβhβ
ijh

α
ij +

∑
i,β

HβKβiαi + ρ2Hα
]
Vα

}
dv.

By the same reason as in [6], we see that

∂w(φt)

∂t
= n

∫
M

∑
α

{
ρn−2

[
−

∑
i,j,k,β

hβ
ijh

β
ikh

α
kj −

∑
i,j,β

Kβiαjh
β
ij

+
∑
i,j,β

Hβhβ
ijh

α
ij +

∑
i,β

HβKβiαi + ρ2Hα
]

(42)

+
∑
i,j

(ρn−2hα
ij)ij −∆⊥ρn−2Hα

}
Vαdv.

From (9), we see that

−
∑
i,j,β

Kβiαjh
β
ij +

∑
i,β

HβKβiαi = 0.

Thus, by (30) and (42) with restriction to t = 0, we obtain the Euler-Lagrange
equation (2). This completes the proof of Theorem 1.
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4. Integral equalities of Willmore spacelike submanifolds

Define tensors

h̃α
ij = hα

ij −Hαδij , (43)

σ̃αβ =
∑
i,j

h̃α
ij h̃

β
ij , σαβ =

∑
i,j

hα
ijh

β
ij . (44)

Then the (p× p)-matrix (σ̃αβ) is symmetric and can be assumed to be diagonalized
for a suitable choice of en+1, · · · , en+p. We set

σ̃αβ = σ̃αδαβ . (45)

By a direct calculation, we have∑
k

h̃α
kk = 0, σ̃αβ = σαβ − nHαHβ , ρ2 =

∑
α

σ̃α = S − nH2, (46)∑
i,j,k,α

hβ
kjh

α
ijh

α
ik =

∑
i,j,k,α

h̃β
kj h̃

α
ij h̃

α
ik + 2

∑
i,j,α

Hαh̃α
ij h̃

β
ij +Hβρ2 + nH2Hβ . (47)

From (43), (46) and (47), the new Euler-Lagrange equation (2) can be rewritten as

Proposition 3. Let M be an n-dimensional spacelike submanifold in Nn+p
p (c).

Then M is a Willmore spacelike submanifold if and only if for n+ 1 ≤ α ≤ n+ p

2α(ρn−2) = (n− 1)ρn−2∆⊥Hα + 2(n− 1)
∑
i

(ρn−2)iH
α
,i

+(n− 1)Hα∆(ρn−2)− ρn−2
(∑

β

Hβ σ̃αβ +
∑

i,j,k,β

h̃α
ij h̃

β
ikh̃

β
kj

)
.

(48)

Setting f = nHα in (24), we have

2α(nHα) =
∑
i,j

(nHαδij − hα
ij)(nH

α),ij

=
∑
i

(nHα)(nHα),ii −
∑
i,j

hα
ij(nH

α),ij .
(49)

We also have

1

2
∆(nH)2 =

1

2
∆
∑
α

(nHα)2 =
1

2

∑
α

∆(nHα)2

=
1

2

∑
α,i

[(nHα)2],ii =
∑
α,i

[(nHα),i]
2 +

∑
α,i

(nHα)(nHα),ii (50)

= n2|∇⊥H⃗|2 +
∑
α,i

(nHα)(nHα),ii.
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Therefore, from (49) and (50), we get

∑
α

2α(nHα) =
1

2
∆(nH)2 − n2|∇⊥H⃗|2 −

∑
i,j,α

hα
ij(nH

α),ij

=
1

2
∆[n(n− 1)H2 − ρ2 + S]− n2|∇⊥H⃗|2 −

∑
i,j,α

hα
ij(nH

α),ij (51)

=
1

2
∆S +

1

2
n(n− 1)∆H2 − 1

2
∆ρ2 − n2|∇⊥H⃗|2 −

∑
i,j,α

hα
ij(nH

α),ij .

On the other hand, we have

1

2
∆S =

∑
i,j,k,α

(hα
ijk)

2 +
∑
i,j,α

hα
ij∆hα

ij

= |∇h|2 +
∑
i,j,α

hα
ij(nH

α),ij +
∑
α

∑
i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) (52)

+
∑
α,β

∑
i,j,k

hα
ijh

β
kiRαβjk.

Putting (52) into (51), we have

∑
α

2α(nHα) = |∇h|2 − n2|∇⊥H⃗|2 + 1

2
n(n− 1)∆H2 − 1

2
∆ρ2

+
∑
α

∑
i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) +
∑
α,β

∑
i,j,k

hα
ijh

β
kiRαβjk.

(53)

Multiplying (53) by ρn−2 and taking the integral, using (25), we have

∑
α

∫
M

(nHα)2α(ρn−2)dv =

∫
M

ρn−2(|∇h|2 − n2|∇⊥H⃗|2)dv

+
1

2
n(n− 1)

∫
M

ρn−2∆H2dv − 1

2

∫
M

ρn−2∆ρ2dv

+

∫
M

ρn−2
∑
α

∑
i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)dv

+

∫
M

ρn−2
∑
α,β

∑
i,j,k

hα
ijh

β
kiRαβjkdv.

(54)
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Taking the Willmore equation (48) into (54) and making use of the following:

∫
M

ρn−2
∑
α

Hα△⊥Hαdv =
1

2

∫
M

ρn−2
∑
α

∆⊥(Hα)2dv −
∫
M

ρn−2
∑
i,α

(Hα
,i )

2dv

=
1

2

∫
M

ρn−2∆H2dv −
∫
M

ρn−2|∇H⃗|2dv,∫
M

H2∆(ρn−2)dv =

∫
M

∑
α

(Hα)2
∑
i

(ρn−2),iidv

=
∑
α,i

∫
M

(Hα)2(ρn−2),iidv = −
∑
α,i

∫
M

(ρn−2)i((H
α)2),idv

= −2

∫
M

∑
α

Hα
∑
i

(ρn−2)iH
α
,idv,

−1

2

∫
M

ρn−2∆ρ2dv = −1

2

∑
i

∫
M

ρn−2(ρ2),iidv

=
1

2

∑
i

∫
M

(ρ2)i(ρ
n−2)idv = (n− 2)

∫
M

ρn−2|∇ρ|2dv,

by a direct calculation, we have the following:

Proposition 4. Let M be an n-dimensional compact Willmore spacelike submani-
fold in Nn+p

p (c). Then

∫
M

ρn−2(|∇h|2 − n|∇⊥H⃗|2)dv + (n− 2)

∫
M

ρn−2|∇ρ|2dv

+

∫
M

ρn−2
∑
α,β

nHα(Hβσ̃αβ +
∑
i,j,k

h̃α
ij h̃

β
ikh̃

β
kj)dv

+

∫
M

ρn−2
∑
α

∑
i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)dv

+

∫
M

ρn−2
∑
α,β

∑
i,j,k

hα
ijh

β
kiRαβjkdv = 0.

(55)

In general, for a matrix A = (aij) we denote by N(A) the square of the norm of
A, that is,

N(A) = trace(A ·At) =
∑
i,j

(aij)
2.
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Clearly, N(A) = N(T tAT ) for any orthogonal matrix T . From (18), we have∑
α,β

∑
i,j,k

hα
ijh

β
kiRαβjk =

∑
α,β

∑
i,j,k,l

hα
ijh

β
ki(h

β
klh

α
lj − hβ

jlh
α
lk)

=
1

2

∑
α,β,j,k

(∑
l

hα
jlh

β
lk −

∑
l

hβ
jlh

α
lk

)2

=
1

2

∑
α,β,j,k

(∑
l

h̃α
jlh̃

β
lk −

∑
l

h̃β
jlh̃

α
lk

)2

=
1

2

∑
α,β

N(ÃαÃβ − ÃβÃα),

(56)

where Ãα := (h̃α
ij) = (hα

ij −Hαδij).
By using (12), (18), (44), (46), (47) and (56), we conclude that∑

α

∑
i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)

= ncρ2 +
∑
α,β

∑
i,j,k,l

hα
ijh

β
ijh

α
lkh

β
lk − n

∑
α,β

∑
i,j,k

Hβhβ
kjh

α
ijh

α
ik −

∑
α,β,i,j,k

hα
jih

β
ikRβαjk

= ncρ2 +
∑
α,β

σ2
αβ − n

∑
α,β

∑
i,j,k

Hβ h̃β
kj h̃

α
ij h̃

α
ik − 2n

∑
α,β

∑
i,j

HαHβ h̃α
ij h̃

β
ij

−n
∑
β

(Hβ)2ρ2 − n2H2
∑
β

(Hβ)2 +
1

2

∑
α,β

N(ÃαÃβ − ÃβÃα)

= ncρ2 +
∑
α,β

σ̃2
αβ − nH2ρ2 − n

∑
α,β

∑
i,j,k

Hβh̃β
kj h̃

α
ij h̃

α
ik

+
1

2

∑
α,β

N(ÃαÃβ − ÃβÃα).

(57)

Putting (56) and (57) into (55), we have the following:

Proposition 5. Let M be an n-dimensional compact Willmore spacelike submani-
fold in Nn+p

p (c). Then∫
M

ρn−2(|∇h|2 − n|∇⊥H⃗|2)dv + (n− 2)

∫
M

ρn−2|∇ρ|2dv

+n

∫
M

ρn−2
(∑

α,β

HαHβσ̃αβ −H2ρ2
)
dv + nc

∫
M

ρndv

+

∫
M

ρn−2
∑
α,β

(N(ÃαÃβ − ÃβÃα) + σ̃2
αβ)dv = 0.

(58)

Corollary 2. Let M be an n-dimensional compact Willmore spacelike hypersurface
in Nn+p

p (c). Then∫
M

ρn−2(|∇h|2−n|∇H|2)dv+(n−2)

∫
M

ρn−2|∇ρ|2dv+
∫
M

ρn(nc+ρ2)dv = 0. (59)
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5. Proofs of Theorems

From Remark 1, in the proofs of Theorem 2 - Theorem 4, we should assume that
n ̸= 3, 5.

Proof of Theorem 2. (1) For p = 1, from Lemma 2 and (59), we have

0 =

∫
M

ρn−2(|∇h|2 − 3n2

n+ 2
|∇⊥H⃗|2)dv +

∫
M

ρn−2(
3n2

n+ 2
− n)|∇⊥H⃗|2dv

+(n− 2)

∫
M

ρn−2|∇ρ|2dv +
∫
M

ρn(nc+ ρ2)dv ≥
∫
M

ρn(nc+ ρ2)dv.

(60)

(i) If c = 1, since nc+ ρ2 > 0, from (60), it follows that ρ2 = 0 and M is totally
umbilical. If c = 0, since nc+ ρ2 = ρ2, from (60), we easily see that ρ2 = 0, thus M
is totally umbilical.

(ii) If c = −1 and ρ2 ≥ n, since nc + ρ2 = −n + ρ2 ≥ 0, from (60), we have
ρ2 = 0 and M is totally umbilical or ρ2 = n. In the latter case, since ρ2 = n > 0,
from (60) we have that∫
M

ρn−2(
3n2

n+ 2
− n)|∇⊥H⃗|2dv = 0 and

∫
M

ρn−2(|∇h|2 − 3n2

n+ 2
|∇⊥H⃗|2)dv = 0.

Thus∇⊥H⃗ = 0 and∇h = 0, that is, H = constant and the second fundamental form
of M is parallel. It easily follows that M is an isoparametric spacelike hypersurface
with two distinct constant principal curvatures. By the congruence Theorem of
Abe, Koike and Yamaguchi (see Theorem 5.1 of [1]), we know that M is isometric
to Example 1. This is impossible since M is compact.

(2) For p ≥ 2, from (45), we get∑
α,β

σ̃2
αβ =

∑
α

σ̃2
α ≥ 1

p

(∑
α

σ̃α

)2

=
1

p
ρ4. (61)

From (58) and (61) and ∑
α,β

N(ÃαÃβ − ÃβÃα) ≥ 0, (62)

∑
α,β

HαHβσ̃αβ =
∑
α

(Hα)2σ̃α ≥ 0, (63)

we have

0 =

∫
M

ρn−2(|∇h|2 − n|∇⊥H⃗|2)dv + (n− 2)

∫
M

ρn−2|∇ρ|2dv

+n

∫
M

ρn−2
(∑

α,β

HαHβσ̃αβ −H2ρ2
)
dv + nc

∫
M

ρndv

+

∫
M

ρn−2
∑
α,β

(N(ÃαÃβ − ÃβÃα) + σ̃2
αβ)dv

≥
∫
M

ρn
{
1

p
ρ2 + nc− nH2

}
dv.

(64)
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In particular, if

ρ2 ≥ np(H2 − c),

from (64), we see that ρ2 = 0 and M is totally umbilical or ρ2 = np(H2 − c). In the
latter case, from (64) we have that∫

M

ρn−2
∑
α,β

HαHβ σ̃αβdv = 0,

that is ∫
M

ρn−2
∑
α

(Hα)2σ̃αdv = 0. (65)

If ρ2 = 0, that is, M is totally umbilical; if ρ2 ̸= 0, from (65) it follows that∑
α

(Hα)2σ̃α = 0.

Thus, we see that Hα = 0 and H = 0. If c = 1, we have ρ2 = −np < 0, a
contradiction; if c = 0, we have ρ2 = 0, also a contradiction since we assume that
ρ2 ̸= 0; if c = −1, we have ρ2 = np. Since H = 0 and M is maximal, it follows that
S = np. From a result of T Ishihara [7] (see Theorem 1.3 of [7]), M is isometric to

Hn1(

√
n1

n
)× · · · ×Hnp+1(

√
np+1

n
),

where n1 + · · ·+ np+1 = n. This is impossible since M is compact. This completes
the proof of Theorem 2.

Proof of Theorem 3. For a fixed α, n + 1 ≤ α ≤ n + p, we can take a local
orthonormal frame field {e1, . . . , en} such that hα

ij = λα
i δij , then h̃α

ij = µα
i δij with

µα
i = λα

i −Hα,
∑
i

µα
i = 0. Thus

∑
α,i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) =
1

2

∑
α,i,j

(λα
i − λα

j )
2Rijij (66)

=
1

2

∑
α,i,j

(µα
i − µα

j )
2Rijij ≥ nKρ2,

and the equality in (66) holds if and only if Rijij = K for any i ̸= j.

Let
∑
i

(h̃β
ii)

2 = τβ . Then τβ ≤
∑
i,j

(h̃β
ij)

2 = σ̃β . Since
∑
i

h̃β
ii = 0,

∑
i

µα
i = 0 and



Willmore spacelike submanifolds in a Lorentzian space form Nn+p
p (c) 317∑

i

(µα
i )

2 = σ̃α, from Lemma 1 we have that

∑
α,β

∑
i,j,k

Hαh̃α
ij h̃

β
kj h̃

β
ik =

∑
β,α

∑
i,j,k

Hβh̃β
ij h̃

α
kj h̃

α
ik =

∑
α,β

Hβ
∑
i

h̃β
ii(µ

α
i )

2 (67)

≥ − n− 2√
n(n− 1)

∑
α,β

|Hβ |σ̃α
√
τβ

≥ − n− 2√
n(n− 1)

∑
α

σ̃α

∑
β

|Hβ |
√

σ̃β

≥ − n− 2√
n(n− 1)

ρ2
√∑

β

(Hβ)2
∑
β

σ̃β = − n− 2√
n(n− 1)

Hρ3.

From (55), (56), (62), (63), (66) and (67), we have

0 ≥
∫
M

ρn−2
∑
α

n(Hα)2σ̃α −
∫
M

ρn−2 n(n− 2)√
n(n− 1)

Hρ3dv

+

∫
M

ρn−2nKρ2dv ≥
∫
M

nρn

{
K − n− 2√

n(n− 1)
Hρ

}
dv.

(68)

In particular, if

K ≥ n− 2√
n(n− 1)

Hρ,

from (68) we see that ρ2 = 0 and M is totally umbilical or

K =
n− 2√
n(n− 1)

Hρ.

In the latter case, from (68), we know that (65) holds. If ρ2 = 0, that is, M is totally
umbilical; if ρ2 ̸= 0, it follows from (65) that

∑
α(H

α)2σ̃α = 0. Thus, we see that
Hα = 0 and H = 0. It also follows from (66) that Rijij = K for any i ̸= j. Since

K =
n− 2√
n(n− 1)

Hρ = 0,

we have Rijij = 0 for any i ̸= j. From the Gauss equation (11), we have n(n− 1)c+
S = 0. If c = 1, we have n(n− 1) + S = 0, a contradiction; if c = 0, we have S = 0,
thus ρ2 = 0, also a contradiction since we assume that ρ2 ̸= 0; if c = −1, we have
S = n(n− 1). Since M is maximal and S = np, where p = n− 1, from a result of T
Ishihara [7], M is isometric to

Hn1(

√
n1

n
)× · · · ×Hnn(

√
nn

n
),

where n1+ · · ·+nn = n. This is impossible since M is compact. This completes the
proof of Theorem 3.
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Proof of Theorem 4. From (12) and (43), we have

Q ≤ Rii = (n− 1)c− (n− 2)
∑
α

Hαh̃α
ii − (n− 1)H2 +

∑
α,j

(h̃α
ij)

2.

Thus

ρ2 =
∑
α,i,j

(h̃α
ij)

2 ≥ nQ− n(n− 1)(c−H2), (69)

and ∑
α,β

σ̃2
αβ ≥ 1

p
ρ4 ≥ 1

p
ρ2[nQ− n(n− 1)(c−H2)]. (70)

From (58), (62), (63) and (70), we have

0 ≥
∫
M

ρn−2
∑
α

n(Hα)2σ̃α − n

∫
M

ρn−2H2ρ2dv

+nc

∫
M

ρndv +

∫
M

ρn−2 1

p
ρ2[nQ− n(n− 1)(c−H2)] (71)

≥ n

p

∫
M

ρn
{
Q− (n− p− 1)(c−H2)

}
dv.

In particular, if
Q ≥ (n− p− 1)(c−H2),

from (71), we see that ρ2 = 0 and M is totally umbilical or Q = (n− p− 1)(c−H2).
In the latter case, from (71), we know that (65) holds. If ρ2 = 0, that is, M is totally
umbilical; if ρ2 ̸= 0, it follows from (65) that∑

α

(Hα)2σ̃α = 0.

Thus, we see that Hα = 0 and H = 0. It also follows from (71) that the equality
in (69) holds, that is, ρ2 = nQ − n(n − 1)(c − H2) = nQ − n(n − 1)c. Since we
also know that Q = (n − p − 1)c, we see that ρ2 = −npc, by reasoning as in the
proof of Theorem 2, we know that this is impossible. This completes the proof of
Theorem 4.
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