
MATHEMATICAL COMMUNICATIONS 139
Math. Commun. 19(2014), 139–157

Functions of triples of positive real numbers and their use in
study of bicentric polygons II

Mirko Radić1,∗
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Abstract. The article deals with some functions which play a key role in the study of
bicentric polygons where conics are circles. This article can be considered as a companion
article to [8]. We report on new functions and new results concerning these functions
of positive real triples and their use for studying bicentric polygons. Finally, some new
conjectures are posed.
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1. Introduction

A polygon which is both chordal and tangential is called a bicentric polygon. The
relation (condition) that an n-sided polygon be a bicentric one is the Fuss’ relation
for bicentric n-gons and will be denoted by Fn(R, r, d) = 0 in honor of Swiss math-
ematician Nicolaus Fuss who first found the relation for a bicentric quadrilateral.
This relation reads

(R2 − r2)2 − 2r2(R2 + d2) = 0,

where R and r are radii of the circumcircle and the incircle, respectively, and d is
the distance between centers of circumcircle and incircle, see [2]. Fuss also found
relations for bicentric n–gons for 4 ≤ n ≤ 8, consult [3].

The keystone result in the theory of bicentric polygons is Poncelet’s famous
closure theorem which can be stated as follows:

Let C and D be two nested conics such that there is an n-sided polygon inscribed
in D and circumscribed around C. Then for every point x on D there is an
n-sided polygon inscribed in D and circumscribed around C such that the point
x is one of its vertices. Hence, for every starting point x there is a polygon
with the same n-periodicity, [4].
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Many mathematicians have worked for centuries on a number of problems re-
lated to this inspiring result. However, we work here with some functions and their
properties important in the theory of bicentric polygons where conics are circles.
Some of those functions, like f1, f2 and g, are already considered and used in [8] and
also in [5, 6]. In the present article we have established another properties of those
functions and we have also found some novel functions for the same purposes, e.g.
φ1, φ2, σ1, σ2, τ1, τ2. Using these functions, f1, f2 and g we have stated certain
conjectures (Conjectures 2, 3, 4). Although these conjectures can be considered as
a main result in the article, it can also be said that the obtained functions play on
essential role in posing these conjectures.

We point out that some of the main motivations for writing this article upon the
further research, bearing in mind the traces and the achievements of [5, 6, 8], are the
inspiring relations (22) and (48) which in a way are the starting points of a set of
other new relations and functions of numerical characteristics, like the radii r,R of
the incircle and the circumcircle of bicentric polygons, and the distance d between
their centers.

Now we recall the definition of f1, f2 according to [5, 6] and [8].

Definition 1 ([8, Definition 1]). Let S be the set given by

S =
{
(R, r, d) ∈ R3

+ : R > r + d
}
.

Let f1, f2 : S → S be functions on the set S defined as follows. Let (R0, r0, d0) ∈ S.
Then

f1(R0, r0, d0) = (R1, r1, d1), (1)

where

R2
1 = R0

(
R0 + r0 +

√
(R0 + r0)2 − d20

)
,

r21 = (R0 + r0)
2 − d20,

d21 = R0

(
R0 + r0 −

√
(R0 + r0)2 − d20

)
, (2)

and

f2(R0, r0, d0) = (R2, r2, d2), (3)

where

R2
2 = R0

(
R0 − r0 +

√
(R0 − r0)2 − d20

)
,

r22 = (R0 − r0)
2 − d20,

d22 = R0

(
R0 − r0 −

√
(R0 − r0)2 − d20

)
. (4)

The following statements hold true. Let (Ri, ri, di), i = 0, 1, 2, and let f1, f2 be
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as in Definition 1. Then

R1 > r1 + d1, R2 > r2 + d2, (5)

R1d1 = R2d2 = R0d0, (6)

R2
1 + d21 − r21 = R2

2 + d22 − r22 = R2
0 + d20 − r20, (7)

R2
1 − d21
2r1

=
R2

2 − d22
2r2

= R0 (8)

2R1r1d1
R2

1 − d21
=

2R2r2d2
R2

2 − d22
= d0, (9)

−
(
R2

1 + d21 − r21
)
+

(
R2

1 − d21
2r1

)2

+

(
2R1r1d1
R2

1 − d21

)2

= −
(
R2

2 + d22 − r22
)
+

(
R2

2 − d22
2r2

)2

+

(
2R2r2d2
R2

2 − d22

)2

= r20. (10)

The proof of these assertions is straightforward, thus it is omitted.
Let K denote the set given by

K =
{
(R, r, d) ∈ S : (R2 − d2)2 − 2r2(R2 + d2) = 0

}
.

In other words, K denotes the set of all (positive) solutions of Fuss’ relations for
bicentric quadrilaterals.

Theorem 1 ([8, Theorem 2]). Let (R, r, d) be a triple of the set S \K and let g be
a function on the set S \K given by

g(R, r, d) = (R̂, r̂, d̂),

where

R̂ =
R2 − d2

2r
, (11)

r̂ =

√
− (R2 + d2 − r2) +

(
R2 − d2

2r

)2

+

(
2Rdr

R2 − d2

)2

, (12)

d̂ =
2Rdr

R2 − d2
. (13)

Then S \K is a maximal subset of S such that

(R̂, r̂, d̂) ∈ S \K =⇒ (R, r, d) ∈ S \K.

We give here only the sketch of the proof. Firstly, it is clear from (11) and (13)

that R̂ > 0 and d̂ > 0 since (R, r, d) ∈ S. The fact that r̂ > 0 follows from the



142 M.Radić

equality [
−
(
R2 + d2 − r2

)
+

(
R2 − d2

2r

)2

+

(
2Rdr

R2 − d2

)2
]
· 4r2(R2 − d2)2

=
[(
R2 − d2)2 − 2r2(R2 + d2)

)]2
. (14)

Thus r̂ = 0 only if (R, r, d) ∈ K since by (14) exactly then we have r̂ = 0. Now,

using relations (11)-(13), there follows R̂ > r̂ + d̂.
Let (R0, r0, d0) ∈ R3

+ be a solution of Fuss’ relation Fn(R, r, d) = 0. Let C1, C2
be such circles that C2 is completely inside of C1 and let

R0 = radius of C1, r0 = radius of C2,
d0 = distance between centers of C1 and C2.

Then the set of all bicentric n-gons whose circumcircle is C1 and incircle C2 constitute
a class of bicentric n-gons determined by the triple (R0, r0, d0); we denote this class
by C(R0, r0, d0).

Let A1 · · ·An be a bicentric n-gon from this class and let T1, . . . , Tn be touching
points of its sides (segments) A1A2, . . . , AnA1 and circle C2, respectively. Then
|AiTi| , i = 1, . . . , n, are the so-called tangent lengths of the n-gon A1 · · ·An. If

n∑
i=1

arctan
|AiTi|
r0

= kπ,

where k ∈ N. The n-gon A1 · · ·An is k-circumscribed and k is the rotation number
for n.

The term cycle will also be used what follows. Let (Rk1 , rk1 , dk1) ∈ R3
+ be a

solution of Fuss’ relation Fn(R, r, d) = 0, where n ≥ 3 is an odd integer. Then there
is an integer m ≥ 1 such that

g (Rk1 , rk1 , dk1) = (Rk2 , rk2 , dk2) ,

g (Rk2 , rk2 , dk2) = (Rk3 , rk3 , dk3) ,

g (Rkm , rkm , dkm) = (Rk1 , rk1 , dk1) ,

that is,
gm (Rk1 , rk1 , dk1) = (Rk1 , rk1 , dk1) ,

where k2, . . . , km are also rotation numbers for n. Then (k1, . . . , km) is called a cycle
for n. For example, the cycles for n = 3, 5, 7, 9 are (1), (1, 2), (1, 2, 3), (1, 2, 4),
respectively.

Now we formulate the conjecture [8, Conjecture 2], rewritten into a form suitable
for our current purposes.

Conjecture 1. Let (Rk, rk, dk) be a solution of Fuss’ relation Fn(R, r, d) = 0, where
n ≥ 3 is an odd integer. Let

g(Rk, rk, dk) = (Rl, rl, dl),
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where k and l are rotation numbers for n. Then

f1(Rl, rl, dl) = (Rk, rk, dk), if l is even,

f2(Rl, rl, dl) = (Rk, rk, dk), if l is odd.

Moreover,

Fn (f1(Rl, rl, dl)) = 0, if l is even,

Fn (f2(Rl, rl, dl)) = 0, if l is odd.

But

F2n (f1(Rl, rl, dl)) = 0, if l is odd,

F2n (f2(Rl, rl, dl)) = 0, if l is even.

So, if (Rl, rl, dl) is a triple with rotation number l for odd n ≥ 3, then

either Fn (fi(Rl, rl, dl)) = 0 or F2n (fi(Rl, rl, dl)) = 0, i = 1, 2.

For further subsequent information about functions f1 and f2, consult [8] .

2. Another properties of functions f1, f2 and g and new func-
tions which refer to bicentric polygons with the incircle

Firstly, from the relations (2) and (4) we conclude

(R, r, d) ∈ S =⇒ fi(R, r, d) ∈ S, i = 1, 2.

Theorem 2. Let (R0, r0, d0) ∈ K. Then there is no (R, r, d) ∈ S for which

f1(R, r, d) = (R0, r0, d0).

Proof. From the system

R
(
R+ r +

√
(R+ r)2 − d2

)
= R2

0, (R+ r)2 − d2 = r20

R
(
R+ r −

√
(R+ r)2 − d2

)
= d20, (15)

using the first and the third equation, we get

R2
0 − d20 = 2R

√
(R+ r)2 − d2 = 2Rr0,

from which there follows

R2
0 − d20
2r0

= R i.e. R̂0 = R. (16)

Also, using the first and the third equation and relation (16) we can write

R0d0 = Rd, d =
R0d0
R

=
2R0r0d0
R2

0 − d20
= d̂0, d̂0 = d. (17)
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Now, by (16) and (17), the second equation of system (15), can be written as

r2 + 2R̂0r + R̂2
0 − d̂20 − r20 = 0.

This equation in r has the root

r = −R̂0 +

√
d̂20 + r20. (18)

However, it is r = 0, that is,

R̂0 =

√
d̂20 + r20. (19)

The proof can be sketched in the following lines. Since the triple (R0, r0, d0) is a
solution of F4(R, r, d) = 0, it is sufficient to show that (19) can be written as

(R2
0 − d20)

2 = 2r20(R
2
0 + d20). (20)

By (16), (17), (18) and (20), it is

R̂2
0 = d̂20 + r20,(

R2
0 − d20
2r0

)2

=

(
2R0r0d0
R2

0 − d20

)2

+ r20,

2r20(R
2
0 + d20)

4r20
=

4R2
0r

2
0d

2
0

2r20(R
2
0 + d20)

+ r20,

(R2
0 − d20)

2 = 2r20(R
2
0 + d20).

Thus, the triple (R, r, d) is not in S since r = 0.

Corollary 1. The solution of the system given by (15) can be written as (R, r, d)

= (R̂0, r̂0, d̂0), where

R̂0 > 0, d̂0 > 0, r̂0 =

√
− (R2

0 + d20 − r20) + R̂2
0 + d̂20 = 0.

Proof. If (R0, r0, d0) ∈ K, then

−R̂0 +

√
d̂20 + r20 = −

(
R2

0 + d20 − r20
)
+ R̂2

0 + d̂20.

The rest is clear, following the lines of the proof for (19).

Fromrelation (14) we have

Corollary 2. Let (R0, r0, d0) ∈ S \ K. Then the solution of the system given by

(R, r, d) = (R0, r0, d0) is (R̂0, r̂0, d̂0) ∈ S \K.

In turn, we point out that g is a left inverse of f1, that is gf1(R0, r0, d0) =
(R0, r0, d0).

Theorem 3. Let (R0, r0, d0) ∈ S. Then there are two triples in S which maps g
into (R0, r0, d0); these are f1(R0, r0, d0) and f2(R0, r0, d0).
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Proof. Let fi(R0, r0, d0) = (Ri, ri, di), i = 1, 2. It is easy to show that from

R1

(
R1 + r1 +

√
(R1 + r1)2 − d21

)
= R2

0, (R1 + r1)
2 − d21 = r20,

R1

(
R1 + r1 −

√
(R1 + r1)2 − d21

)
= d20,

there follows R1 = R̂0, r1 = r̂0, d1 = d̂0. The same holds for (R2, r2, d2).

Let L denotes a subset of S defined as

L = {(R, r, d) ∈ S : there is odd n ≥ 3 such that Fn(R, r, d) = 0} .

In other words, let L denotes the set of all (positive) solutions of every Fuss’ relation
Fn(R, r, d) = 0 where n ≥ 3 is an odd integer.

Conjecture 2. The function g is one-to-one function on the set L and if (R0, r0, d0)
∈ L, then only one of the triples f1(R0, r0, d0) and f2(R0, r0, d0) belongs to L.

Definition 2. Let (R0, r0, d0) ∈ S. Then (R̃0, r̃0, d̃0) is a triple obtained from
(R0, r0, d0) such that R0 is replaced by d0 and vice versa. Thus

(R̃0, r̃0, d̃0) = (d0, r0, R0).

This kind two triples will be called conjugate.

Our next goal is the composition of the functions f1 and f2.
Let (R0, r0, d0) ∈ S and i1, . . . , in ∈ {1, 2}. Then the triple

(Ri1...in , ri1...in , di1...in) = fin . . . fi1(R0, r0, d0) ,

compare Figure 1.

Figure 1: The arrow + refers to f1(Ri, ri, di), the arrow – refers to f2(Ri, ri, di)

It can be shown that

R2
i1...in

+ d2i1...in − r2i1...in
2Ri1...indi1...in

=
R2

0 + d20 − r20
2R0d0

= I,

where I is the invariant of the corresponding pencil.
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It is sufficient to show that

R2
1 + d21 − r21
2R1d1

=
R2

2 + d22 − r22
2R2d2

=
R2

0 + d20 − r20
2R0d0

,

since the analogy is complete.
It is often more convenient to use the triple (1, ρ, δ), normalized with respect to

R, instead of (R, r, d), writing ρ = r
R , δ = d

R , see e.g. [1].
Let (R0, r0, d0) be a solution of Fuss’ relation Fn(R, r, d) = 0, where n ≥ 3 is an

odd integer. Then from

R2
0 + d20 − r20
2R0d0

= I or
1 + δ20 − ρ20

2δ0
= I

it follows

r20 = R2
0 − 2R0d0I + d20 or ρ20 = 1− 2Iδ0 + δ20 .

The triple g(1, ρ0, δ0) can be obtained by using the relation

δ̂0 =
4δ0(1− 2Iδ0 + δ20)

(1− δ20)
2

. (21)

Indeed, the above display follows from

d̂0 =
2R0r0d0
R2

0 − d20
,

when both sides are divided by R̂0, that is, by
R2

0−d2
0

2r0
. Thus

δ̂0 =
4δ0ρ

2
0

(1− δ20)
2
, (22)

since d̂0

R̂0
= δ̂0. Accordingly, ρ̂

2
0 = 1− 2δ̂0I + δ̂20 , see [8, Eq. (17)].

We omit the proof of the next result due to its simplicity.

Theorem 4. Equation (21) has four solutions in δ0:

(δ0)1 =
1 + ρ̂0 −

√
2(1− Iδ̂0 + ρ̂0)

δ̂0
, (δ0)2 =

1− ρ̂0 −
√

2(1− Iδ̂0 − ρ̂0)

δ̂0
,

(δ0)3 =
1 + ρ̂0 +

√
2(1− Iδ̂0 + ρ̂0)

δ̂0
, (δ0)4 =

1− ρ̂0 +

√
2(1− Iδ̂0 − ρ̂0)

δ̂0
,

where

ρ̂0 =

√
1− 2Iδ̂0 + δ̂20 ,

and I stands for the invariant of the corresponding pencil.
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These solutions define the following functions

f1(δ̂0) =
1 + ρ̂0 −

√
2(1− Iδ̂0 + ρ̂0)

δ̂0
, (23)

f2(δ̂0) =
1− ρ̂0 −

√
2(1− Iδ̂0 − ρ̂0)

δ̂0
, (24)

φ1(δ̂0) =
1 + ρ̂0 +

√
2(1− Iδ̂0 + ρ̂0)

δ̂0
, (25)

φ2(δ̂0) =
1− ρ̂0 +

√
2(1− Iδ̂0 − ρ̂0)

δ̂0
, (26)

where ρ̂0 is described above.

Corollary 3. Functions f1, f2 given by (23) and (24) are only rewritten functions
f1 and f2 given by (1) and (3).

The next result is the consequence of (23)-(26) .

Corollary 4. It holds

f1(δ) + φ1(δ) + f2(δ) + φ2(δ) =
4

δ
,

f1(δ1)φ1(δ1) = f1(δ2)φ1(δ2) = f1(δ3)φ1(δ3) = f2(δ1)φ2(δ1) = f2(δ2)φ2(δ2)

= f2(δ3)φ2(δ3) = 1,

δ1 + 1/δ1 + δ3 + 1/δ3 = 4/δ2,

where δ = δ1.

Conjecture 3. Let (R0, r0, d0) be a positive triple for which R0 > r0 + d0 and
Fn(R0, r0, d0) = 0. Then there is Fuss’ relation F̃n(R, r, d) = 0 so that F̃n(R̃0, r̃0, d̃0)
= 0. This relation is obtained such that R and d in the relation Fn(R, r, d) = 0 are
mutually interchanged. Also, there hold:

(i) If A1 · · ·An is a bicentric n-gon from the class C(R0, r0, d0) and t1, . . . , tn are
its tangent lengths, then there is a bicentric n-gon A1 · · ·An from the class
C(R̃0, r̃0, d̃0) such that its tangent lengths are t̃1, . . . , t̃n, where

t̃i =

{
ti, if i is odd,

−ti, if i is even.

(ii) Let n ≥ 3 be an odd integer. Then both relations Fn(R, r, d) = 0 and F̃n(R, r, d)
= 0 have the same rotation numbers for n and the same cycle. (Of course, ti
needs to be taken instead of −ti.)
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(iii) Let (k1, . . . , km) be a cycle for an odd n ≥ 3 and let

(1, ρki , δki) , i = 1, . . . ,m,

be the corresponding solutions of Fuss’ relation Fn(R, r, d) = 0. Let ki be even
and let f1(δki) = δkj . Then

φ1(δki) = 1/δkj . (27)

But, if ki is odd and f2(δki
) = δkj

, then

φ2(δki) = 1/δkj . (28)

Thus

φ1(δki) =
1

f1(δki)
, if ki is even , (29)

φ2(δki) =
1

f2(δki)
, if ki is odd . (30)

In both cases, when ki is odd and when ki is even, it holds

F̃n(1, ρ̃, δ̃) = 0, where δ̃ = 1/δkj , ρ̃ =

√
1− 2Iδ̃ + δ̃2.

Let us remark here that Fn(1, ρkj , δkj ) = 0 implies F̃n(δkj , ρkj , 1) = 0 and also

F̃n(1, ρkj/δkj , 1/δkj ) = 0.

The following is also valid. If ki is odd then instead of the relation (27) we
have relation

φ1(δki) = δ+1 ,

where δ+1 is obtained in the following way. Let (R+
1 , r

+
1 , d

+
1 ) be a triple given

by
(R+

1 , r
+
1 , d

+
1 ) = f1(Rki , rki , dki),

and let (R̃1, r̃1, d̃1) be a triple given by

(R̃1, r̃1, d̃1) = (d+1 , r
+
1 , R

+
1 ).

Then
δ+1 = d̃1/R̃1.

But if ki is even, then instead of relation (28) we have the relation

φ2(δki) = δ+2 ,

where δ+2 is obtained in the following way. Let

(R+
2 , r

+
2 , d

+
2 ) = f2(Rki , rki , dki),

and let (R̃2, r̃2, d̃2) be a triple given by

(R̃2, r̃2, d̃2) = (d+2 , r
+
2 , R

+
2 ).

Then
δ+2 = d̃2/R̃2.
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Let us remark here that both triples (R+
i , r

+
i , d

+
i ), i = 1, 2, are solutions of Fuss’

relation F2n(R, r, d) = 0.

Example 1. Part of this example, where f1, f2 and g are involved, is already known
up to (35). In turn, there f1 and f2 are written in an abbreviated form with respect
to the notation used in Definition 1. The remaining part of the example, concerning
φ1 and φ2 are used, is novel.

Let n = 7. Then (1, 2, 3) is a cycle for n = 7 and the triple

(7, 4.979113505, 2)

is a solution of Fuss’ relation F7(R, r, d) = 0. This triple has rotation number 1 for
n = 7 and we write it as (R1, r1, d1). Using g we get

(R2, r2, d2) = g(R1, r1, d1) = (4.518876699, 1.345412541, 3.098115069), (31)

(R3, r3, d3) = g(R2, r2, d2) = (4.0217886, 0.289796869, 3.481038261). (32)

where (R2, r2, d2) has rotation number 2 for n = 7, and (R3, r3, d3) has rotation
number 3 for n = 7. It can be found that for each (Ri, ri, di), i = 1, 2, 3, we have
I = 1.007443882. It can also be found that

δ1 =
d1
R1

= 0.285714285, δ2 =
d2
R2

= 0.68559467, δ3 =
d3
R3

= 0.865544812, (33)

ρ1 =
r1
R1

= 0.711301929, ρ2 =
r2
R2

= 0.297731633, ρ3 =
r3
R3

= 0.072056713, (34)

where δ̂1 = δ2, δ̂2 = δ3, δ̂3 = δ1, ρ̂1 = ρ2, ρ̂2 = ρ3, ρ̂3 = ρ1.
By means of (23)-(26), taking δ0 = δ1, δ2, δ3 and by virtue of δ̂1 = δ2, δ̂2 = δ3

we get

f1(δ2) =
1 + ρ2 −

√
2(1− Iδ2 + ρ2)

δ2
= δ1

f2(δ3) =
1− ρ3 −

√
2(1− Iδ3 − ρ3)

δ3
= δ2

f2(δ1) =
1− ρ1 −

√
2(1− Iδ1 − ρ1)

δ1
= δ3.

Thus
f1(δ2) = δ1, f2(δ3) = δ2, f2(δ1) = δ3.

We also have

f1(δ1) = 0.084686170,

f2(δ2) = 0.802440024,

f1(δ3) = 0.507772253. (35)

The above three relations refer to bicentric 14-gons with an incircle. See relation
given by (43), (44) and (45), where 1/11.89507519 = f1(δ1) etc.
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Concerning functions φ1 and φ2 we have

φ1(δ1) = 11.89504492,

φ1(δ2) = 3.5 =
1

δ1
,

φ1(δ3) = 1.969386854,

and

φ2(δ1) = 1.155341689 =
1

δ3
,

φ2(δ2) = 1.246206948,

φ2(δ3) = 1.458601968 =
1

δ2
.

The following assertion can also be verified:

φ1(δ2) =
1

δ1
= 3.5 implies triple (1, 2.489556753, 3.5),

φ2(δ1) =
1

δ3
= 1.155341683 implies triple (1, 0.083250127, 1.155341683), (36)

φ2(δ3) =
1

δ2
= 1.458587769 implies triple (1, 0.434281525, 1.458587769),

The triples

(1, 2.489556753, 3.5), (1, 0.083250127, 1.155341683)

are solutions of F̃
(1,3)
7 (R, r, d) = 0, where F

(1,3)
7 (R, r, d) = 0 is Fuss’ relation for

bicentric heptagons where rotation numbers for 7 are 1 and 3. This Fuss’ reads

F
(1,3)
7 (R, r, d) = −d12 − 4d10rR+ 6d10R2 + 24d8r3R+ 4d8r2R2 + 20d8rR3

−15d8R4 − 32d6r5R+ 16d6r4R2 − 64d6r3R3 − 16d6r2R4

−40d6rR5 + 20d6R6 − 32d4r4R4 + 48d4r3R5 + 24d4r2R6

+40d4rR7 − 15d4R8 − 64d2r6R4 + 32d2r5R5 + 16d2r4R6

−16d2r2R8 − 20d2rR9 + 6d2R10 − 8r3R9 + 4r2R10 + 4rR11 −R12.

It can also be verified that the triple (1, 0.434281525, 1.458587769) is a solution of

F̃
(2)
7 (R, r, d) = 0, where F

(2)
7 (R, r, d) = 0 is Fuss’ relation for bicentric heptagons

where rotation number for 7 is 2. This Fuss’ relation is given by

F
(2)
7 (R, r, d) = d12 − 4d10rR− 6d10R2 + 24d8r3R− 4d8r2R2 + 20d8rR3

+15d8R4 − 32d6r5R− 16d6r4R2 − 64d6r3R3 + 16d6r2R4

−40d6rR5 − 20d6R6 + 32d4r4R4 + 48d4r3R5 − 24d4r2R6

+40d4rR7 + 15d4R8 + 64d2r6R4 + 32d2r5R5 − 16d2r4R6

+16d2r2R8 − 20d2rR9 − 6d2R10 − 8r3R9 − 4r2R10 + 4rR11 +R12.
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Relations F̃
(1,3)
n (R, r, d) = 0 and F̃

(2)
n (R, r, d) = 0 can be obtained such that R and

d in F
(1,3)
n (R, r, d) = 0 and F

(2)
n (R, r, d) = 0 mutually interchange.

The relations

φ1(δ1) = 11.89504492, (37)

φ1(δ3) = 1.969386854, (38)

φ2(δ2) = 1.246206948, (39)

refer to bicentric 14-gons with the excircle. Indeed, it is clear that from the above
relations we get the corresponding triples

(1, 10.88691502, 11.89504519), (40)

(1, 0.954144174, 1.969386854), (41)

(1, 0.205096632, 1.246206948). (42)

Since it can be verified that the triples

(11.89504519, 10.88691502, 1), (43)

(1.969386854, 0.954144174, 1), (44)

(1.246206948, 0.205096632, 1) (45)

are solutions of Fuss’ relation F14(R, r, d) = 0, we can conclude (on the condition
that Conjecture 3 is true) that the triples given by (40)-(42) are solutions of Fuss’
relation F̃14(R, r, d) = 0.

This can also be shown in the following way where we use the triples

(R1, r1, d1) = (7, 4.979113505, 2),

(R2, r2, d2) = (4.51887699, 1.345412541, 3.09811507),

(R3, r3, d3) = (4.021789575, 0.28970865, 3.48103764).

(See (31) and (32)).
Also, functions f1 and f2 will be used. So we have

f1(R1, r1, d1) = (12.90467467, 11.81097627, 1.084878154),

f1(R3, r3, d3) = (5.250893088, 2.544040465, 2.66621311),

f2(R2, r2, d2) = (4.176948328, 0.687428381, 3.351729277).

It can be verified that each of the above three triples are solutions of Fuss’ relation
F14(R, r, d) = 0. Of course, these triples refer to bicentric 14-gons with the incircle,
and the triples

(1.084878154, 11.81097627, 12.90467467),

(2.66621311, 2.544040465, 5.250893088),

(3.351729277, 0.687428381, 4.176948328),

refer to bicentric 14-gons with the excircle. To show this, let the following be made:
each member of the first triple above be divided by member 1.084878154, each member
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of the second triple above be divided by member 2.66621311, each member of the third
triple above be divided by member 3.351729277. Then we get triples given by (40)-
(42). From this it follows that, for example, the polygons from the class

C(1, 10.88691502, 11.89504492)

and

C(11.89504492, 10.88691502, 1)

are all n-sided polygons.
As will be shown now there is an interesting connection between tangent lengths

which refer to a bicentric n-gon with the incircle and the corresponding tangent
lengths which refer to bicentric n-gons with the excircle.

For calculation of tangent lengths we shall use the following formula

ti+1 =
(R2 − d2)ti ± r

√
(t2M − t2i )(t

2
i − t2m)

t2i + r2i
, (46)

where

t2M = (R+ d)2 − r2, t2m = (R− d)2 − r2.

If polygons are with the incircle, then R > d (in fact, R > d+ r), but if polygons are
with the excircle, then R < d (in fact, d > R+r). In the first case, the above formula
holds for calculation of tangent lengths for bicentric polygons with incircle, and in
the second case, the formula holds for calculation of tangent lengths for bicentric
polygons with the excircle.

More about using this formula in the case when R > d+ r can be seen in [7, rel.
(1.5)]. It is not difficult to see that analogously holds in the case when R + r < d.
If ti is given then in both cases ti+1 can be obtained using this formula.

In this connection let us remark that this formula, using computer algebra, can
be algorithmized and be very practical.

So, starting from the triple (1, 0.74370748590576, 0.2), which is a solution of Fuss’

relation F
(1)
5 (R, r, d) = 0, where tM = 0.9417532455 . . . , tm = 0.2947866608 . . . we

can take, say, t1 = 0.62. By using formula (46) we get

t2 = 0.9415995565, t3 = 0.6357184840, t4 = 0.3335049102 . . . ,

t5 = 0.3281593267 . . . , t6 = −0.62.

It can be found that the triple (1, 0.74370748590576 . . . , 0.2) has rotation number
1 for n = 5, that is,

5∑
i=1

arctan
ti
r
= π.

Now, starting from the triple (0.2, 0.74370748590576 . . . , 1) and using formula
(46), taking also t1 = 0.62, we get

t2 = −0.9415995565, t3 = 0.6357184840, t4 = −0.3335049102, t5 = 0.3281593267,
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compare Figure 2. The reason why in this case we get tangent lengths which signes
alternate lies in the reason that only then we have

|ti + ti+1| = |AiAi+1| , i = 1, . . . , 5.

Here is one more example where n = 7. Using triple (1, 0.083250127, 1.155341683)
given by (36), taking t̃1 = 1, we get

t̃1 = 1, t̃2 = −0.4888545484,

t̃3 = 0.3311860163, t̃4 = −1.412891853,

t̃5 = 0.1411162685, t̃6 = −2.107230795,

t̃7 = 0.1761652021.

Now, using triple (1.155341683, 0.083250127, 1), taking t1 = 1, we get

t1 = 1, t2 = 0.4888545484, t3 = 0.3311860163, t4 = 1.412891853,

t5 = 0.1411162685, t6 = 2.107230795, t7 = 0.1761652021.

Moreover, we have

{t̃1,
∣∣t̃2∣∣ , t̃3, ∣∣t̃4∣∣ , t̃5, ∣∣t̃6∣∣ , t̃7} = {t1, t2, t3, t4, t5, t6, t7}.

Analogous holds in all similar cases.

Figure 2: ti = |AiTi|, i = 1, . . . , 5, are tangent lengths.

3. Some functions which refer to bicentric polygons with the
excircle

Definition 3. Let S̃ denote the set obtained from the set S such that every triple
(R, r, d) of S is replaced by triple (R̃, r̃, d̃). Also, let K̃ denote the set obtained from
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the set K such that every triple (R, r, d) of K is replaced by triple (R̃, r̃, d̃). Let
g̃ : S̃ \ K̃ → S̃ \ K̃ be function defined on the set S̃ \ K̃ as follows. For a triple
(R0, r0, d0) ∈ S̃ \ K̃,

g̃(R0, r0, d0) = (R̂0, r̂0, d̂0),

where

R̂0 =
2R0r0d0
d20 −R2

0

,

r̂0 =

√
− (R2

0 + d20 − r20) +

(
R2

0 − d20
2r0

)2

+

(
2R0r0d0
d20 −R2

0

)2

,

d̂0 =
d20 −R2

0

2r0
.

Of course, here d0 > R0, Cf. with relations given by (11)-(13).
Now, let (R0, r0, d0) be a solution of Fuss’ relation F̃n(R, r, d) = 0, where n ≥ 3

is an odd integer. Then, as it can be easily seen, it holds

R2
0 + d20 − r20
2R0d0

=
R̃2

0 + d̃20 − r̃20
2R̃0d̃0

= I,

where I is invariant of the corresponding cycles.
In this case instead of the relation given by (21) we have the following relation

δ̂0 =
(1− δ20)

2

4δ0 (1− 2δ0I + δ20)
(47)

or

δ̂0 =

(
1− δ20

)2
4δ0ρ20

. (48)

This relation is obtained from the relation

d̂0 =
d20 −R2

0

2r0

such that both of its sides are divided by R̂0, that is, by (2R0d0)/(d
2
0 − R2

0), since

d̂0/R̂0 = δ̂0.
We give the following theorem without proof.

Theorem 5. The equation in δ0 given by (47) and (48) has the following four
solutions

(δ0)1 = δ̂0 − ρ̂0 −
√
2δ̂0

(
δ̂0 − ρ̂0 − I

)
,

(δ0)2 = δ̂0 + ρ̂0 −
√
2δ̂0

(
δ̂0 + ρ̂0 − I

)
,

(δ0)3 = δ̂0 − ρ̂0 +

√
2δ̂0

(
δ̂0 − ρ̂0 − I

)
,

(δ0)4 = δ̂0 + ρ̂0 +

√
2δ̂0

(
δ̂0 + ρ̂0 − I

)
,
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where I is the same as in relation (21).

These solutions determine four functions σ1, σ2, τ1, τ2 given by

σ1(δ̂) = δ̂ − ρ̂−
√

2δ̂
(
δ̂ − ρ̂− I

)
,

σ2(δ̂) = δ̂ + ρ̂−
√

2δ̂
(
δ̂ + ρ̂− I

)
,

τ1(δ̂) = δ̂ − ρ̂+

√
2δ̂

(
δ̂ − ρ̂− I

)
,

τ2(δ̂) = δ̂ + ρ̂+

√
2δ̂

(
δ̂ + ρ̂− I

)
.

Example 2. Let (R1, r1, d1) be as in Example 1. (See (31) and (32).) Then we
have the following triples

(R̃1, r̃1, d̃1) = (2, 4.979113505, 7),

(R̃2, r̃2, d̃2) = (3.09811507, 1.345412541, 4.51887699),

(R̃3, r̃3, d̃3) = (3.48103764, 0.28970865, 4.021789575),

which are conjugate to the triples given in Example 1. In this case we use the
notation δ̃i and ρ̃i, i = 1, 2, so that (cf. (33) and (34))

δ̃1 =
d̃1

R̃1

=
7

2
= 3.5, ρ̃1 =

r1

R̃1

=
4.979113505

2
= 2.489556753.

δ̃2 = 1.458589138, ρ̃2 = 0.434268098,

δ̃3 = 1.55342167, ρ̃3 = 0.083250139.

Of course, I = 1.007443882 is the same as in Example 1.
It can be found that

σ1(δ̃1) = δ3, σ1(δ̃3) = δ2, σ2(δ̃2) = δ1,

τ1(δ̃1) = δ̃3, τ1(δ̃3) = δ̃2, τ2(δ̃2) = δ̃1,

σ1(δ̃2) =
1

φ2(δ2)
, σ2(δ̃1) =

1

φ1(δ1)
, σ2(δ̃3) =

1

φ1(δ3)
,

τ1(δ̃2) = φ2(δ2), τ2(δ̃1) = φ1(δ1), τ2(δ̃3) = φ1(δ3),

where δ1, δ2, δ3 are given by (33) and (34).

Conjecture 4. Let (k1, . . . , km) be a cycle for an odd n ≥ 3. Then

σ1(δ̃ki) =
1

τ1(δ̃ki)
, if ki is even,

σ2(δ̃ki
) =

1

τ2(δ̃ki)
, if ki is odd.
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Note 1. Functions f̃1, f̃2 defined below are only in a new fashion rewritten functions
τ1 and τ2.

Definition 4. Let f̃1 : S̃ → S̃ and f̃2 : S̃ → S̃ be functions defined on the set S̃ as
follows. For a triple (R0, r0, d0) ∈ S̃ we have

f̃1(R0, r0, d0) = (R̃1, r̃1, d̃1),

where

R̃2
1 = d0

(
d0 + r0 −

√
(d0 + r0)2 −R2

0

)
,

r̃21 = (d0 + r0)
2 −R2

0,

d̃21 = d0

(
d0 + r0 +

√
(d0 + r0)2 −R2

0

)
.

The function f̃2 is defined as follows

f̃2(R0, r0, d0) = (R̃2, r̃2, d̃2),

where

R̃2
2 = d0

(
d0 − r0 −

√
(d0 − r0)2 −R2

0

)
,

r̃22 = (d0 − r0)
2 −R2

0,

d̃22 = d0

(
d0 − r0 +

√
(d0 − r0)2 −R2

0

)
.

Functions f̃1 and f̃2 have properties analogous to functions f1 and f2 given by
Definition 1. So, for example, Cf. (5). It holds

d̃1 > r̃1 + R̃1, d̃2 > r̃2 + R̃2,

R̃1d̃1 = R̃2d̃2 = R0d0,

R̃2
1 + d̃21 − r̃21 = R̃2

2 + d̃22 − r̃22 = R2
0 + d20 − r20,

2R̃1r̃1d̃1

d̃21 − R̃2
1

=
2R̃2r̃2d̃2

d̃22 − R̃2
2

= R0,

d̃21 − R̃2
1

2r̃1
=

d̃22 − R̃2
2

2r̃2
= d0.

Using these relations, the conjecture analogous to Conjecture A can be stated.
Let (Rk, rk, dk) be a solution of Fuss’ relation F̃n(R, r, d) = 0, where n ≥ 3 is an

odd integer. Let
g̃(Rk, rk, dk) = (Rl, rl, dl),

where k and l are rotation numbers for n. Then

f̃1(Rl, rl, dl) = (Rk, rk, dk), if l is even,

f̃2(Rl, rl, dl) = (Rk, rk, dk), if l is odd.
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It also holds

F̃n

(
f̃1(Rl, rl, dl)

)
= 0, if l is even,

F̃n

(
f̃2(Rl, rl, dl)

)
= 0, if l is odd,

F̃2n

(
f̃1(Rl, rl, dl)

)
= 0, if l is odd,

F̃2n

(
f̃2(Rl, rl, dl)

)
= 0, if l is even.

Finally, we can conclude the following. One of the main results in the article refers
to functions f1, f2 and g. These functions are rather investigated now and we point
out some of their roles in research of bicentric polygons. Here introduced functions
φ1, φ2, σ1, σ2, τ1, τ2 also have important roles in the undertaken study. Many
essential facts are now mutually connected and new conjectures are formulated and
posed.
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