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Abstract. In this paper, our aim is to find the radii of starlikeness and convexity of the
generalized Mittag-Leffler function for three different kinds of normalization by using their
Hadamard factorization in such a way that the resulting functions are analytic in the unit
disk of the complex plane. The characterization of entire functions from the Laguerre-
Pólya class and a result of H. Kumar and M. A. Pathan on the reality of the zeros of
generalized Mittag-Leffler functions, whose origins go back to Dzhrbashyan, Ostrovskĭi and
Peresyolkova, play an important role in this paper. Moreover, the interlacing properties
of the zeros of the Mittag-Leffler function and its derivative are also useful in the proof
of the main results. By using the Euler-Rayleigh inequalities for the real zeros of the
generalized Mittag-Leffler function, we obtain some tight lower and upper bounds for the
radii of starlikeness and convexity of order zero.
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1. Introduction and the main results

The Mittag-Leffler function arises naturally in the solution of fractional order in-
tegral equations or fractional order differential equations, and especially in the in-
vestigations of the fractional generalization of the kinetic equation, random walks,
super-diffusive transport and in the study of complex systems. The ordinary and gen-
eralized Mittag-Leffler functions interpolate between a purely exponential law and
power-law like behavior. The Mittag-Leffler function has been successfully applied
in many areas of science and engineering. Due to its vast potential of applications in
solving problems on physical, biological, engineering and earth sciences, the Mittag-
Leffler function is an important function that finds widespread use in fractional
modeling [28]. As the exponential function naturally arises in the solution of integer
order differential equations, the Mittag-Leffler function plays an analogous role in
the solution of non-integer order differential equations. The detailed treatment of
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Mittag-Leffler functions can be found in [17, 18, 29] and in the references therein,
see also [12, 14, 15, 21, 22] for more details and applications. Geometric properties
of Mittag-Leffler functions such as univalence, starlikeness, convexity and close-to-
convexity, were established in [16, 19, 3]. Special functions have great importance
in geometric function theory, and because of this, there is an extensive literature
dealing with various geometric properties of certain subclasses of analytic univalent
functions involving special functions such as Bessel, Struve and Lommel functions
of the first kind. Baricz and his coauthors investigated in detail the determination
of the radii of starlikeness and convexity of some normalized forms of these special
functions, see for example [11, 8, 4, 7, 1, 2, 9, 5, 6, 10] and the references therein
for more details. One of the most important things which we have learned in these
studies is that the radii of univalence, starlikeness and convexity are obtained as
solutions of some transcendental equations and the obtained radii satisfy some in-
teresting inequalities. The positive zeros of special functions and the Laguerre-Pólya
class of real entire functions played an important role in these papers. Motivated by
the above series of papers, our aim in this paper is to present some similar results
for the generalized three-parameter Mittag-Leffler function. For this, three different
normalizations are applied such that the resulting functions are analytic. By using
the Hadamard factorization of the generalized Mittag-Leffler function and combining
the methods from [4, 8, 5, 11], we investigate the radii of starlikeness and convexity
for each of the three functions. Moreover, we deduce the interlacing properties of the
zeros of the Mittag-Leffler function and its derivative, and this result is quite useful
in the proof of the main results. Furthermore, our aim is also to give some lower
and upper bounds for the radii of starlikeness and convexity of order zero by using
Euler-Rayleigh inequalities for the smallest positive zeros of some transcendental
equations. It is worth mentioning that the methods used in this paper as well as
the obtained results are very similar to the results on generelized Wright functions
(see [11]); however, there is no direct connection between the present paper and [11].
The result of Lemma 1 below is essential in our paper and is based on a result of H.
Kumar and M.A. Pathan [20] on the reality of the zeros of generalized Mittag-Leffler
functions, whose origins go back to Dzhrbashyan [13], Ostrovskĭi and Peresyolkova
[23] (for more details, see subsection 1.4 below).

1.1. Characterization of starlike and convex functions

In order to present our results we need the following basic definitions. Let Dr be the
disk {z ∈ C : |z| < r}, where r > 0. Moreover, let A be the class of analytic functions
defined in Dr, which satisfy the normalization conditions f(0) = f ′(0)−1 = 0.Denote
by S the class of functions belonging to A, which are univalent in Dr. The class of
starlike functions denoted by S∗ is the subclass of S, which consists of functions f
for which the domain f(Dr) is starlike with respect to 0. The analytic description of
S∗ is

S∗ =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> 0 for all z ∈ Dr

}
.
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Moreover, let S∗(ρ) be a subclass of S consisting of functions which are starlike of
order ρ in Dr, where 0 ≤ ρ < 1, that is,

S∗(ρ) =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> ρ for all z ∈ Dr

}
.

The real numbers

r∗(f) = sup

{
r > 0 : Re

(
zf ′(z)

f(z)

)
> 0 for all z ∈ Dr

}
and

r∗ρ(f) = sup

{
r > 0 : Re

(
zf ′(z)

f(z)

)
> ρ for all z ∈ Dr

}
are called the radius of starlikeness and the radius of starlikeness of order ρ of the
function f, respectively. We note that r∗(f) = r∗0(f) is the largest radius such that
the image region f(Dr∗(f)) is a starlike domain with respect to the origin.

The class of convex functions denoted by C is a subclass of S which consists of
functions f for which the image domain f(Dr) is a convex domain. The analytic
description of C is

C =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

Moreover, let C(ρ) be a subclass of S consisting of functions which are convex of
order ρ in Dr, where 0 ≤ ρ < 1, that is,

C(ρ) =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> ρ for all z ∈ Dr

}
.

The real numbers

rc(f) = sup

{
r > 0 : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
and

rcρ(f) = sup

{
r > 0 : Re

(
1 +

zf ′′(z)

f ′(z)

)
> ρ for all z ∈ Dr

}
are called the radius of convexity and the radius of convexity of order ρ of the
function f, respectively. We note that rc(f) = rc0(f) is the largest radius such that
the image region f(Drc(f)) is a convex domain.

1.2. The Laguerre-Pólya class of real entire functions

An entire function is a complex-valued function that is holomorphic over the whole
complex plane. An entire function is called real if it maps the real line into itself. A
real entire function Ω belongs to the Laguerre-Pólya class LP if it can be represented
in the form

Ω(x) = cxme−ax
2+bx

∏
n≥1

(
1 +

x

xn

)
e−

x
xn ,
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with c, b, xn ∈ R, a ≥ 0, m ∈ N ∪ {0} and
∑

1/xn
2 < ∞. We note that the class

LP consists of entire functions which are uniform limits on the compact sets of the
complex plane of polynomials with only real zeros. It is important to mention that
that LP is closed under differentiation, that is, if Ω ∈ LP, then Ω(m) ∈ LP for each
m ∈ {2, 3, . . . }.

1.3. The three-parameter generalization of the Mittag-Leffler
function

Now, let us consider the function φ(α, z) defined by

φ(α, z) =
∑
n≥0

zn

Γ(αn+ 1)
,

where Γ denotes the Euler gamma function. This function was introduced by Mittag-
Leffler in 1903 and therefore it is known as the Mittag-Leffler function. Another
function with similar properties was introduced later by Wiman [30] and it is defined
by the following series:

φ(α, β, z) =
∑
n≥0

zn

Γ(αn+ β)
. (1)

In 1971, Prabhakar [26] introduced the three-parameter function φ(α, β, γ, z) in the
form of

φ(α, β, γ, z) =
∑
n≥0

(γ)nz
n

n!Γ(αn+ β)
,

where (γ)n denotes the Pochhammer symbol (or shifted factorial) given in terms of
the gamma function by (a)n = Γ(a+ n)/Γ(a). Some particular cases of φ(α, β, γ, z)
are:

φ(1, 1, 1, z) = ez, φ(1, 1, 2, z) = ez(z + 1),

φ(2, 1, 1, z) = cosh(
√
z), φ(2, 1, 2, z) = cosh(

√
z) +

1

2

√
z sinh(

√
z),

φ(2, 2, 1, z) =
1√
z

sinh(
√
z), φ(2, 2, 2, z) =

1

2z
(
√
z sinh(

√
z) + z cosh(

√
z)),

φ(2, 3, 1, z) =
1

z

(
cosh(

√
z)− 1

)
, φ(2, 4, 1, z) =

1

z

(
sinh(

√
z)√

z
− 1

)
.

1.4. A preliminary result on the Mittag-Leffler function

To state our first preliminary result, we define the following three transformations
mapping the set {(

1

α
, β

)
: α > 1, β > 0

}
into itself:

A :

(
1

α
, β

)
→
(

1

2α
, β

)
, B :

(
1

α
, β

)
→
(

1

2α
, α+ β

)
,
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C :

(
1

α
, β

)
→



(
1

α
, β − 1

)
, if β > 1

(
1

α
, β

)
, if 0 < β ≤ 1

.

We put Wb = A(Wa) ∪B(Wa), where

Wa =

{(
1

α
, β

)
: 1 < α < 2, β ∈ [α− 1, 1] ∪ [α, 2]

}
,

and we denote by Wi the smallest set containing Wb and invariant with respect to A,
B and C, that is, if (a, b) ∈Wi, then A(a, b), B(a, b), C(a, b) ∈Wi. By using a result
of Peresyolkova [24], Kumar and Pathan [20] recently proved that if

(
1
α , β

)
∈ Wi

and γ > 0, then all zeros of the generalized Mittag-Leffler function φ(α, β, γ, z) are
real and negative. It is worth mentioning that the reality of the zeros as well as
their distribution in the case of γ = 1, that is of Wiman’s extension φ(α, β, z), has
a rich literature. For more details, see for example the papers of Dzhrbashyan [13],
Ostrovskĭi and Peresyolkova [23], Popov and Sedletskii [25].

The following lemma, which may be of independent interest, plays an important
role in the proof of our main results.

Lemma 1. If
(
1
α , β

)
∈ Wi and γ > 0, then the function z 7→ φ(α, β, γ,−z2) has

infinitely many zeros which are all real. Denoting by λα,β,γ,n the nth positive zero
of z 7→ φ(α, β, γ,−z2) under the same conditions the Weierstrassian decomposition

φ(α, β, γ,−z2) =
1

Γ(β)

∏
n≥1

(
1− z2

λ2α,β,γ,n

)

is valid. Moreover, if ξα,β,γ,n denotes the nth positive zero of Ψ′(α, β, γ, z), where
Ψ(α, β, γ, z) = zβφ(α, β, γ,−z2), then the positive zeros λα,β,γ,n and ξα,β,γ,n are
interlaced.

Observe that the function z 7→ φ(α, β, γ,−z2) does not belong to A. Thus first
we perform some natural normalization. We define three functions originating from
φ(α, β, γ, z) as follows:

fα,β,γ(z) =
(
zβΓ(β)φ(α, β, γ,−z2)

)1/β
,

gα,β,γ(z) = zΓ(β)φ(α, β, γ,−z2),

hα,β,γ(z) = zΓ(β)φ(α, β, γ,−z).

Obviously, these functions belong to the class A. Of course, there exist infinitely
many other normalizations. The main motivation to consider the above ones is that
they are similar to the frequently studied normalizations in the literature of Bessel,
q-Bessel, Struve, Lommel and Wright functions.



122 Á. Baricz and A. Prajapati

1.5. Radii of starlikeness of the generalized Mittag-Leffler func-
tions

Now, our aim is to investigate the radii of starlikeness of the normalized forms of
the generalized three-parameter Mittag-Leffler function, that is, of fα,β,γ , gα,β,γ and
hα,β,γ . Our aim is to show that the radii of starlikeness of order ρ of the generalized
three-parameter Mittag-Leffler functions are actually solutions of some transcen-
dental equations. Moreover, we will also find some lower and upper bounds for the
radii of starlikeness of order zero. Throughout this paper for simplicity we use the
notation λ(α, β, γ, z) = φ(α, β, γ,−z2). The technique of determining the radii of
starlikeness in the next theorem follows the ideas from [7], [8] and [4]. The results of
the next theorem are natural extensions of some recent results (see [27], where the
special case of γ = 1 was considered) on the Mittag-Leffler function in (1).

Theorem 1. Let
(
1
α , β

)
∈Wi, γ > 0 and ρ ∈ [0, 1).

(a) The radius of starlikeness of order ρ of fα,β,γ is r∗ρ(fα,β,γ) = xα,β,γ,1, where
xα,β,γ,1 is the smallest positive zero of the transcendental equation

rλ′(α, β, γ, r)− β(ρ− 1)λ(α, β, γ, r) = 0.

(b) The radius of starlikeness of order ρ of gα,β,γ is r∗ρ(gα,β,γ) = yα,β,γ,1, where
yα,β,γ,1 is the smallest positive zero of the transcendental equation

rλ′(α, β, γ, r)− (ρ− 1)λ(α, β, γ, r) = 0.

(c) The radius of starlikeness of order ρ of hα,β,γ is r∗ρ(hα,β,γ) = zα,β,γ,1, where
zα,β,γ,1 is the smallest positive zero of the transcendental equation

√
rλ′(α, β, γ,

√
r)− 2(ρ− 1)λ(α, β, γ,

√
r) = 0.

The following theorem provides some tight lower and upper bounds for the radii
of starlikeness of the functions considered in the above theorem. The technique
used in the proof of this theorem follows the ideas from [1] and [2], and the main
idea is to deduce some Euler-Rayleigh inequalities for the first positive zero of some
entire functions, which are connected with the transcendental equations in the above
theorem. We mention that it is possible to get more sharp results in the next theorem
by using higher order Euler-Rayleigh inequalities for k ∈ {2, 3, . . . }; however, we
omitted them due to their complicated form.

Theorem 2. Let
(
1
α , β

)
∈Wi and γ > 0.

(a) The radius of starlikeness r∗(fα,β,γ) satisfies the inequalities

γ(β + 2)Γ(β)

βΓ(α+ β)
− (γ + 1)(β + 4)Γ(α+ β)

(β + 2)Γ(2α+ β)
< (r∗(fα,β,γ))

−2
<
γ(β + 2)Γ(β)

βΓ(α+ β)
.

(b) The radius of starlikeness r∗(gα,β,γ) satisfies the inequalities

3γΓ(β)

Γ(α+ β)
− 5(γ + 1)Γ(α+ β)

3Γ(2α+ β)
< (r∗(gα,β,γ))

−2
<

3γΓ(β)

Γ(α+ β)
.
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(c) The radius of starlikeness r∗(hα,β,γ) satisfies the inequalities

2γΓ(β)

Γ(α+ β)
− 3(γ + 1)Γ(α+ β)

2Γ(2α+ β)
< (r∗(hα,β,γ))

−1
<

2γΓ(β)

Γ(α+ β)
.

1.6. Radii of convexity of the generalized Mittag-Leffler func-
tions

Now, we are going to investigate the radii of convexity of order ρ of the functions
fα,β,γ , gα,β,γ and hα,β,γ . In addition, we find tight lower and upper bounds for the
radii of convexity of order zero for the functions gα,β,γ and hα,β,γ . The technique
used in the process of finding the radii of convexity in the next theorem is based on
the ideas from [5] and [6].

Theorem 3. Let
(
1
α , β

)
∈Wi, γ > 0 and ρ ∈ [0, 1).

(a) The radius of convexity rcρ(fα,β,γ) is the smallest positive root of the transcen-
dental equation (rfα,β,γ(r))′ = ρf ′α,β,γ(r).

(b) The radius of convexity rcρ(gα,β,γ) is the smallest positive root of the transcen-
dental equation (rgα,β,γ(r))′ = ρg′α,β,γ(r).

(c) The radius of convexity rcρ(hα,β,γ) is the smallest positive root of the transcen-
dental equation (rhα,β,γ(r))′ = ρh′α,β,γ(r).

Finally, we present some lower and upper bounds for the radii of convexity of the
functions gα,β,γ and hα,β,γ by using the corresponding Euler-Rayleigh inequalities.

Theorem 4. Let
(
1
α , β

)
∈Wi and γ > 0.

(a) The radius of convexity rc(gα,β,γ) satisfies the inequalities

9γΓ(β)

Γ(α+ β)
− 25(γ + 1)Γ(α+ β)

9Γ(2α+ β)
< (rc(gα,β,γ))

−2
<

9γΓ(β)

Γ(α+ β)
.

(b) The radius of convexity rc(hα,β,γ) satisfies the inequalities

4γΓ(β)

Γ(α+ β)
− 9(γ + 1)Γ(α+ β)

4Γ(2α+ β)
< (rc(hα,β,γ))

−1
<

4γΓ(β)

Γ(α+ β)
.

2. Proofs of the main results

Proof of Lemma 1. Recall that Kumar and Pathan [20] recently proved that if(
1
α , β

)
∈Wi and γ > 0, then all zeros of the generalized Mittag-Leffler function z 7→

φ(α, β, γ, z) are real and negative. Moreover, it is well known that z 7→ φ(α, β, γ, z)
is an entire function of order 1/α (see [17]), and this is a non-integer number which
lies in (0, 1) if

(
1
α , β

)
∈ Wi. It follows that the generalized Mittag-Leffler function
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has infinitely many zeros, which are all real, and its infinite product exists. Now,
from the infinite product representation we get

Ψ′(α, β, γ, z)

Ψ(α, β, γ, z)
=
β

z
+
λ′(α, β, γ, z)

λ(α, β, γ, z)
=
β

z
+
∑
n≥1

2z

z2 − λ2α,β,γ,n
. (2)

Differentiating both sides of (2), we have

d

dz

(
Ψ′(α, β, γ, z)

Ψ(α, β, γ, z)

)
= − β

z2
− 2

∑
n≥1

z2 + λ2α,β,γ,n
(z2 − λ2α,β,γ,n)2

, z 6= λα,β,γ,n.

The right-hand side of the above expression is real and negative for each z real,(
1
α , β

)
∈ Wi and γ > 0. Thus, the quotient on the left-hand side of (2) is a strictly

decreasing function from +∞ to −∞ as z increases through real values over the open
interval (λα,β,γ,n, λα,β,γ,n+1), n ∈ N. Hence the function z 7→ Ψ′(α, β, γ, z) vanishes
just once between two consecutive zeros of the function z 7→ λ(α, β, γ, z).

Proof of Theorem 1. We need to show that the inequalities

Re

(
zf ′(z)

f(z)

)
≥ ρ, Re

(
zg′(z)

g(z)

)
≥ ρ and Re

(
zh′(z)

h(z)

)
≥ ρ (3)

hold for z ∈ Dr∗ρ(fα,β,γ), z ∈ Dr∗ρ(gα,β,γ) and z ∈ Dr∗ρ(hα,β,γ), respectively, and each of
the above inequalities does not hold in any larger disk. Recall that under the corre-
sponding conditions the zeros of the Mittag-Leffler function φ(α, β, γ, z) are all real.
Thus, according to Lemma 1, the Mittag-Leffler function admits the Weierstrassian
decomposition of the form

φ(α, β, γ,−z2) =
1

Γ(β)

∏
n≥1

(
1− z2

λ2α,β,γ,n

)

and this infinite product is uniformly convergent on each compact subset of C. Denot-
ing, as above, the above expression by λ(α, β, γ, z), and by logarithmic differentiation
we get

λ′(α, β, γ, z)

λ(α, β, γ, z)
=
∑
n≥1

−2z

λ2α,β,γ,n − z2
,

which in turn implies that

zf ′α,β,γ(z)

fα,β,γ(z)
= 1− 1

β

∑
n≥1

2z2

λ2α,β,γ,n − z2
,

zg′α,β,γ(z)

gα,β,γ(z)
= 1−

∑
n≥1

2z2

λ2α,β,γ,n − z2

and
zh′α,β,γ(z)

hα,β,γ(z)
= 1−

∑
n≥1

z

λ2α,β,γ,n − z
.

We know that [4] if z ∈ C and θ ∈ R are such that θ > |z|; then

|z|
θ − |z|

≥ Re

(
z

θ − z

)
. (4)
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Thus the inequality

|z|2

λ2α,β,γ,n − |z|2
≥ Re

(
z2

λ2α,β,γ,n − z2

)
,

is valid for every
(
1
α , β

)
∈ Wi, γ > 0, n ∈ N and |z| < λα,β,γ,1, and therefore under

the same conditions we have that

Re

(
zf ′α,β,γ(z)

fα,β,γ(z)

)
= 1− 1

β
Re

∑
n≥1

2z2

λ2α,β,γ,n − z2


≥ 1− 1

β

∑
n≥1

2|z|2

λ2α,β,γ,n − |z|2
=
|z|f ′α,β,γ(|z|)
fα,β,γ(|z|)

,

Re

(
zg′α,β,γ(z)

gα,β,γ(z)

)
= 1− Re

∑
n≥1

2z2

λ2α,β,γ,n − z2


≥ 1−

∑
n≥1

2|z|2

λ2α,β,γ,n − |z|2
=
|z|g′α,β,γ(|z|)
gα,β,γ(|z|)

and

Re

(
zh′α,β,γ(z)

hα,β,γ(z)

)
= 1− Re

∑
n≥1

z

λ2α,β,γ,n − z


≥ 1−

∑
n≥1

|z|
λ2α,β,γ,n − |z|

=
|z|h′α,β,γ(|z|)
hα,β,γ(|z|)

,

where equalities are attained only when z = |z| = r. The minimum principle for
harmonic functions and the previous inequalities imply that the corresponding in-
equalities in (3) are valid if and only if we have |z| < xα,β,γ,1, |z| < yα,β,γ,1 and
|z| < zα,β,γ,1, respectively, where xα,β,γ,1, yα,β.γ,1 and zα,β,γ,1 are the smallest pos-
itive roots of the following equations:

rf ′α,β,γ(r)

fα,β,γ(r)
= ρ,

rg′α,β,γ(r)

gα,β,γ(r)
= ρ and

rh′α,β,γ(r)

hα,β,γ(r)
= ρ,

which are equivalent to

rλ′(α, β, γ, r)− β(ρ− 1)λ(α, β, γ, r) = 0, rλ′(α, β, γ, r)− (ρ− 1)λ(α, β, γ, r) = 0

and √
rλ′(α, β, γ,

√
r)− 2(ρ− 1)λ(α, β, γ,

√
r) = 0.

Proof of Theorem 2. (a): The radius of starlikeness of the normalized Mittag-
Leffler function fα,β,γ corresponds to the radius of starlikeness of the function
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Ψ(α, β, γ, z) = zβλ(α, β, γ, z). The infinite series representation of the function
z 7→ Ψ′(α, β, γ, z) and its derivative are as follows:

Ψ′(α, β, γ, z) =
∑
n≥0

(−1)n(γ)n(2n+ β)z2n+β−1

n!Γ(αn+ β)
,

Ψ′′(α, β, γ, z) =
∑
n≥0

(−1)n(γ)n(2n+ β)(2n+ β − 1)z2n+β−2

n!Γ(αn+ β)
.

In view of Lemma 1, the function z 7→ Ψ(α, β, γ, z) belongs to the Laguerre-Pólya
class LP. This class of functions is closed under differentiation, and therefore z 7→
Ψ′(α, β, γ, z) also belongs to the Laguerre-Pólya class LP. Hence the zeros of the
function z 7→ Ψ′(α, β, γ, z) are all real, and in fact, according to Lemma 1, they are
interlaced with the zeros of z 7→ Ψ(α, β, γ, z). Thus, Ψ′(α, β, γ, z) can be written as

Ψ′(α, β, γ, z) =
β

Γ(β)
zβ−1

∏
n≥1

(
1− z2

ξ2α,β,γ,n

)
. (5)

Logarithmic differentiation of both sides of (5) for |z| < ξα,β,γ,1 gives

zΨ′′(α, β, γ, z)

Ψ′(α, β, γ, z)
− (β − 1) =

∑
n≥1

−2z2

ξ2α,β,γ,n − z2
= −2

∑
n≥1

∑
k≥0

z2k+2

ξ2k+2
α,β,γ,n

= −2
∑
k≥0

∑
n≥1

z2k+2

ξ2k+2
α,β,γ,n

= −2
∑
k≥0

χk+1z
2k+2, (6)

where χk =
∑
n≥1 ξ

−2k
α,β,γ,n. On the other hand, by using (5) and (5) we get

zΨ′′(α, β, γ, z)

Ψ′(α, β, γ, z)
=
∑
n≥0

anz
2n

/∑
n≥0

bnz
2n, (7)

where

an =
(−1)n(γ)n(2n+ β)(2n+ β − 1)

n!Γ(αn+ β)
and bn =

(−1)n(γ)n(2n+ β)

n!Γ(αn+ β)
.

By comparing the coefficients of (6) and (7) we have

(β − 1)b0 = a0, (β − 1)b1 − 2χ1a0 = a1, (β − 1)b2 − 2χ1b1 − 2χ2b0 = a2,

which implies that

χ1 =
γ(β + 2)Γ(β)

βΓ(α+ β)
, χ2 =

γ2(β + 2)2Γ2(β)

β2Γ2(α+ β)
− γ(γ + 1)(β + 4)Γ(β)

βΓ(2α+ β)
.

By using the Euler-Rayleigh inequalities

χ
−1/k
k < ξ2α,β,γ,1 <

χk
χk+1
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for k = 1 we have the inequalities of the first part of the theorem.
(b): If ρ = 0 in the second part of Theorem 1, then we have that the radius of

starlikeness of order zero of the function gα,β,γ is the smallest positive root of the
equation (zλ(α, β, γ, z))′ = 0. Therefore, it is of interest to study the first positive
zero of

ω(α, β, γ, z) = (zλ(α, β, γ, z))′ =
∑
n≥0

(−1)n(2n+ 1)(γ)nz
2n

n!Γ(αn+ β)
. (8)

We know that the function z 7→ λ(α, β, γ, z) belongs to the Laguerre-Pólya class
LP, which is closed under differentiation. Therefore, we get that the function z 7→
ω(α, β, γ, z) belongs to the Laguerre-Pólya class, and hence all its zeros are real.
Suppose that ζα,β,γ,n is the nth positive zero z 7→ ω(α, β, γ, z). Then the function
z 7→ ω(α, β, γ, z) has the following infinite product representation

ω(α, β, γ, z) =
1

Γ(β)

∏
n≥1

(
1− z2

ζ2α,β,γ,n

)
(9)

since its growth order corresponds to the growth order of the generalized Mittag-
Leffler function itself. If we take the logarithmic derivative of both sides of (9), for
|z| < ζα,β,γ,1 we have

ω′(α, β, γ, z)

ω(α, β, γ, z)
=
∑
n≥1

−2z

ζ2α,β,γ,n − z2
=
∑
n≥1

∑
k≥0

−2z2k+1

ζ2k+2
α,β,γ,n

=
∑
k≥0

∑
n≥1

−2z2k+1

ζ2k+2
α,β,γ,n

= −2
∑
k≥0

δk+1z
2k+1, (10)

where δk =
∑
n≥1 ζ

−2k
α,β,γ,n. Moreover, in view of (8), we have

ω′(α, β, γ, z)

ω(α, β, γ, z)
= −2

∑
n≥0

cnz
2n+1

/∑
n≥0

dnz
2n, (11)

where

cn =
(−1)n(2n+ 3)(γ)n+1

n!Γ(αn+ α+ β)
and dn =

(−1)n(γ)n(2n+ 1)

n!Γ(αn+ β)
.

Comparing the coefficients in (10) and (11) we have that δ1d0 = c0 and δ2d0+δ1d1 =
c1, which yields the following Rayleigh sums:

δ1 =
3γΓ(β)

Γ(α+ β)
and δ2 =

9γ2Γ2(β)

Γ2(α+ β)
− 5γ(γ + 1)Γ(β)

Γ(2α+ β)
.

By using the Euler-Rayleigh inequalities

δ
−1/k
k < ζ2α,β,γ,1 <

δk
δk+1

for k = 1 we obtain the inequalities of the second part of the theorem.
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(c): Taking δ = 0 in the third part of Theorem 1 we obtain that the radius of
starlikeness of order zero of the function hα,β,γ is the smallest positive root of the
equation (zλ(α, β, γ,

√
z))′ = 0. Therefore, it is of interest to study the first positive

zero of

σ(α, β, γ, z) = (zλ(α, β, γ,
√
z))′ =

∑
n≥0

(−1)n(γ)n(n+ 1)zn

n!Γ(αn+ β)
. (12)

We know that the function z 7→ λ(α, β, γ, z) belongs to the Laguerre-Pólya class
LP, and consequently we get that the function z 7→ σ(α, β, γ, z) also belongs to the
Laguerre-Pólya class. Hence the zeros of the function z 7→ σ(α, β, γ, z) are all real.
Let ηα,β,γ,n be the nth positive zero of the function z 7→ σ(α, β, γ, z). Then the next
infinite product representation is valid:

σ(α, β, γ, z) =
1

Γ(β)

∏
n≥1

(
1− z

ηα,β,γ,n

)
. (13)

This is in agreement with the fact that according to Kumar and Pathan [20], if(
1
α , β

)
∈Wi and γ > 0, then all zeros of the generalized Mittag-Leffler function z 7→

φ(α, β, γ, z) are real and negative, and consequently all zeros of z 7→ λ(α, β, γ,
√
z)

and then of z 7→ σ(α, β, γ, z) are all real and positive.
Logarithmic differentiation of both sides of (13) for |z| < ηα,β,γ,1 gives

σ′(α, β, γ, z)

σ(α, β, γ, z)
= −

∑
n≥1

1

ηα,β,γ,n − z
= −

∑
n≥1

∑
k≥0

zk

ηk+1
α,β,γ,n

= −
∑
k≥0

∑
n≥1

zk

ηk+1
α,β,γ,n

= −
∑
k≥0

θk+1z
k, (14)

where θk =
∑
n≥1 η

−k
α,β,γ,n. On the other hand, logarithmic differentiation of both

sides of (12) gives

σ′(α, β, γ, z)

σ(α, β, γ, z)
= −

∑
n≥0

unz
n

/∑
n≥0

vnz
n, (15)

where

un =
(−1)n(n+ 2)(γ)n+1

n!Γ(αn+ α+ β)
and vn =

(−1)n(n+ 1)(γ)n
n!Γ(αn+ β)

.

By comparing the coefficients of (14) and (15), we get the following Rayleigh sums:

θ1 =
2γΓ(β)

Γ(α+ β)
and θ2 =

4γ2Γ2(β)

Γ2(α+ β)
− 3γ(γ + 1)Γ(β)

Γ(2α+ β)
.

By using the Euler-Rayleigh inequalities

θ
−1/k
k < ηα,β,γ,1 <

θk
θk+1

for k = 1 the corresponding part of this theorem is proved.
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Proof of Theorem 3. (a): First note that

1 +
zf ′′α,β,γ(z)

f ′α,β,γ(z)
= 1 +

zΨ′′(α, β, γ, z)

Ψ′(α, β, γ, z)
+

(
1

β
− 1

)
rΨ′(α, β, γ, z)

Ψ(α, β, γ, z)
,

and let us recall the following infinite product representations from the proof of
Theorem 1

Γ(β)Ψ(α, β, γ, z) = zβ
∏
n≥1

(
1− z2

λ2α,β,γ,n

)
and

Γ(β)Ψ′(α, β, γ, z) = βzβ−1
∏
n≥1

(
1− z2

ξ2α,β,γ,n

)
,

where λα,β,γ,n and ξα,β,γ,n are the nth positive roots of z 7→ Ψ(α, β, γ, z) and z 7→
Ψ′(α, β, γ, z), respectively, as in Lemma 1. Logarithmic differentiation of both sides
of the above relations yields

zΨ′(α, β, γ, z)

Ψ(α, β, γ, z)
= β −

∑
n≥1

2z2

λ2α,β,γ,n − z2

and
zΨ′′(α, β, γ, z)

Ψ′(α, β, γ, z)
= β − 1−

∑
n≥1

2z2

ξ2α,β,γ,n − z2
,

which implies that

1 +
zf ′′α,β,γ(z)

f ′α,β,γ(z)
= 1−

(
1

β
− 1

)∑
n≥1

2z2

λ2α,β,γ,n − z2
−
∑
n≥1

2z2

ξ2α,β,γ,n − z2
.

By using inequality (4) for β ∈ (0, 1] we have

Re

(
1 +

zf ′′α,β,γ(z)

f ′α,β,γ(z)

)
≥ 1−

(
1

β
− 1

)∑
n≥1

2r2

λ2α,β,γ,n − r2
−
∑
n≥1

2r2

ξ2α,β,γ,n − r2
, (16)

where |z| = r. Moreover, in view of the following inequality (see [5, Lemma 2.1])

αRe

(
z

a− z

)
− Re

(
z

b− z

)
≥ α |z|

a− |z|
− |z|
b− |z|

,

where a > b > 0, α ∈ [0, 1], z ∈ C such that |z| < b, we obtain that (16) is also
valid when β > 1 for all z ∈ Dξα,β,γ,1 . Here we used that the zeros of λα,β,γ,n and
ξα,β,γ,n interlace according to Lemma 1. Now, the above deduced inequalities imply
for r ∈ (0, ξα,β,γ,1)

inf
z∈Dr

{
Re

(
1 +

zf ′′α,β,γ(z)

f ′α,β,γ(z)

)}
= 1 +

rf ′′α,β,γ(r)

f ′α,β,γ(r)
.
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The function uα,β,γ : (0, ξα,β,γ,1)→ R, defined by

uα,β,γ(r) = 1 +
rf ′′α,β,γ(r)

f ′α,β,γ(r)
,

is strictly decreasing since

u′α,β,γ(r) = −
(

1

β
− 1

)∑
n≥1

4rλ2α,β,γ,n
(λ2α,β,γ,n − r2)2

−
∑
n≥1

4rξ2α,β,γ,n
(ξ2α,β,γ,n − r2)2

<
∑
n≥1

4rλ2α,β,γ,n
(λ2α,β,γ,n − r2)2

−
∑
n≥1

4rξ2α,β,γ,n
(ξ2α,β,γ,n − r2)2

< 0

for r ∈ (0, ξα,β,γ,1), where we used again the interlacing property of the zeros stated
in Lemma 1. Observe that limr↘0 uα,β,γ(r) = 1 and limr↗ξα,β,γ,1 uα,β,γ(r) = −∞,
which means that for z ∈ Dr1 we get

Re

(
1 +

zf ′′α,β,γ(z)

f ′α,β,γ(z)

)
> ρ

if and only if r1 is the unique root of

1 +
zf ′′α,β,γ(r)

f ′α,β,γ(r)
= ρ

situated in (0, ξα,β,γ,1).
(b): According to (9), we have

g′α,β,γ(z) =
∏
n≥1

(
1− z2

ζ2α,β,γ,n

)
.

Now, taking logarithmic derivatives on both sides, we get

1 +
zg′′α,β,γ(z)

g′α,β,γ(z)
= 1−

∑
n≥1

2z2

ζ2α,β,γ,n − z2
.

Application of inequality (4) implies that

Re

(
1 +

zg′′α,β,γ(z)

g′α,β,γ(z)

)
≥ 1−

∑
n≥1

2r2

ζ2α,β,γ,n − r2
,

where |z| = r. Thus, for r ∈ (0, ζα,β,γ,1), we get

inf
z∈Dr

{
Re

(
1 +

zg′′α,β,γ(z)

g′α,β,γ(z)

)}
= 1 +

rg′′α,β,γ(r)

g′α,β,γ(r)
.
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The function vα,β,γ : (0, ζα,β,γ,1)→ R, defined by

vα,β,γ(r) = 1 +
rg′′α,β,γ(r)

g′α,β,γ(r)
,

is strictly decreasing and takes the limits

lim
r↘0

vα,β,γ(r) = 1

and

lim
r↗ζα,β,γ,1

vα,β,γ(r) = −∞,

which means that for z ∈ Dr2 we get

Re

(
1 +

zg′′α,β,γ(z)

g′α,β,γ(z)

)
> ρ

if and only if r2 is the unique root of

1 +
zg′′α,β,γ(r)

g′α,β,γ(r)
= ρ

situated in (0, ζα,β,γ,1).
(c): According to (13), we have

h′α,β,γ(z) =
∏
n≥1

(
1− z

ηα,β,γ,n

)
,

which implies that

1 +
zh′′α,β,γ(z)

h′α,β,γ(z)
= 1−

∑
n≥1

z

ηα,β,γ,n − z
.

Let r ∈ (0, ηα,β,γ,1) be a fixed number. The minimum principle for the harmonic
function and inequality (4) imply that for z ∈ Dr we have

Re

(
1 +

zh′′α,β,γ(z)

h′α,β,γ(z)

)

= Re

1−
∑
n≥1

z

ηα,β,γ,n − z

 ≥ min
|z|=r

Re

1−
∑
n≥1

z

ηα,β,γ,n − z


= min
|z|=r

1−
∑
n≥1

Re
z

ηα,β,γ,n − z

 ≥ 1−
∑
n≥1

r

ηα,β,γ,n − r
= 1 +

rh′′α,β,γ(r)

h′α,β,γ(r)
.
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Consequently, it follows that

inf
z∈Dr

{
Re

(
1 +

zh′′α,β,γ(z)

h′α,β,γ(z)

)}
= 1 +

rh′′α,β,γ(r)

h′α,β,γ(r)
.

Now, let r3 be the smallest positive root of the equation

1 +
rh′′α,β,γ(r)

h′α,β,γ(r)
= ρ. (17)

For z ∈ Dr3 , we have

Re

(
1 +

rh′′α,β,γ(r)

h′α,β,γ(r)

)
> ρ.

In order to complete the proof, we need to show that equation (17) has a unique
root in (0, ηα,β,γ,1). But equation (17) is equivalent to

wα,β,γ(r) = 1− ρ−
∑
n≥1

r

ηα,β,γ,n − r
= 0

and we have limr↘0 wα,β,γ(r) = 1 − ρ > 0, and limr↗ηα,β,γ wα,β,γ(r) = −∞. Now,
since the function wα,β,γ : (0, ηα,β,γ,1) → R defined above is strictly decreasing, it
follows that the equation wα,β,γ(r) = 0 has indeed a unique root in (0, ηα,β,γ,1). This
completes the proof of the theorem.

Proof of Theorem 4. (a): By using the infinite series representations of the gen-
eralized Mittag-Leffler function and its derivative we obtain

ϕ(α, β, γ, z) = (zg′α,β,γ(z))′ = 1 +
∑
n≥1

(−1)n(γ)nΓ(β)(2n+ 1)2z2n

n!Γ(αn+ β)
.

We know that gα,β,γ ∈ LP and this in turn implies that z 7→ ϕ(α, β, γ, z) also
belongs to the Laguerre-Pólya class and consequently all its zeros are real. Assume
that τα,β,γ,n is the nth positive zero of the function z 7→ ϕ(α, β, γ, z). Then we have
that

ϕ(α, β, γ, z) =
∏
n≥1

(
1− z2

τ2α,β,γ,n

)

and for |z| < τα,β,γ,1

ϕ′(α, β, γ, z)

ϕ(α, β, γ, z)
=
∑
n≥1

−2z

τ2α,β,γ,n − z2
=
∑
n≥1

∑
k≥0

−2z2k+1

τ2k+2
α,β,γ,n

=
∑
k≥0

∑
n≥1

−2z2k+1

τ2k+2
α,β,γ,n

= −2
∑
k≥0

µk+1z
2k+1, (18)
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where µk =
∑
n≥1 τ

−2k
α,β,γ,n. On the other hand, we have

ϕ′(α, β, γ, z)

ϕ(α, β, γ, z)
= −2

∑
n≥0

qnz
2n+1

/∑
n≥0

rnz
2n, (19)

where

qn =
(−1)n(γ)n+1Γ(β)(2n+ 3)2

n!Γ(α(n+ 1) + β)
and rn =

(−1)n(γ)nΓ(β)(2n+ 1)2

n!Γ(αn+ β)
.

By comparing the coefficients of (18) and (19) we obtain

µ1 =
9γΓ(β)

Γ(α+ β)
, µ2 =

81γ2Γ2(β)

Γ2(α+ β)
− 25γ(γ + 1)Γ(β)

Γ(2α+ β)

and by using the Euler-Rayleigh inequalities

µ
−1/k
k < τ2α,β,γ,1 <

µk
µk+1

for k = 1 we have the inequalities of this part of the theorem.
(b): In view of the definition of the generalized Mittag-Leffler function we have

$(α, β, γ, z) = (zh′α,β,γ(z))
′

= 1 +
∑
n≥1

(−1)nΓ(β)(γ)n(n+ 1)2zn

n!Γ(αn+ β)

and consequently

$′(α, β, γ, z)

$(α, β, γ, z)
= −

∑
n≥0

tnz
n

/∑
n≥0

snz
n, (20)

where

tn =
(−1)nΓ(β)(γ)n+1(n+ 2)2

n!Γ(α(n+ 1) + β)
and sn =

(−1)nΓ(β)(γ)n(n+ 1)2

n!Γ(αn+ β)
.

Since hα,β,γ ∈ LP, it follows that h′α,β,γ ∈ LP, and consequently z 7→ $(α, β, γ, z)
also belongs to the Laguerre-Pólya class LP, and hence all its zeros are real. If we
suppose that ςα,β,γ,n is the nth positive zero of the function z 7→ $(α, β, γ, z), then
we get

$α, β, γ, z) =
∏
n≥1

(
1− z

ςα,β,γ,n

)
and for |z| < ςα,β,γ,1

$′(α, β, γ, z)

$(α, β, γ, z)
= −

∑
n≥1

1

ςα,β,γ,n − z
= −

∑
n≥1

∑
k≥0

zk

ςk+1
α,β,γ,n

= −
∑
k≥0

∑
n≥1

zk

ςk+1
α,β,γ,n

= −
∑
k≥0

νk+1z
k, (21)
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where νk =
∑
n≥1 ς

−k
α,β,γ,n. By comparing the coefficients of (21) and (20), we have

ν1 =
4γΓ(β)

Γ(α+ β)
, ν2 =

16γ2Γ2(β)

Γ2(α+ β)
− 9γ(γ + 1)Γ(β)

Γ(2α+ β)

and by using the Euler-Rayleigh inequalities

ν
−1/k
k < ςα,β,γ,1 <

νk
νk+1

for k = 1 we have the inequalities of the second part of the theorem.
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[23] I. V. Ostrovskĭi, I. N. Peresyolkova, Nonasymptotic results on distribution of zeros

of the function Eρ(z, µ), Anal. Math. 23(1997), 283–296.
[24] I. N. Peresyolkova, On distribution of zeros of generalized functions of Mittag-

Leffler type, Matematychni Studii 13(2000), 157–164.
[25] A. Yu. Popov, A. M. Sedletskii, Distribution of roots of Mittag-Leffler functions,

Sovrem. Mat. Fundam. Napravl. 40(2011), 3–171; translation in J. Math. Sci.
190(2013), 209–409.

[26] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler func-
tion in the kernel, Yokohama Math. J. 19(1971), 7–15.

[27] J. K. Prajapat, S. Maharana, D. Bansal, Radius of starlikeness and Hardy space
of Mittag-Leffler functions, preprint.

[28] S. V. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Math-
ematics 3(2015), 368–381.

[29] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and
its properties, J. Math. Anal. Appl. 337(2007), 797–811.
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