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Abstract. In this paper, we search for some Diophantine triples of balancing numbers.
We prove that, if (6±2)BnBk +1 and (6±2)Bn+2Bk +1 are both squares, then k = n+1,
for any positive integer n. In addition, we define pronic m-tuples and triangular m-tuples,
and prove some results related to pronic and triangular triples of balancing numbers.
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1. Introduction

Balancing numbers n and balancers r are solutions of the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

The sequence of balancing numbers {Bn}n≥1 satisfy the linear homogeneous binary
recurrence Bn+1 = 6Bn−Bn−1, n ≥ 1, with initial terms B0 = 0, B1 = 1. Moreover,
if a positive integer x is a balancing number, then x2 is a triangular number, and
consequently, 8x2 + 1 is a square and the positive square root of 8x2 + 1 is called
a Lucas-balancing number. The sequence of Lucas-balancing numbers {Cn}n≥1

also satisfy the recurrence relation Cn+1 = 6Cn − Cn−1, n ≥ 1, with initial terms
C0 = 1, C1 = 3 (see [1]). Further, cobalancing numbers n and cobalancers r are
solutions of the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

The sequence of cobalancing numbers {bn}n≥1 satisfy the non-homogeneous binary
recurrence bn+1 = 6bn− bn−1+2, n ≥ 1, with initial terms b0 = 0, b1 = 0. Moreover,
a positive integer x is a cobalancing number if and only if x(x + 1) is a triangular
number (see [13]).
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A set of m positive integers {a1, a2, · · · , am} is called a Diophantine m-tuple if
for all i, j ∈ {1, 2, · · · ,m} and i ̸= j, aiaj+1 is a perfect square. Diophantus was the
first to discover the rational quadruples { 1

16 ,
33
16 ,

17
4 , 105

16 } with the above property.
Subsequently, Fermat obtained the first Diophantine quadruple {1, 3, 8, 120}. Euler
tried to extend this set to a Diophantine quintuple but did not succeed. However,
he found a fifth term 777480

8288641 , which is a rational number. Moreover, he managed to
find an infinite family of the Diophantine quadruple {a, b, a+b+2r, 4r(r+a)(r+b)},
starting with two numbers a and b such that ab+1 = r2. Later on, Dujella [5] proved
that no Diophantine sextuples exist. In this sequel He, Togbé and Ziegler [7] proved
the nonexistence of Diophantine quintuples.

Many Diophantine triples and quadruples involving terms of binary recurrence
sequences have been studied since 1977, some of which are available in [2, 3, 4, 8].
In [6], He, Luca and Togbé proved that if {F2n, F2n+2, Fk} is a Diophantine triple,
then k ∈ {2n+ 4, 2n− 2}, except when n = 2, one additional solution k = 1 exists.
Subsequently, Rihane, Hernane and Togbé [17] proved that if {P2n, P2n+2, 2Pk} is a
Diophantine triple, then k ∈ {2n, 2n+ 2}.

Let n be a positive integer. The balancing numbers Bn satisfy the identity
BnBn+2 + 1 = B2

n+1 (see [14]). Thus, it is natural to search for a positive integer
X which would make {Bn, Bn+2, X} a Diophantine triple. To find such an X, one
needs to solve a system of Diophantine equations

BnX + 1 = Y 2, Bn+2X + 1 = Z2. (1)

It is well known that a positive integer x is a pronic or triangular number as 4x+1
or 8x+ 1 is a square. Using these properties, we define a pronic and triangular m-
tuple as follows:

Definition 1. A set of m positive integers {a1, a2, · · · , am} is called a pronic (trian-
gular) m-tuple if for all i, j ∈ {1, 2, · · · ,m} and i ̸= j, aiaj is a pronic (triangular).

Observe that a set of m positive integers {a1, a2, · · · , am} is a pronic m-tuple if
for all i, j ∈ {1, 2, · · · ,m} and i ̸= j, 4aiaj+1 is a square. Similarly, {a1, a2, · · · , am}
is a triangular m-tuple if for all i, j ∈ {1, 2, · · · ,m} and i ̸= j, 8aiaj + 1 is a square.

In [15], Panda proved that the product of two consecutive balancing numbers is
a pronic number as well as a triangular number. In particular, for every positive
integer n, it is easy to see that

BnBn+1 = bn+1(bn+1 + 1) and BnBn+1 =
(Bn + bn+1)(Bn + bn+1 + 1)

2
.

Thus, it is also natural to see if {Bn, Bn+1, X} is a pronic or triangular triple for
some positive integer X.

The aim of this paper is to continue in the spirit developed by He-Luca-Togbé
[6] and prove the following theorems:

Theorem 1. For a fixed positive integer n, if {Bn, Bn+2, 4Bk} or {Bn, Bn+2, 8Bk}
is a Diophantine triple, then k = n+ 1.

Theorem 2. For a fixed positive integer n, if {Bn, Bn+1, 2Bk} is a pronic triple,
then k ∈ {n, n+ 1}.
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Theorem 3. There do not exist positive integers n, k such that {Bn, Bn+1, Bk} is
a triangular triple.

We organize this paper as follows. In Section 2, we recall and prove some ele-
mentary results that will be useful for the proofs of our main results stated above.
Section 3 helps us to see that we must consider only the two Diophantine triples
{Bn, Bn+2, (6± 2)Bk} that will be studied in Section 4. The last section is devoted
to exploring pronic and triangular triples of balancing numbers.

2. Preliminaries

In this section, we state some definitions and results on some properties of balancing
numbers, algebraic numbers, logarithmic heights, continued fractions and conver-
gents which are needed in the forthcoming sections. We recall or prove the following
results.

At first, we need the definition of the height of an algebraic number.

Definition 2. Let γ be any non-zero algebraic number of degree d over Q whose
minimal polynomial over Z is a

∏d
j=1(X−γ(j)). We denote the absolute logarithmic

height of γ by

h(γ) =
1

d

(
log a+

d∑
j=1

logmax (1, |γ(j)|)
)
.

Lemma 1 (see [12]). Let Λ be a linear form in logarithms of multiplicatively inde-
pendent totally real algebraic numbers α1, · · · , αN with rational integer coefficients
b1, · · · , bN , (bN ̸= 0).

Define D := [Q(α1, · · · , αN ) : Q], Aj = max{Dh(αj), |logαj |} (1 ≤ j ≤ N) and
E = max{1,max{|bj |Aj/AN ; 1 ≤ j ≤ N}}. Then

log|Λ| > −C(N)C0W0D
2Ω,

where

C(N) :=
8

(N − 1)!
(N + 2)(2N + 3)(4e(N + 1))N+1

C0 := log(e4.4N+7N5.5D2log(eD)),

W0 := log(1.5eEDlog(eD)), Ω := A1 · · ·AN .

Lemma 2 (see [11]). Let γ1, γ2 > 1 be two real multiplicatively independent algebraic
numbers, b1, b2 ∈ Z not both 0 and

Λ = b2logγ2 − b1logγ1.

Define D := [Q(γ1, γ2) : Q]. Let

hi ≥ max
{
h(γi),

|logγi|
D

,
1

D

}
, for i = 1, 2, b′ ≥ |b1|

Dh2
+

|b2|
Dh1

.

Then

log|Λ| ≥ −17.9 ·D4
(
max{logb′ + 0.38,

30

D
, 1}

)2

h1h2.
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Lemma 3 (see [4, Lemma 5(a)]). Assume that κ and µ are real numbers and M is
a positive integer. Let P/Q be a convergent of the continued fraction expansion of κ
such that Q > 6M and let

η = ||µQ|| −M · ||κQ||;

|| · || denotes the distance to the nearest integer. If η > 0, then there is no solution
to the inequality

0 < jκ− k + µ < AB−j

in integers j and k with
log(AQ/η)

logB
≤ j ≤ M.

The following lemma deals with some properties of balancing numbers and can
be found in [14, 15].

Lemma 4. If n is any positive integer, α = 3 +
√
8 and α = 3−

√
8, then:

(i) B2n = 2BnCn,

(ii) gcd(Bn, Cn) = 1,

(iii) 2 | Bn if and only if 2 | n,

(iv) Bn+1Bn−1 = B2
n − 1,

(v) Bn = (αn − αn)/(4
√
2),

(vi) αn−1 < Bn < αn.

Lemma 5. The Diophantine equation Bn = x2 has the only solution n = 1. Further,
Bn = 2x2 has no solution in positive integer n.

Proof. In [16], Panda proved that 1 is the only perfect square in the balancing
sequence, and hence, Bn = x2 has the only solution n = 1. Further, if Bn = 2x2,
then Bn is even which implies that n is even. Letting n = 2n1, we have B2n1

=
2Bn1

Cn1
= 2x2 and so Bn1

Cn1
= x2. Thus, Bn1

= x2
1, Cn1

= x2
2 for some integers

x1 and x2. Using the solution of Bn = x2 and the values B1 = 1, C1 = 3, we get
3 = x2

2, which is a contradiction. Hence, the result follows.

3. Diophantine triples of balancing numbers

Consider Pell’s equation V 2 − BnBn+2U
2 = 1, where n is a fixed positive integer.

Using the fundamental solution (U, V ) = (1, Bn+1), the totality of the solution is
given by

U
(n)
l =

(Bn+1 +
√
BnBn+2)

l − (Bn+1 −
√

BnBn+2)
l

2
√
BnBn+2

and

V
(n)
l =

(Bn+1 +
√
BnBn+2)

l + (Bn+1 −
√
BnBn+2)

l

2
.
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Moreover, for all l ≥ 0, U
(n)
l and V

(n)
l satisfy the recurrence

U
(n)
l+2 = 2Bn+1U

(n)
l+1 − U

(n)
l , U

(n)
0 = 0, U

(n)
1 = 1

and
V

(n)
l+2 = 2Bn+1V

(n)
l+1 − V

(n)
l , V

(n)
0 = 1, V

(n)
1 = Bn+1,

respectively.
Eliminating X from (1), we get Bn+2Y

2 −BnZ
2 = Bn+2 −Bn or, equivalently,

(Bn+2Y )2 −BnBn+2Z
2 = Bn+2(Bn+2 −Bn),

which is a generalized Pell’s equation and we will find out two classes of solutions
corresponding to Y ≡ Z (mod Bn+2(Bn+2 −Bn)).

The congruence

(Bn+2Z)2 ≡ BnBn+2Z
2 +Bn+2(Bn+2 −Bn) (mod Bn+2(Bn+2 −Bn)) (2)

holds and is implied by

Bn+2Z ≡ ±
√
BnBn+2Z2 +Bn+2(Bn+2 −Bn) (mod Bn+2(Bn+2 −Bn)) (3)

and any solution to (3) is a solution to (2). In view of (3),

Bn+2Z +
√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)

or
Bn+2Z −

√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)

is an integer. Since

BnBn+2

[
Bn+2Z ±

√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)

]2

+ 1

=

[
BnZ ±

√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2 −Bn

]2

,

it follows that either

Bn+2Z +
√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)
= U

or
Bn+2Z −

√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)
= U,

where BnBn+2U
2 + 1 = V 2. Letting

U =
Bn+2Z ±

√
BnBn+2Z2 +Bn+2(Bn+2 −Bn)

Bn+2(Bn+2 −Bn)
,
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we get

[Bn+2(Bn+2 −Bn)U −Bn+2Z]
2
= BnBn+2Z

2 +Bn+2(Bn+2 −Bn),

which, on rearranging results in the quadratic equation

Bn+2(Bn+2−Bn)Z
2−2B2

n+2(Bn+2−Bn)UZ+Bn+2(Bn+2−Bn)(B
2
n+2U

2−V 2) = 0

upon solving for Z, we get Z = Bn+2U ± V . We further observe that

BnBn+2[Bn+2U ± V ]2 +Bn+2(Bn+2 −Bn) = B2
n+2[V ±BnU ]2.

Therefore,
Z = Bn+2U ± V, Y = V ±BnU. (4)

Using (4) in (1), we get X = 6Bn+1U
2 ± 2UV . Thus, for a fixed positive integer

n, if {Bn, Bn+2, X} is a Diophantine triple, then there are two classes of choices for

X given by X = 6Bn+1U
(n)
j

2
+ 2U

(n)
j V

(n)
j and X = 6Bn+1U

(n)
j

2
− 2U

(n)
j V

(n)
j , for

j ≥ 1. The above discussion proves the following theorem:

Theorem 4. For any fixed positive integer n, if {Bn, Bn+2, X} is a Diophantine
triple, then the possible values of X may be realized in multiple classes. Two such
classes are given by

X = 6Bn+1U
(n)
j

2
+ 2U

(n)
j V

(n)
j and X = 6Bn+1U

(n)
j

2
− 2U

(n)
j V

(n)
j ,

where U
(n)
j and V

(n)
j are solutions to Pell’s equation V 2−BnBn+2U

2 = 1 with j ≥ 1.

Observe that the case j = 1 gives two Diophantine triples, i.e, {Bn, Bn+2, 4Bn+1}
and {Bn, Bn+2, 8Bn+1}. In the next section, we will see that if j > 1, then X will
not be of this form.

4. The Diophantine triples {Bn, Bn+2, (6± 2)Bk}

In this section, we will find the possible value(s) of k such that {Bn, Bn+2, 4Bk} and
{Bn, Bn+2, 8Bk} are Diophantine triples.

In view of Theorem 4, it is clear that if {Bn, Bn+2, 4Bk} is a Diophantine triple,
then

Bk =
1

4

[
6Bn+1U

(n)
j

2
± 2U

(n)
j V

(n)
j

]
. (5)

Consider

C
(±)
j =

1

4

[
6Bn+1U

(n)
j

2
± 2U

(n)
j V

(n)
j

]
, for j = 1, 2, . . . . (6)

Therefore, we need to solve C
(±)
j = Bk. For j = 1, one can obtain C

(−)
1 = Bn+1

as the only solution, and hence, to prove Theorem 1, it is sufficient to prove that

C
(±)
j = Bk has no solution for j ≥ 2. Throughout the remaining part of the proof,

we assume that j ≥ 2.
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The Binet formula of a balancing number is given by

Bk =
αk − αk

4
√
2

, k ≥ 1, (7)

where α = 3 +
√
8 and α = 3−

√
8. Let

βn := Bn+1 +
√
B2

n+1 − 1,

and thus,

V
(n)
j =

βj
n + β−j

n

2
, U

(n)
j =

βj
n − β−j

n

2
√
B2

n+1 − 1
.

Let

γ(±)
n :=

1

4

[
6Bn+1

4(B2
n+1 − 1)

± 2

4
√

B2
n+1 − 1

]
.

Using (6), we get

C
(±)
j = β2j

n γ(±)
n − 6Bn+1

8(B2
n+1 − 1)

+ β−2j
n γ(∓)

n . (8)

Thus, (7), (8) and C
(±)
j = Bk together imply

β2j
n γ(±)

n − 6Bn+1

8(B2
n+1 − 1)

+ β−2j
n γ(∓)

n =
αk − αk

4
√
2

. (9)

Next, we will define a linear form in three logarithms and find some upper and

lower bounds for it. We begin with a lemma which deals with the bounds for γ
(+)
n

and γ
(−)
n .

Lemma 6. For a fixed positive integer n, the following holds:

(i) 0.48α−n < γ
(+)
n < 0.58α−n,

(ii) 0.24α−n < γ
(−)
n < 0.31α−n.

Proof. In view of the definition of γ
(±)
n , we have

4

√
γ
(±)
n =

1√
Bn

± 1√
Bn+2

= 25/4α−n/2

[
1√

1− 1/α2n
± 1

α
√
1− 1/α2n+4

]
. (10)

For 0 < x < 1, the Taylor series expansion of 1√
1−x

is

1√
1− x

= 1 +
x

2
+

3x2

8
+

5x3

16
+ · · · ,

which gives

1 +
x

2
<

1√
1− x

< 1 +
x

2(1− x)
,
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and so

1± 1

α
<

1√
1− 1/α2n

± 1

α
√
1− 1/α2n+4

< 1.1± 1

α
. (11)

From (10) and (11), we have

1± 1

α
<

23/4
√
γ
(±)
n

αn/2
< 1.1± 1

α
,

which gives the desired bounds for γ
(+)
n and γ

(−)
n by putting the value of α.

In view of (9), we define the following linear form in three logarithms:

Λ := 2jlogβn − klogα+ log(4
√
2 · γ(±)

n ).

In the following lemma, we determine an upper bound for Λ.

Lemma 7. If j ≥ 2, then 0 < Λ < 13β−2j
n .

Proof. In view of (9), we have

β2j
n γ(±)

n − αk

4
√
2
=

6Bn+1

8(B2
n+1 − 1)

− β−2j
n γ(∓)

n − αk

4
√
2
.

If β2j
n γ

(±)
n ≤ αk

4
√
2
, then

4
√
2

αk
≤ β−2j

n

γ
(±)
n

≤ β−2j
n

γ
(−)
n

. (12)

Using (12) in the inequality

1

4Bn+2
<

1

8Bn
+

1

8Bn+2
=

Bn +Bn+2

8(B2
n+1 − 1)

< β−2j
n γ(∓)

n +
αk

4
√
2

≤ β−2j
n γ(+)

n +
1

4
√
2αk

,

we obtain
1

4Bn+2
< β−2j

n

(
γ(+)
n +

1

32γ
(−)
n

)
. (13)

Using Lemma 6 in (13), we get

4jBj
nB

j
n+2 < β2j

n < 4Bn+2

(
γ(+)
n +

1

32γ
(−)
n

)
< 4Bn+2(0.58α

−n + 0.14αn),

which reduces to
4jBj

nB
j−1
n+2 < 2.32α−n + 0.56αn. (14)

But, (14) implies that j < 2, which is a contradiction to the assumption that j ≥ 2.
Therefore,

β2j
n γ(±)

n >
αk

4
√
2
, Λ > 0,
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n (γ(±)

n )−1 − 1
∣∣∣ < Bn +Bn+2

8(B2
n+1 − 1)

· 1

β2j
n γ

(±)
n

<
1

4Bn
· 1

β2j
n γ

(−)
n

< 6.1β−2j
n ,

and since

|Λ| < 2|eΛ − 1| whenever |eΛ − 1| < 1

2
, (15)

we have Λ < 13β−2j
n .

Let us now determine a bound for j by proving the following result.

Lemma 8. If (5) has a solution pair (j, k) of positive integers with j > 1, then

j < 1.93 · 1012(8n+ 12)log(78j(n+ 2)).

Proof. To apply Lemma 1, we take

N = 3, D = 4, b1 = 2j, b2 = −k, b3 = 1, α1 = βn, α2 = α, α3 = 4
√
2 · γ(±)

n .

Observe that α2 ∈ Q(
√
2) and α1, α

2
3 ∈ Q(

√
BnBn+2). But, α1, α2, α3 are mul-

tiplicatively independent if BnBn+2 is not a square or twice a square. In view of
Lemma 5, Bn = x2 and Bn = 2x2 has no integer solution x for n > 1 and if n = 1,
then B1B3 = 35 is neither a square nor twice a square. Thus, if BnBn+2 = du2 for an
integer u and a square-free integer d, then d > 2. Moreover, since no integer power of
α2 belongs to Q(

√
d), α1 and α2

3 are multiplicatively dependent if α1, α2, α3 are mul-

tiplicatively dependent. Further, α1 is a unit in Q(
√
d), and hence, α2

3 = 32(γ
(±)
n )2

is also a unit. But, the norm of 32(γ
(±)
n )2 is 1024(γ

(+)
n γ

(−)
n )2 =

C4
n+1

4B4
nB

4
n+2

, which is

not an integer for any n ≥ 1, and hence, α2
3 cannot be a unit.

Next, we determine the heights of αi. Clearly, we see that

h(α1) = h(βn) =
1

2
logβn and h(α2) = h(α) =

1

2
logα.

Since γ
(+)
n , γ

(−)
n are conjugate to each other in Q(

√
d) and are roots of the polynomial

256B2
nB

2
n+2X

2 − 32(B2
nBn+2 +BnB

2
n+2)X + (Bn+2 −Bn)

2,

|γ(±)
n | ≤ |γ(+)

n | = 1

16
(

1√
Bn

+
1√
Bn+2

)2 < 1

and since Bl <
αl

4
√
2
for every positive integer l, it follows that

h(γ(±)
n ) ≤ 1

2
log(256B2

nB
2
n+2) = log(16BnBn+2) < (2n+ 2)logα+ log(1/2).

This yields

h(α3) = h(4
√
2 · γ(±)

n ) ≤ h(4
√
2) + h(γ(±)

n )

< log(4
√
2) + (2n+ 2)logα+ log(1/2)

= log(2
√
2) + (2n+ 2)logα < (2n+ 3)logα.
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Let A1 = 2logβn, A2 = 2logα, A3 = (8n + 12)logα. Observe that αl−1 < Bl < αl

for all l ≥ 1 and since α > 4, we get

βn < 2Bn+1 < αn+1.5.

For n ≥ 1, we have

αk−1 < Bk ≤ 1

4

[
6Bn+1U

(n)
j

2
+ 2U

(n)
j V

(n)
j

]
=

1

4

[
(Bn +Bn+2)U

(n)
j

2
+ 2U

(n)
j V

(n)
j

]
<

(
V

(n)
j + U

(n)
j

√
BnBn+2

)2

=
(
Bn+1 +

√
BnBn+2

)2j

< (2Bn+1)
2j < (αn+1.5)2j < α2j(n+2).

Let

E = max

{
2j log βn

logα
, 4n+ 6, k

}
≤ 2j(n+ 2).

Using lemmas 1 and 7, we get

C(3) =
8

2!
(3 + 2)(6 + 3)(42e)4 < 6.45 · 108

C0 = log(e4.4·3+735.542log(4e)) < 30,

W0 = log(1.5eE4log(4e)) < log(78j(n+ 2)),

Ω = (2logβn)(2logα)((8n+ 12)logα),

and thus,

2jlogβn − log13 < −log|Λ| < 12384 · 108 · log(78j(n+ 2))log(βn)(logα)
2(8n+ 12)

yielding

j < 1.93 · 1012(8n+ 12)log(78j(n+ 2)).

Next, we define the following linear form in logarithms

Λ0 := 2logβn − (n+ 1)logα+ log(4
√
2 · γ(±)

n ). (16)

Substituting (j, k) = (1, n+ 1) in (9), we get

β2
nγ

(±)
n − αn+1

4
√
2

=
Bn +Bn+2

8(B2
n+1 − 1)

− β−2
n γ(∓)

n − α−(n+1)

4
√
2

, for n > 1.

The case n = 1 is well known. If β2
nγ

(±)
n ≤ α(n+1)/(4

√
2), then

α−(n+1)/(4
√
2) ≤ 1/(32β2

nγ
(±)
n )
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and hence,

|α(n+1)2−5/2β−2
n /γ(±)

n − 1| < β−2
n γ

(∓)
n + α−(n+1)/(4

√
2)

β2
nγ

(±)
n

<
γ
(∓)
n + 1/(32γ

(±)
n )

β4
nγ

(±)
n

<
2.42 + 0.55α2

β4
n

.

Since βn ≥ αn+1 and βn ≥ 6 +
√
35, the last inequality implies

|α(n+1)2−5/2β−2
n /γ(±)

n − 1| < 0.57β−2
n .

Further, if β2
nγ

(±)
n > α(n+1)/(4

√
2), then

|α(n+1)2−5/2β−2
n /γ(±)

n − 1| < 1/(8Bn) + 1/(8Bn+2)

β2
nγ

(±)
n

<
1

4Bnβ2
nγ

(±)
n

< 6.08β−2
n .

In both cases, we have

|α(n+1)2−5/2β−2
n /γ(±)

n − 1| < 6.08β−2
n . (17)

Since for n ≥ 1, βn ≥ 6 +
√
35, we have 6.08β−2

n < 1/2, and hence, inequalities (15)
and (17) together imply |Λ0| < 2 · 6.08β−2

n < 13β−2
n .

The above discussion proves the following result:

Lemma 9. It holds, |Λ0| < 13β−2
n .

Consider K := (2j − 1)(n+ 1)− k and

Λ1 := Klogα− 3(j − 1)log2. (18)

Observe that

βn = Bn+1 +
√
B2

n+1 − 1 = 2Bn+1 −
1

Bn+1 +
√
B2

n+1 − 1

= 2Bn+1

1− 1

2Bn+1

(
Bn+1 +

√
B2

n+1 − 1
)


and

2Bn+1 =
αn+1 − αn+1

2
√
2

=
αn+1

2
√
2

(
1− 1

α2n+2

)
.

Define

δn =

1− 1

2Bn+1

(
Bn+1 +

√
B2

n+1 − 1
)
(

1− 1

α2n+2

)
,

and hence,

logβn = log
( 1

2
√
2

)
+ (n+ 1)logα+ logδn.
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Therefore,

Λ− Λ0 = (2j − 2)logβn − (k − (n+ 1))logα

= (2j − 2)log
( 1

2
√
2

)
+ (2j − 2)(n+ 1)logα

+ (2j − 2)logδn − (k − (n+ 1))logα

= (2j − 2)logδn +Klogα− 3(j − 1)log2,

which yields
Λ1 = Λ− Λ0 − (2j − 2)logδn.

Using lemmas 7 and 9 and the inequality

|logδn| ≤

∣∣∣∣∣∣log
1− 1

2Bn+1

(
Bn+1 +

√
B2

n+1 − 1
)
∣∣∣∣∣∣+

∣∣∣∣log(1− 1

α2n+2

)∣∣∣∣
<

1

Bn+1

(
Bn+1 +

√
B2

n+1 − 1
) +

2

α2n+2
<

20

α2n+2
<

6

10α2n
,

we get

|Λ1| ≤ |Λ|+ |Λ0|+ |2j − 2| · |logδn| <
26

β2
n

+
12(j − 1)

10α2n
. (19)

Further, we obtain

βn = Bn+1

(
1 +

√
1− 1

B2
n+1

)
≥ Bn+1

(
1 +

√
35

6

)
>

αn

4
√
2

(
1 +

√
35

6

)
and thus,

β2
n > α2n · (1 +

√
35/6)2

32
>

α2n

10
. (20)

Inequalities (19) and (20) together imply |Λ1| < (2j+258)/α2n, and hence, we have
the following result:

Lemma 10. We have, |Λ1| < (2j + 258)α−2n.

For applying Lemma 2 to Λ1, we require to check that Λ1 ̸= 0. We assume to
the contrary that Λ1 = 0. Then, (18) implies αK = 23(j−1) ∈ Q. Conjugating this
in Q(

√
2), we get αK = 23(j−1), which is a contradiction since αK < 1 and j ≥ 2.

So we substitute

D = 2, γ1 = 2, γ2 = α, b1 = 3(j − 1), b2 = K

and obviously h1 = log2 and h2 = logα/2. In view of Lemma 10, we get

K <
3(j − 1)log2 + (2j + 258)α−2n

logα
< 1.18(j − 1) + 0.04j + 4.31 = 1.22j + 3.13.
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Thus,

b′ = 1.74j − 1.62 >
3(j − 1)

2logα
+

K

2log2
=

|b1|
Dh2

+
|b2|
Dh1

.

Lemma 2 implies that

log|Λ1| > −17.9 · 8log2(max{log(1.74j − 1.62) + 0.38, 15})2, (21)

and Lemma 10 gives

log|Λ1| < −2nlogα+ log(2j + 258). (22)

Inequalities (21) and (22) together imply

n < 28.2 · (max{log(1.74j − 1.62) + 0.38, 15})2 + 0.3log(2j + 258).

If
log(1.74j − 1.62) + 0.38 ≤ 15,

then
j < 1284803,

and evidently,

n < 28.2 · 152 + 0.3log(2 · 1284803 + 258) < 28095.

Otherwise,

n < 28.2 · (log(1.74j − 1.62) + 0.38)2 + 0.3log(2j + 258). (23)

Using (23) in Lemma 8 yields

j <1.93 · 1012(8(28.2 · (log(1.74j − 1.62) + 0.38)2 + 0.3log(2j + 258)) + 12)

× log(78j((28.2 · (log(1.74j − 1.62) + 0.38)2 + 0.3log(2j + 258)) + 2)),

and hence, j < 5.72·1019, and (23) implies that n < 60798. So, we have the following
result:

Lemma 11. If (5) has a solution pair (j, k) of positive integers with j > 1, then

j < 5.72 · 1019 and n < 60798.

Now, we will try to obtain better bounds on j and n. Using inequality (22), we
get

|Klogα− 3(j − 1)log2| < (2j + 258)α−2n,

and hence, ∣∣∣∣3log2logα
− K

j − 1

∣∣∣∣ < 2j + 258

(j − 1)α2nlogα
. (24)

If
2j + 258

(j − 1)α2nlogα
<

1

2(j − 1)2
, (25)
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then ∣∣∣∣3log2logα
− K

j − 1

∣∣∣∣ < 1

2(j − 1)2
.

By using Legendre’s criterion, it can be seen that K/(j − 1) is a convergent in the
simple continued fraction expansion of 3log2/logα. Using Mathematica, we obtain

3log2

logα
=[1, 5, 1, 1, 3, 3, 1, 1, 7, 3, 1, 1, 2, 12, 1, 1, 4, 2, 1, 11, 2, 1, 1, 1, 1,

2, 17, 4, 1, 66, 3, 1, 2, 2, 2, 1, 1, 13, 6, 1, 1, 15, 7, 6, 2, 4, 33, 29, 9, 5, . . .].

The 42nd convergent is
132989060139139716955

112735119136364899428

and its denominator is greater than the upper bound 5.72 ·1019. The 41st convergent

18825356247280428882

15958295946307445189

provides the lower bound ∣∣∣∣3log2logα
− K

j − 1

∣∣∣∣ > 5.5 · 10−40. (26)

Combining (24) and (26), we get

5.5 · 10−40 <
2j + 258

(j − 1)α2nlogα
< 262α−2n(logα)−1,

which yields n < 28. It is known that if pr/qr is the rth convergent of 3log2/logα,
then ∣∣∣∣3log2logα

− pr
qr

∣∣∣∣ > 1

(ar+1 + 2)q2r
,

where ar+1 is the (r + 1)st partial quotient of 3log2/logα (see[10]). Thus,

min
2≤r≤41

[
1

(ar+1 + 2)(j − 1)2

]
<

2j + 258

(j − 1)α2nlogα
. (27)

Since max
2≤r≤41

ar+1 = 66, inequality (27) implies that

α2n < 68(j − 1)(2j + 258)(logα)−1,

whenever (25) holds. Otherwise,

α2n ≤ 2(j − 1)(2j + 258)(logα)−1.

The last two inequalities imply

α2n < 68(j − 1)(2j + 258)(logα)−1 < 78j(j + 129) < 10140j2,

and hence, n < 0.57logj + 2.62, which is an improved bound.
The above discussion proves the following result:
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Lemma 12. If (5) has a solution pair (j, k) of positive integers with j > 1, then

n < 0.57logj + 2.62.

Lemma 8 and 12 together imply

j < 1.93 · 1012(8(0.57logj + 2.62) + 12)× log(78j(0.57logj + 4.62)),

and hence, j < 1.8 · 1016, and consequently n < 24. Thus, we have the following
result:

Lemma 13. If (5) has a solution pair (j, k) of positive integers with j > 1, then

j < 1.8 · 1016 and n < 24.

To handle the remaining cases for 2 ≤ n ≤ 23, we first use the Baker-Davenport
reduction method to reduce the bounds of both j and n. Since

0 < 2jlogβn − klogα+ log(4
√
2 · γ(±)

n ) < 13β−2j
n ,

we use Lemma 3 with

κ =
2logβn

logα
, µ =

log(4
√
2 · γ(±)

n )

logα
, A =

13

logα
, B = β2

n, M = 1.8 · 1016.

For each n in the interval [2, 23], we take q = q47 to be the denominator of the
47th convergent to κ. For all n ∈ [2, 23], we have q > 6M and ε > 0, so we may
apply Lemma 3. In all cases, the new bound of j is 8 obtained when n = 2. For
example, if n = 23 with the sign +, then the terms of the continued fraction of κ are

[46, 29, 2, 117, 5, 1, 6, 1, 13, 2, 19, 1, 1, 1, 3, 8, 4, 1, 1, 3, 39, 1, 25, 4, 1, 6, 2, 1, . . . ].

The denominator of its 47th convergent is

q47 = 33134999516349524492817367

and the corresponding ε is

ε = .3999999998869952002341080328904228756336563065970332529.

Therefore, the corresponding bound of j is 1.

From Lemma 12 and as j ≤ 8, we deduce that n ≤ 3. We set M = 8 to check
again for n = 2, 3. The second run of the reduction method yields j ≤ 8 and then
n = 2, 3. So we have the following result:

Lemma 14. If (5) has a positive integer solution pair (j, k) with j > 1, then

j ≤ 8 and n ≤ 3.
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Now, for 2 ≤ j ≤ 8 and 1 ≤ n ≤ 3, we need to see whether any of C
(±)
j is a

balancing number. However, direct verification shows no such C
(±)
j is a balancing

number. Therefore, (5) has no solution for j ≥ 2. Thus, if {Bn, Bn+2, 4Bk} is a
Diophantine triple, then k = n+ 1.

Replacing the left hand side of (5) and (6) by 2Bk and 2C
(±)
j , respectively, and

defining γ
(±)
n as

γ(±)
n :=

1

8

[
6Bn+1

4(B2
n+1 − 1)

± 2

4
√

B2
n+1 − 1

]
,

the coefficients of Bn+1

(B2
n+1−1)

in (8) and (9) will be 6
16 . Consequently, the lower and

upper bounds for γ
(+)
n and γ

(−)
n in Lemma 6 will be modified as

0.24α−n < γ(+)
n < 0.29α−n, 0.12α−n < γ(−)

n < 0.16α−n.

The new values of γ
(±)
n and C

(±)
j result in the same bound for the linear form in

logarithms Λ,Λ0,Λ1 defined on pages 8, 11 and 12. These changes will not affect
the bounds for j and n obtained from the Baker-Davenport reduction method, and
consequently, {Bn, Bn+2, 8Bk} is a Diophantine triple only for k = n + 1. This
completes the proof of Theorem 1.

5. Pronic and triangular triples of balancing numbers

We devote this section to exploring pronic and triangular triples of balancing num-
bers. In particular, given two consecutive balancing numbers, we find some third
number X (which is not necessarily a balancing number) to construct a pronic or
triangular triple.

The following theorem, the proof of which is similar to that of Theorem 4, helps
us to find the third number X.

Theorem 5. For any fixed positive integer n, if {Bn, Bn+1, X} is a pronic triple,
then the possible values of X may be realized in multiple classes. Two such classes
are given by

X =
1

4

[
(Bn+1 +Bn)x

(n)
j

2
+ 2x

(n)
j y

(n)
j

]
, X =

1

4

[
(Bn+1 +Bn)x

(n)
j

2
− 2x

(n)
j y

(n)
j

]
,

where x
(n)
j and y

(n)
j are solutions of the Pell’s equation y2 − BnBn+1x

2 = 1, with
j ≥ 1.

But, in view of [9, Theorem 8], the values of X in Theorem 5 partition into just
two classes and are precisely those that are mentioned in the statement of Theorem 5.

The solutions x
(n)
j of Pell’s equation y2 −BnBn+1x

2 = 1 are all even, and hence X
is a positive integer. Moreover,

gcd
(
x
(n)
j , 4

)
=

{
2, if j is odd
4, if j is even.
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Observe that when j = 1, Theorem 5 gives two pronic triples {Bn, Bn+1, 2Bn} and
{Bn, Bn+1, 2Bn+1}.

Let n be any fixed positive integer such that {Bn, Bn+1, 2Bk} is a pronic triple
for some positive integer k. Since P2n = 2Bn, it follows that {P2n, P2n+2, 2P2k} is
a Diophantine triple. By virtue of [17, Theorem 1.1], 2k ∈ {2n, 2n+ 2}, and hence
k = n or k = n+ 1. This proves Theorem 2.

The following theorem, the proof of which is also similar to that of Theorem 4,
helps us to find the third number X such that {Bn, Bn+1, X} is a triangular triple.

Theorem 6. For any fixed positive integer n, if {Bn, Bn+1, X} is a triangular triple,
then the possible values of X may be realized in two or more classes. Two such classes
are given by

X =
1

8

[
(Bn+1+Bn)x

(n)
j

2
+2x

(n)
j y

(n)
j

]
, X =

1

8

[
(Bn+1+Bn)x

(n)
j

2
−2x

(n)
j y

(n)
j

]
, j ≥ 1,

where x
(n)
j and y

(n)
j are solutions of Pell’s equation y2 −BnBn+1x

2 = 1.

Observe that when j = 1, Theorem 6 gives X ∈ {Bn, Bn+1} and [9, Theorem 8]
tells us that the possible values of X in Theorem 6 partition into exactly two classes,
and are precisely those that are mentioned in the statement of Theorem 6.

Theorem 3 can be proved by using arguments similar to those used to prove
Theorem 1. So, we prefer to omit the details of the proof. However, below we give
some crucial steps required for the proof.

In view of Theorem 6, if {Bn, Bn+1, Bk} is a triangular triple, then

Bk =
1

8

[
(Bn+1 +Bn)x

(n)
j

2
± 2x

(n)
j x

(n)
j

]
.

Consider C
(±)
j = Bk. For j = 1, one can obtain C

(−)
1 = Bn, C

(+)
1 = Bn+1 as the

only solution. Let βn := (Bn+1 −Bn) + 2
√
BnBn+1, and thus,

y
(n)
j =

βj
n + β−j

n

2
, x

(n)
j =

βj
n − β−j

n

2
√
BnBn+1

.

Defining γ
(±)
n as

γ(±)
n :=

1

32

[
Bn+1 +Bn

BnBn+1
± 2√

BnBn+1

]
,

we get

β2j
n γ(±)

n − Bn+1 +Bn

16BnBn+1
+ β−2j

n γ(∓)
n =

αk − αk

4
√
2

.

The lower and upper bounds for γ
(+)
n and γ

(−)
n are

0.35α−n < γ(+)
n < 0.41α−n and 0.06α−n < γ(−)

n < 0.09α−n.

Using the same Λ as in the proof of Theorem 1 and defining

Λ0 := 2logβn − 1

2
((2n+ 1)± 1)logα+ log(4

√
2 · γ(±)

n ),
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Λ1 := Klogα− (j − 1)log2 with K := [(2j − 1)(2n+ 1)− 2k ± 1]/2,

we obtain the bounds

0 < Λ < 25β−2j
n , |Λ0| < 25β−2

n , |Λ1| < (12j + 113)α−(2n+1).

Correspondingly, the bounds for j and n are j < 1.7 · 1016 and n < 24. Further, the
Baker-Davenport reduction method can be applied to reduce the bounds of j and n
and the remaining cases can be verified by direct computation.
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